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Abstract—In the field of neuromorphic computing several
hardware accelerators for spiking neural networks have been
introduced, but few studies actually compare different systems.
These comparative studies reveal difficulties in porting an existing
network to a specific system and in predicting its performance
indicators. Finding a common network architecture that is suited
for all target platforms and at the same time yields decent
results is a major challenge. In this contribution, we show that
a winner-takes-all inspired network structure can be employed
to solve Sudoku puzzles on three diverse hardware accelerators.
By exploring several network implementations, we measured the
number of solved puzzles in a set of 100 assorted Sudokus, as
well as time and energy to solution. Concerning the last two
indicators, our measurements indicate that it can be beneficial
to port a network to an analogue hardware system.

Index Terms—neuromorphic hardware, spiking neural net-
works, Sudoku, winner-takes-all

I. INTRODUCTION

There is an increasingly growing interest in the field of
spiking neural networks. The reason is twofold: new ideas
for the efficient use of these event-based systems pop up
everywhere, while at the same time hardware accelerators
become available and mature. Particular examples are these
two large scale systems: the fully digital SpiNNaker system
[1] and the mixed-signal BrainScaleS system [2]. Both have
been developed as part of the Human Brain Project. Various
publications have shown the success of these systems in
different areas of computation [3]–[6]. Other neuromorphic
systems include e.g. IBM TrueNorth [7], Intel Loihi [8] and
the DYNAPs system [9].

However, comparative studies using the same network
model across platforms are still rare (see e.g. [10], [11]).
The aim of this publication is to show case of an example
network architecture running on three neuromorphic platforms
and a CPU simulator for a rough efficiency comparison of
the systems. At the same time we reveal some challenges
encountered when porting a spiking neural network to various
target platforms, and how these can be countered in this
specific case. The algorithm we chose employs a winner-takes-
all architecture for solving Sudoku puzzles. This is an example
of a typical constraint satisfaction problem, which belongs
to the class of NP-hard problems. The spiking architecture
was first proposed in [12], and has been adapted in several

publications and deployed to neuromorphic hardware [13],
[14]. The contribution of this work is to adapt the existing
model for several neuromorphic platforms and comparing the
relative efficiency. In contrast to aforementioned publications,
we show that the model is capable of solving most of the
provided 400 assorted Sudokus, 100 puzzles per size. This
reveals that the network parameters have to be adapted to
the complexity class of the constraint satisfaction problem.
The first section introduces our target platforms and methods
applied. Afterwards, parameter sweeps, simulation and mea-
surement results are provided, as well as an outlook on future
work.

II. METHODS

In this section we describe the neuron model and our
target platforms: the NEST simulator, SpiNNaker, Spikey and
BrainScaleS. Afterwards we present the network architectures
used.

A. Neuron Model

All target platforms presented below implement various
neuron models. Simulators are quite flexible in their employed
models, but neuromorphic hardware may be limited to only
a few models. Hence, the networks introduced in this work
rely on Integrate-and-Fire neurons with conductance-based
synapses [15], which are supported by all target platforms.
The model is defined by the following differential equation
for the membrane voltage V (t)

Cm
dV (t)

dt
= −gL(V (t)− Vrest)− I(t) , (1)

where Cm defines the capacitance, