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Abstract

Motivation: Gene assembly is an important step in functional analysis of shotgun metagenomic

data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools

often fail to distinguish among strain variants or require closely related reference genomes of the

studied species to be available.

Results: We have developed Snowball, a novel strain aware gene assembler for shotgun metage-

nomic data that does not require closely related reference genomes to be available. It uses profile

hidden Markov models (HMMs) of gene domains of interest to guide the assembly. Our assembler

performs gene assembly of individual gene domains based on read overlaps and error correction

using read quality scores at the same time, which results in very low per-base error rates.

Availability and Implementation: The software runs on a user-defined number of processor cores

in parallel, runs on a standard laptop and is available under the GPL 3.0 license for installation

under Linux or OS X at https://github.com/hzi-bifo/snowball.

Contact: AMC14@helmholtz-hzi.de or a.schoenhuth@cwi.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the functional or sequence-based analysis of micro-

bial DNA isolated directly from a microbial community of interest

(Kunin et al., 2008; Riesenfeld et al., 2004). This enables the ana-

lysis of microorganisms that cannot be cultivated in a laboratory.

After the DNA is isolated, it is sequenced using a high-throughput

sequencing platform, which results in a large dataset of short

sequenced genome fragments, called reads. For a read, it is unknown

from which strain it originates. Given such sequenced shotgun meta-

genomic data, i.e. a dataset of short reads that originate from several

genome sequences of distinct strains, gene assembly aims to recon-

struct coding sequences of the individual strains contained in the

dataset (Fig. 1).

Gene assembly is an important step in the analysis of shotgun

metagenomic data. For many purposes, including functional analysis

of metagenomic data, it is sufficient, and therefore convenient to as-

semble only the coding sequences of the strains. It has also been

shown that genes assemble well (Kingsford et al., 2010) even when

only short reads are available. Moreover, metagenomic data consist

mainly of prokaryotic species. As usually more than 85% of pro-

karyotic genomes are coding sequences (Cole and Saint-Girons,

1999); gene assembly enables to recover large parts of the respective

genomes.

Importantly, strain awareness is an essential goal in assembling

metagenomes, since it enables us to study gene variation among

strains of a species from the sequenced microbial community, which

is where much phenotypic diversity also arises. However, the assem-

bly of closely related strains remains a challenging task. Strain aware

assembly, which is assembly that is sensitive to closely related haplo-

typic sequences has remained an open challenge in many genomics

applications. In particular, low-abundance strains can interfere with

sequencing errors in common error correction routines. To date,

most assembly tools still aim to assemble consensus sequence, if

closely related haplotypes are present (Marschall et al., 2016).

There are few tools that enable strain variant reconstruction.

They often rely on the availability of closely related reference gen-

omes of the studied species (Ahn et al., 2015; Töpfer et al., 2014;

Zagordi et al., 2011), where reads are first mapped onto a reference

genome, using a read mapping tool, e.g. BWA (Li and Durbin,

2009), strain variants are then identified through a reference guided

strain aware assembly. As metagenome samples originating from
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novel environments typically consist of novel species without refer-

ence genomes available, there is a need for new reference-free

approaches.

Tools that are often used for de novo metagenome assemblies

are Ray Meta (Boisvert et al., 2012), MEGAHIT (Li et al., 2015),

IDBA-UD (Peng et al., 2012), MetaVelvet (Namiki et al., 2012) or

SOAPdenovo2 (Luo et al., 2012). All these tools are k-mer based,

i.e. they transform reads into overlapping k-mers from which De

Bruijn graphs are built, where paths in the graph correspond to the

assembled contigs. This general approach, however, often fails to

distinguish among strain variants. There has been recent debate on

k-mer based approaches using De Bruijn graphs in strain aware as-

sembly. In particular, k-mer based approaches can become misled,

when low-abundance strains are involved, since the frequencies of

the low-abundance strains are on the order of magnitude of the

sequencing error rates. This leads to unpleasant interference in k-

mer based error-correction steps, as low-abundance strains are often

removed along with sequencing errors. For strain aware assembly, it

is helpful to process reads at their full length, because this increases

the power to distinguish low-frequent, co-occurring true mutations

from sequencing errors. In this line, there has been recent evidence

that shorter genomes can be assembled through overlap graph based

approaches, which make use of full-length reads, using short reads

(Simpson and Durbin, 2012). It was also shown that one can per-

form strain aware assembly through iterative construction of over-

lap graphs (Töpfer et al., 2014). For gene assembly from

metagenomic data, the SAT assembler (Zhang et al., 2014) can be

employed. First, it assigns reads to gene domains of interest based

on profile hidden Markov models (HMMs) (Eddy, 2011; Finn et al.,

2014) of the respective gene domains. Then, for each gene domain,

separately, it builds overlap graphs based on the read overlaps,

where the paths in the graphs correspond to the assembled contigs.

However, the SAT assembler does not implement a sophisticated

error-correction strategy, which is considered crucial for strain

aware assembly. For the reconstruction of 16S genes, which are

often used for phylotyping, REAGO (Yuan et al., 2015) can be em-

ployed. Since it has been built for 16S genes, the use of REAGO in

more generic settings remains unclear.

The current sequencing technologies still produce relatively short

erroneous reads, making it difficult to distinguish sequencing errors

from genuine strain variation (Laehnemann et al., 2015). Therefore,

reference-free strain reconstruction of the full-length sequences of

individual strains is currently considered to be a tough computa-

tional challenge, as there may be no immediate sufficient informa-

tion in the sequenced data if mutations are separated by too large

stretches of sequence that agree for several strains. Therefore, new

approaches are needed that push the limits imposed by the data.

Here, we present Snowball, a novel method for strain aware

gene assembly from metagenomes that addresses the above-

mentioned points. It does not require closely related reference gen-

omes to be available. It uses profile HMMs of gene domains of inter-

est as an input to guide the assembly. The HMM profile-based

homology search is known to be capable of finding remote hom-

ology, including large number of substitutions, insertions and dele-

tions, whereas simple read mapping onto a reference genome can

find only very closely related homologs (Zhang et al., 2014). Since

our method does not make use of reference genomes, we allow for

strain aware gene assembly also of novel species, where reference

genomes are not yet available. We have developed a novel algorithm

that performs gene assembly based on read overlaps. This allows

correcting errors by making use of the error profiles that underlie

the overlapping reads. The consequences are twofold: First, we ob-

tain contigs affected by only very low per-base error rates. Second,

since, this way, we determine which reads stem from identical seg-

ments based on a statistically sound model, we can reliably distin-

guish between sequencing errors and strain-specific variants, even of

very low-abundance strains. We consider these two features to rep-

resent the main improvements over the currently available assem-

blers. To the best of our knowledge, Snowball is the first tool that

allows distinguishing among individual gene strain variants in meta-

genomes for a large set of gene domains without using reference gen-

omes of related species.

In our experiments, we focused on distinguishing closely related

strains from one species. Since two different species are substantially

more divergent in terms of sequence than two different strains from

the same species, good results on strains from one species also imply

good or even better performance on datasets that contain several

species—distinguishing species is the much easier task. We assessed

the performance of Snowball using 21 simulated datasets, each con-

taining 3–9 closely related Escherichia coli strains and on one simu-

lated dataset containing ten recently published strains of a novel

Rhizobia species (Bai et al., 2015). The results for the latter demon-

strate the capability of the Snowball assembler to assemble genes of

novel strains. The results for all datasets confirm that the strength of

Snowball is its very low per-base error, due to the incorporated

error-correction. Moreover, it produced substantially longer contigs

and recovered a larger part of the simulated reference data in com-

parison to the SAT assembler. Snowball is implemented in Python,

runs on a user-defined number of processor cores in parallel, runs

on a standard laptop, is freely available under the GPL 3.0 license

and can be installed under Linux or OS X.

2 Methods

The input of Snowball are two FASTQ files containing Illumina self-

overlapping paired-end reads, the corresponding insert size used for

the library preparation and profile HMMs of gene domains of inter-

est. The paired-end reads may originate from multiple closely related

strains or from more evolutionary divergent taxa. We have thor-

oughly tested Snowball using simulated Illumina HiSeq 2500

paired-end reads generated by the ART read simulator (Huang

Fig. 1. An example of the gene assembly problem. In this example, the

sequenced microbial community consists only of three distinct strains. Non-

coding regions of the strain sequences are black, whereas coding regions are

red, green and blue for genes 1, 2 and 3. Genes 1–3 are present in all three

strains, although the location and gene sequences differ for distinct strains.

The sequencing step results in a collection of short reads. Note that after the

sequencing step, the origin of reads denoted by colours and positions within

the respective strains in the figure is not known in the subsequent gene as-

sembly step. Given a dataset containing all the short reads, the ultimate goal

of the gene assembly is to determine the individual strain specific sequences

of the genes
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et al., 2012) with 150 bp read length and 225 bp mean insert size. In

this setting, the average length of the self-overlaps of the read ends is

75 bp and the length of a consensus read that originates by joining

of the self-overlapping read ends is 225 bp on average (Fig. 2,

Section 3.4). The output is a FASTA or a FASTQ file containing

annotated assembled contigs. For each contig, the annotation con-

tains the name of a respective gene domain to which a contig be-

longs, coordinates of the coding sub-sequence within a contig

sequence, coverage and quality score for each contig position. The

coverage and quality score information can be used for subsequent

quality filtering yielding less or shorter contigs of higher quality.

Our method consists of the following steps:

• [Consensus read reconstruction]

Self-overlapping paired-end reads are joined into longer consen-

sus reads (Section 2.1).
• [Assignment of consensus reads to gene domains]

Profile HMMs of selected gene domains are employed to assign

consensus reads to the respective gene domains, where one con-

sensus read is assigned to at most one gene domain (Section 2.2).
• [Assembly of consensus reads into contigs]

For each gene domain, in parallel, consensus reads are assembled

into contigs (Sections 2.3–2.5). In the assembly step, consensus

reads are iteratively joined into longer and error-corrected super-

reads based on the consensus read overlaps. The super-reads are

then output as annotated contigs, where a super-read represents

a sequence that originates by joining of at least two consensus

reads into a longer sequence.

2.1 Joining self-overlapping paired-end reads
Self-overlapping paired-end reads are joined into longer error-

corrected consensus sequences. The use of a library containing self-

overlapping paired-end reads is a powerful strategy for an initial

error-correction (Schirmer et al., 2015), which has been employed in

e.g. ALLPATHS (Butler et al., 2008). Given the mean insert size, we

determine the self-overlap that results in the minimum hamming dis-

tance between the overlapping ends of a paired-end read. A base

with a higher quality score is chosen at a position within the overlap

that contains mismatching bases for the respective position of the re-

sulting consensus read sequence (Fig. 3). As the substitution error

rate of the Illumina reads increases towards the ends of the paired-

end reads (Minoche et al., 2011), this step results in longer consen-

sus reads with overall lower substitution error, where the overlap-

ping regions are almost error-free. It is also an efficient read quality

filtering step, as the paired-end reads that cannot be joined, due to

high substitution error rate, an insertion or a deletion within the

overlapping region, are filtered out. For instance, by joining of the

150 bp paired-end Illumina HiSeq 2500 self-overlapping reads with

225 bp mean insert size results in consensus reads of length 225 bp

on average. While the default error profile of the ART read simula-

tor (Huang et al., 2012) yields 150 bp paired-end reads with

�2.37% substitution error, the joined consensus reads had only

�1.08% substitution error in our experiments. These longer, error-

corrected consensus reads with low substitution error rate are con-

venient building blocks to start with in the subsequent steps of our

method.

2.2 Assigning reads to gene domains
Consensus reads are annotated using profile HMMs of gene do-

mains of interest and assigned to respective gene domains (Fig. 4).

By default, we use the Pfam-A (Finn et al., 2014) (version 27) profile

HMMs of 14 831 gene domains and AMPHORA 2 (Wu and Scott,

2012) profile HMMs of 31 bacterial ubiquitous single-copy genes

that are often used for phylotyping. A profile HMM of a gene do-

main is a probabilistic model representing a multiple sequence align-

ment of representative gene sequences belonging to a particular gene

domain. The model can be used to annotate a query sequence (e.g. a

consensus read). The annotation mainly consists of a score, start/

stop positions within a query sequence and HMM start/stop coord-

inates. The score roughly corresponds to a probability that a query

sequence belongs to the particular gene domain, i.e. if the score is

high for a query sequence then it is very probable that it belongs to

the respective gene domain. The start/stop positions within a query

sequence define a sub-sequence of a query sequence that was identi-

fied to belong to the gene domain. The HMM start/stop coordinates

correspond to the estimated coordinates of the query sub-sequence

Fig. 2. An example of a self-overlapping paired-end read. Illumina HiSeq 2500

paired-end read consists of two 150bp read ends, one on the positive strand

(þ) and one on the negative strand (�). In our example, the mean insert size

(225 bp) is smaller than two times the read end length (2 � 150 bp), therefore

the paired-end reads are self-overlapping with 75 bp overlap length on aver-

age. Such a self-overlapping read can be joined into a consensus read of

225 bp length on average

Fig. 3. Joining of self-overlapping reads example. The figure depicts a simpli-

fied example of a consensus read reconstruction. At the mismatching overlap

position, read-end 1 has T with quality score (QS) 9, while read-end 2 has G

with quality score 5. The resulting consensus read will have T at the respect-

ive position, since T is supported by a higher quality score than G. The com-

putation of the quality scores for the consensus read is explained in the

Section 2.3

Fig. 4. Assignment of consensus reads to gene domains. Consensus reads

are assigned to individual gene domains using profile HMMs. Consensus

reads that cannot be assigned to any of the gene domains with sufficient con-

fidence remain unassigned. A consensus read is assigned to at most one

gene domain
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within the multiple sequence alignment of the respective profile

HMM.

Each consensus read is translated into six protein sequences using

all six reading frames (i.e. also considering the reverse complementary

sequences). The hmmsearch command of the HMMER 3 (Eddy, 2011)

software is used to annotate the protein sequences. For each consensus

read, only the reading frame with the highest score is considered. A

consensus read is assigned to at most one gene domain to which it was

queried with the highest score. Consensus reads with low scores (i.e.

lower than default value: 40) are filtered out and not considered in the

subsequent steps. If a protein sequence corresponding to a reverse com-

plementary consensus read sequence was annotated, the corresponding

reverse complementary DNA sequence of a respective consensus read

is considered in the next steps. The coding DNA sub-sequence of a con-

sensus read sequence is denoted as a (partial) coding region. The start

and end HMM coordinates within a respective profile HMM are

stored as part of the consensus read annotation.

As a result of this step, consensus reads are annotated and as-

signed to ‘bins’ representing individual gene domains, where one

consensus read is assigned to at most one gene domain. Gene do-

mains are building blocks of individual genes. Therefore, a ‘bin’

does not only contain consensus reads belonging to gene variants of

individual strains. It can also contain different genes of one strain,

several copies of one gene of one strain or even ‘broken’ gene copies.

2.3 Consensus sequence representation
We represent consensus sequences, i.e. consensus reads and super-

reads using probability matrices. A super-read is a longer error-

corrected sequence that originates by joining overlapping consensus

reads (or consensus reads with super-reads) in the Snowball algo-

rithm (Section 2.5).

For construction of such super-reads, we make use of the error

profiles that come along with Illumina paired-end reads. These reads

are stored in FASTQ files together with the corresponding quality

scores (Fig. 5a). A quality score for a read position represents a

probability that a base was sequenced correctly, i.e. it represents a

probability that a particular base is present at a respective position

in the FASTQ file (Fig. 5b). The complement probability represents

a probability that a different base is at the respective position. The

probability that different base X is present at a particular position

corresponds to one third of the complement probability in our

model, which reflects that apart from the correct nucleotide, there

are 3 different choices for X. Note that these probabilities are only

estimates, as provided by the Illumina sequencing platform.

In our model, a probability matrix represents a consensus se-

quence, where each sequence position is represented by a probability

distribution over DNA bases {A, C, T, G}. An example of a probabil-

ity matrix corresponding to a consensus sequence of two overlap-

ping sequences is depicted in (Fig. 6). At a particular position within

a consensus sequence, we compute the expected probability of a

base as the average probability of the respective base probabilities of

the individual reads covering the position. The individual base prob-

abilities are derived from the quality scores (Fig. 5). Let R be the set

of all read ends that were joined into consensus sequence c and cover

position pc within c. The probability of a base X2{A, C, T, G} being

at position pc within the consensus sequence c is:

Ppc Xð Þ ¼ 1

Rj j
X
r2R

Ppr
r ðXÞ

where pr for a read r2R is the position within r that corresponds to

position pc within the consensus sequence c. The base with the

highest probability in the probability matrix at a particular pos-

ition is the base of the consensus DNA sequence at the respective

position.

2.4 Overlap probabilities and error correction
The computation of overlap probabilities of two overlapping se-

quences is an essential part of the Snowball algorithm. Given two

overlapping sequences S1 and S2, represented by probability matrices

(Fig. 6), where n is the length of the overlapping region, the overlap

probability at position i 2 [0, . . ., n � 1] is computed as:

Fig. 5. FASTQ file data representation. (Panel a) depicts an example of a read

end representation in a FASTQ file. The entry consists of the read end name,

the DNA sequence of the respective end of a paired-end read and the quality

score for each position of the DNA sequence, which are ASCII coded. (Panel

b) explains the meaning of the quality scores. From quality score qsi at pos-

ition i, we compute the probability that position i was correctly sequenced,

where the ord function assigns an ASCII number to an input ASCII character.

Before translating the resulting number ord(qsi) into the corresponding prob-

ability, one has to subtract 33, by convention. The probability that base C is at

position i is equal to the probability that position i was sequenced correctly.

In our model, the probability of A, T or G being at position i is equal to the

probability that position i was sequenced incorrectly divided by three

Fig. 6. Probability matrix example. In this example of a probability matrix con-

struction, two overlapping read ends are joined into a consensus sequence

and represented as a probability matrix. The subscripts of individual probabil-

ities correspond to either read end R1 or R2. The superscripts of individual

probabilities correspond to the positions within respective read end se-

quences. The probability arguments are DNA bases {A, C, T, G}. The jRj val-

ues correspond to the coverage, i.e. the number of read ends covering a

particular position within the consensus sequence
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Pi
overlap ¼

X
X 2 A; C; T; Gf g

Pi
1 Xð Þ� Pi

2ðXÞ

where, Pi
1 Xð Þ is the probability that sequence S1 has base X at over-

lap position i; probability Pi
2 Xð Þ is defined analogously for sequence

S2. The overall overlap probability of S1 and S2 is the product of in-

dividual position overlap probabilities normalized by overlap length

n (Töpfer et al., 2014):

Poverlap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
i 2½0; :; n�1�

Pi
overlap

n

s

As a score that represents the ‘expected length’ of an overlap,

taking into account the individual overlap position probabilities, we

compute the expected number of correct positions within the over-

lap as:

Length Expected ¼
X

i 2½0; :; n�1�
Pi

overlap

A single overlap score that enables us to rank different sequence

overlaps is computed as a product of the overall overlap probability

and the expected overlap length:

Score Overlap ¼ Poverlap �Length Expected:

The overlap score penalizes both overlaps with low overlap

probability and short overlaps, since long overlaps with high overlap

probability are required. The minimum required expected length of

an overlap represents the support for the overlap probability, as the

overlap probability is based only on the bases within the overlap,

therefore the number of the bases outside of the overlap should re-

main as small as possible, since we cannot make any statement

about the bases outside of the overlap.

In the Snowball algorithm, consensus reads are iteratively joined

into longer super-reads based on the overlap probabilities, expected

overlap lengths and the overlap scores (Section 2.5). By default, two

sequences S1 and S2 can be joined into a consensus sequence if the

overall overlap probability is at least 0.8 and the expected length of

the overlap is at least 0.5 * min[length(S1), length(S2)]. The high

overall overlap probability ensures that the overlap consists of

mostly matching positions, that there are no mismatching positions

with high quality scores and that mismatches are allowed only at

positions with low quality scores. For datasets with overall high

quality scores, the minimum overlap probability parameter can be

increased to 0.9 or 0.95. In the Snowball algorithm, when a consen-

sus sequence could be joined with multiple consensus sequences

with sufficient overlap probability and expected overlap length, it is

joined with the sequence with which it has the highest overlap score.

2.5 The Snowball algorithm
For each gene domain, the Snowball algorithm iteratively joins con-

sensus reads into longer error-corrected super-reads. The input of

the algorithm consists of annotated consensus reads of a particular

gene domain represented via probability matrices (Sections 2.1–2.3).

The resulting super-reads are output as annotated contigs. Note that

the method can be highly parallelized, since the Snowball algorithm

runs for each gene domain separately.

Consensus reads are first sorted in an increasing order according

to the HMM start coordinates, that denote an estimated start pos-

ition of a consensus read within the multiple sequence alignment of

the profile HMM. This layout suggests which pairs of consensus

reads are likely to have an overlap (Fig. 7), where consensus reads

that are next to each other are likely to have longer overlaps than

other pairs of consensus reads.

As a starting point of the algorithm, we choose a consensus read

with the largest sum of overlap lengths with other consensus reads and

put it into the working set. The reason for this choice is that such a con-

sensus read is within the highest coverage of the alignment correspond-

ing to the respective profile HMM, where highly covered regions are

likely to be covered by reads originating from similar but distinct gen-

omes. Therefore, the chosen consensus read is very likely to overlap

with consensus reads originating from distinct gene variants, which

will help to resolve these gene variants early in the algorithm.

The main idea of the algorithm is that it iteratively tries to extend

consensus sequences from the working set into longer consensus se-

quences by joining them with consensus reads that are in their neigh-

bourhood, considering the consensus read layout (Fig. 7). In one

iteration, first a consensus read from the neighbourhood (i.e. L or R)

is joined with one of the consensus sequences from the working set.

Second, two consensus reads (i.e. L and R) that are in the neighbour-

hood of the working set are added to the working set or both consen-

sus reads from the neighbourhood of the working set (i.e. L and R)

are joined into a consensus sequence and added to the working set. A

consensus read and a consensus sequence (or two consensus reads)

are joined only if they have a sufficient overlap as defined in the

Section 2.4. If there is more than one overlap of a consensus read

from the neighbourhood (i.e. L or R) and a consensus sequence from

the working set, given that also the overlap between L and R, is suffi-

cient, the pair that has the highest overlap score is chosen. If there is

no sufficient overlap between a consensus sequence from the working

set and a consensus read L or R in the neighbourhood and the overlap

between L and R is also not sufficient, both consensus reads are added

to the working set as they are likely to originate from distinct gene

variants than the gene variants already represented in the working set.

Pseudo code of the algorithm:

1. Input: a list of consensus reads of a particular gene domain.

2. Sort the input list according to the HMM start coordinates in

the increasing order.

3. Find a consensus read representing the starting point—as told

above, a consensus read with the largest sum of overlap lengths

with other consensus reads—and add it into the working set.

4. The neighbourhood of the working set consists of at most two

consensus reads, one that is the closest on the left (L) and one

that is the closest on the right (R) of the working set.

5. For each consensus sequence S from the working set and for

each pair (L, S) and (S, R), and for (L, R), compute:

Fig. 7. Initial layout of consensus reads. Consensus reads sorted according to

the HMM start coordinates. In the neighbourhood of the consensus read, that

is in the working set, there are two closest consensus reads, one on the left

(L) and one on the right (R)
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a. overlap probability

b. expected overlap length

c. overlap score

6. If there is a sufficient overlap between at least one pair (L, S),

(S, R) or (L, R), the pair with the highest overlap score is

chosen, as defined in the Section 2.4. Let (L, S) be the pair with

the highest overlap. Remove S from the working set. Join (L, S)

into a consensus sequence (i.e. a super-read), as defined in the

Section 2.3 and add it into the working set. Redefine L, as the

first consensus read on the left of L. If (S, R) is the pair with the

highest score, proceed analogously. If (L, R) is the pair with

the highest score, join (L, R) into a consensus sequence (i.e. a

super-read) and add it into the working set. Redefine L and R

analogously.

7. If there is no sufficient overlap found in step (6), add L and R

into the working set and redefine L and R in the same way as in

(6).

8. If the neighbourhood is not empty, i.e. L or R was redefined at

step (6) or (7), go to step (5). If L or R cannot be redefined, it is

not considered in the next steps of the algorithm.

9. Output super-reads as annotated contigs.

In the algorithm, a consensus sequence is represented via a prob-

ability matrix as described in the Section 2.3. Mismatching bases

within a sufficient overlap most likely represent a substitution error,

where one of the bases has a relatively low quality score, thus, the

base with a higher quality score corrects such a substitution error.

Substitutions representing genuine strain variation are represented

by overlap positions with different bases with relatively high quality

scores. Therefore, such overlaps of consensus reads representing dif-

ferent strains almost never pass the minimum required overlap prob-

ability threshold. Consensus reads containing insertion or deletion

errors have very low overlap probabilities with other consensus

reads or super-reads and are therefore unlikely to be joined into lon-

ger consensus sequences. Thus, super-read positions with coverage

of at least two are mostly error-corrected in terms of insertion and

deletion sequencing errors.

3 Results

We evaluated Snowball using 21 simulated datasets, each containing

3–9 closely related E. coli strains and one simulated dataset contain-

ing ten novel recently published Rhizobia strains (Bai et al., 2015)

(Section 3.4). We recall that good performance on different strains

implies good performance on different species, which is why we put

the emphasis on distinguishing between closely related strains in our

experiments. Thereby, our aim was to answer the following ques-

tions: Were the contigs assembled correctly? How long are the re-

sulting contigs? Did the assembly recover the reference strain

sequences from which the input paired-end reads were generated?

As a reference method, we used the SAT assembler (Zhang et al.,

2014), because this is to the best of our knowledge the only cur-

rently available gene assembler of gene domains of interest for meta-

genomic data that does not require closely related reference

genomes to be available.

In our experiments, we observed that Snowball was faster than

SAT. The runtime of Snowball was limited by the runtime of the

HMMER 3 software, i.e. our method spent most of the runtime in

this step (Section 2.2).

3.1 Per-base error
We computed the per-base error for all assembled contigs of all

simulated datasets (Fig. 8). For each contig, we determined the

reference strain sequence and coordinates of a particular contig se-

quence within a respective reference sequence from which it origin-

ates. The per-base error is defined as the percentage of bases that

differ between a contig sequence and the respective sub-sequence of

the reference sequence, i.e. it corresponds to the Hamming distance

between the two sequences, normalized by the length of the overlap.

Note, that closely related strains share large sequence regions; there-

fore, a contig can be well mapped onto several reference sequences

of distinct strains. In this case, a reference sequence, onto which a

contig maps with the lowest hamming distance, is considered to be

the reference strain sequence from which it originates. If a contig

maps onto several sequences of different strains, with exactly the

same error, we consider it to originate from all these strains. The

coverage of a contig position is equal to the number of read ends

covering a respective position. In the Snowball algorithm, we keep

track of all consensus reads that a contig consists of. For the SAT as-

sembler, we have used BWA (Li and Durbin, 2009) to map consen-

sus reads onto the contigs. We computed the per-base error for each

coverage [3,. . .,30] separately. Low-coverage positions typically

have a higher per-base error, as there is not enough information

Fig. 8. Cumulative per-base error. Cumulative per-base error for the Snowball

and SAT assemblers. We computed the per-base error in a cumulative way,

i.e. for X 2 [3,. . .,30] (on the horizontal x-axes), Y (on the vertical y-axes) is

equal to the per-base error at contig positions with coverage greater or equal

to X
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available to correct sequencing errors. This is most pronounced at

positions with coverage one, where the per-base error corresponds

to the substitution error of a respective sequencing platform

(�2.37% for our simulated datasets). At positions with higher

coverage, the error-correction mechanism built into the Snowball al-

gorithm yields very low (�0.02%) per-base error (Fig. 8). For the

SAT assembler, contig positions with high coverage correspond to

consensus sequences containing reads of several strains, which yields

a relatively high per-base error (Fig. 8). This shows that the error-

correction incorporated in the Snowball algorithm is indispensable

for the assembly of closely related strains.

3.2 Relative contig length
We computed the average number of assembled contigs and the

average cumulative length of all contigs (in Kb) per strain (Fig. 9).

As the assembled contigs should cover the full length of the respect-

ive gene sequences sufficiently well, we aligned each contig to the re-

spective profile HMM and computed the fraction of the model (i.e.

the corresponding multiple sequence alignment) it covers. For each

contig, this gave us an estimate of its relative length with respect to

the particular profile HMM. We used this information to compute

the results, e.g. using only longer contigs covering at least 50%

(60%, 70%, etc.) of respective profile HMMs. This analysis showed

that Snowball produced substantially more, longer contigs than the

SAT assembler.

3.3 Reference coverage
We computed which parts of the reference strain sequences, from

which the input reads were generated, were recovered by the

assembled contigs, per strain on average (Fig. 10). As explained in

the Section 3.1, assembled contigs may map onto one or more refer-

ence strain sequences with the same minimum hamming distance.

We considered a contig to cover all the reference strain sequences,

onto which it can be mapped with exactly the same minimum per-

base error. Positions of reference sequences that are covered by at

least one contig are denoted as covered positions. For each strain,

we computed the number and percentage of the covered positions.

Moreover, as explained in the Section 3.2, we computed these meas-

ures for contigs covering �X% of respective profile HMMs (where

the variable X corresponds to the values on the x-axes of the

graphs). The overall relatively low coverage of the reference se-

quences can be explained by low sequencing coverage of some of the

Fig. 9. Contigs per strain. Cumulative average contig length per strain, con-

sidering only contigs covering X% of respective profile HMMs (panel a).

Average number of contigs per strain, considering only contigs covering

�X% of respective profile HMMs (panel b). Here, the variable X corresponds

to the values on the (horizontal) x-axes of the graphs

Fig. 10. Coverage of the reference strain sequences. Percentage of the re-

covered reference strains, per strain on average, considering only contigs

covering �X% of respective profile HMMs (panel a). Corresponding absolute

values (Kb) are depicted in (panel b). The variable X corresponds to the values

on the x-axes
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reference strain sequences (Supplementary Tables S1–S8). Also, as

we only assemble coding sequences of the reference strain sequences,

for which we have used profile HMMs as the input, regions of the

reference strain sequences that are not covered by the profile HMMs

remain unassembled. Nevertheless, this analysis showed that

Snowball recovered substantially more reference strain sequences

than the SAT assembler.

3.4 Simulated datasets details
We have based our evaluation on 22 simulated datasets (Table 1,

Supplementary Tables S1–S8). The strain abundances correspond

to randomly drawn numbers from the log-normal distribution

(mean¼1, standard deviation¼2), where the numbers were limited

to interval [1,. . .,50], to avoid both data explosion and extremely

low strain abundances. The ART (Huang et al., 2012) read simula-

tor (version 2.3.6) was employed to generate Illumina HiSeq 2500

paired-end reads (read length¼150 bp, mean insert size¼225,

standard deviation¼23), where the strain coverage used for the

read simulation also corresponds to the strain abundance. The abun-

dance of a particular strain thus informs us with which coverage the

strain genome within a simulated dataset was sequenced. We used

the default ART Illumina HiSeq 2500 empirical error profile, which

yields reads with �2.37% substitution error. For each dataset, we

provide per-dataset results (Table 1, Sections 3.1–3.3) that show

that Snowball performed substantially better than the SAT assem-

bler for all simulated datasets.

4 Conclusions

We describe Snowball, a novel strain aware gene assembler for re-

construction of gene domains of interest from shotgun metagenomic

data of microbial communities. Snowball performs gene assembly of

individual gene domains based on read overlaps and error-

correction using read quality scores at the same time, which result in

very low per-base error rates. Our method uses profile HMMs to

guide the assembly. Nonetheless, it does not require closely related

reference genomes of the studied species to be available. We have as-

sessed the performance of Snowball using 21 simulated datasets,

each containing 3–9 closely related E. coli strains and one simulated

dataset containing ten recently published Rhizobia strains (Bai et al.,

2015), which demonstrates the capability of the Snowball assembler

to assemble novel strains. We have compared our Snowball assem-

bler to the SAT assembler, which, to our knowledge, establishes the

current state of the art in gene assembly. The results showed that

Snowball had substantially lower per-base error, assembled more,

longer contigs and recovered more data from the input paired-end

reads. We have shown that the incorporation of the error-correction

mechanism is indispensable for the assemblies of closely related

strains. To our knowledge, Snowball is the first strain aware gene

assembler that does not require closely related reference genomes of

the studied species to be available. The assembly of closely related

strains is still a challenging task for most of the current assemblers,

including the SAT assembler. We believe that our tool will be valu-

able for studying species evolution (e.g. genes under selection) and

strain or gene diversity (e.g. virulence genes). Snowball is imple-

mented in Python, runs on a user-defined number of processor cores

Table 1. Overview of simulated datasets

Dataset Strains per dataset

Per-base error (%) at

position coverage �5a

Contig length (Kb) 75%

HMM modelb
Ref. cov. 75% HMM

model (%)c

Snowball SAT Snowball SAT Snowball SAT

1 3 0.019 1.613 913 229 41.3 7.5

2 0.035 1.823 1080 628 44.4 15.1

3 0.006 1.603 865 186 43.0 6.7

4 4 0.036 1.666 740 306 43.1 10.7

5 0.011 1.813 691 253 42.6 9.7

6 0.007 1.648 700 303 45.5 11.2

7 5 0.012 1.809 614 408 44.9 13.5

8 0.012 1.791 622 393 44.8 13.5

9 0.022 2.064 665 411 40.9 12.6

10 6 0.022 1.853 518 378 42.1 11.8

11 0.045 1.822 557 308 39.0 10.7

12 0.033 2.009 571 407 40.2 12.4

13 7 0.028 1.861 447 316 42.6 11.7

14 0.041 1.866 496 293 38.9 10.9

15 0.018 2.034 488 367 41.7 12.0

16 8 0.017 2.152 408 443 44.6 12.7

17 0.030 1.869 428 294 38.3 10.5

18 0.038 2.227 453 440 39.3 11.6

19 9 0.019 1.884 349 265 40.9 9.7

20 0.014 2.035 360 314 40.4 10.7

21 0.044 2.270 424 430 42.2 13.8

22 10 0.013 1.909 905 279 27.0 5.7

aPer-base error (%) at contig positions with coverage �5 (Fig. 8).
bCumulative contig length (Kb) at X¼ 75 of (Fig. 9a).
cPercentage of recovered data at X¼ 75 of (Fig. 10a). Datasets 1–21 consist of E. coli strains (Supplementary Table S1–S7). Dataset 22 consists of Rhizobia

strains (Supplementary Table S8).
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in parallel, runs on a standard laptop and can be easily installed

under Linux or OS X.

Acknowledgements

The authors would like to thank David Laehnemann and Andreas Bremges

for their valuable feedback on the manuscript; and Rubén Garrido Oter for

providing the novel Rhizobia strains.

Funding

IG and ACM were funded by the Heinrich Heine University Düsseldorf and

the Helmholtz Center for Infection Research. AS was funded by the

Netherlands Organization for Scientific Research (NWO), through Vidi grant

No. 639.072.039.

Conflict of Interest: The authors have declared that no competing interests exist.

References

Ahn,T.H. et al. (2015) Sigma: strain-level inference of genomes from metage-

nomic analysis for biosurveillance. Bioinformatics, 31, 170–177.

Bai,Y. et al. (2015) Functional overlap of the Arabidopsis leaf and root micro-

biota. Nature, 528, 364–369.

Boisvert,S. et al. (2012) Ray Meta: scalable de novo metagenome assembly

and profiling. Genome Biol., 13, R122.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Cole,S. and Saint-Girons,I. (1999) Bacterial genomes—all shapes and sizes. In:

Charlebois,R. (ed), Organization of the Prokaryotic Genome. ASM Press,

Washington, DC, pp. 35–62.

Eddy,S.R. (2011) Accelerated profile HMM searches. PLoS Comput. Biol., 7,

e1002195.

Finn,R.D. et al. (2014) Pfam: the protein families database. Nucleic Acids

Res., 42, D222–D230.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Kingsford,C. et al. (2010) Assembly complexity of prokaryotic genomes using

short reads. BMC Bioinformatics, 11, 21.

Kunin,V. et al. (2008) A bioinformatician’s guide to metagenomics.

Microbiol. Mol. Biol. Rev., 72, 557–578.

Laehnemann,D. et al. (2015) Denoising DNA deep sequencing data-high-throughput

sequencing errors and their correction. Brief. Bioinform., 17, 154–179.

Li,D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics, 31, 1674–1676.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 18.

Marschall,T. et al. (2016) Computational pan-genomics: status, promises and

challenges. BioRxiv, 043430, 1–33.

Minoche,A.E. et al. (2011) Evaluation of genomic high-throughput sequenc-

ing data generated on Illumina HiSeq and genome analyzer systems.

Genome Biol., 12, R112.

Namiki,T. et al. (2012) MetaVelvet: an extension of Velvet assembler to de novo

metagenome assembly from short sequence reads. Nucleic Acids Res., 40, e155.

Peng,Y.Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and

metagenomic sequencing data with highly uneven depth. Bioinformatics,

28, 1420–1428.

Riesenfeld,C.S. et al. (2004) Metagenomics: genomic analysis of microbial

communities. Annu. Rev. Genet., 38, 525–552.

Schirmer,M. et al. (2015) Insight into biases and sequencing errors for amplicon

sequencing with the Illumina MiSeq platform. Nucleic Acids Res., 43, e37.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large gen-

omes using compressed data structures. Genome Res., 22, 549–556.
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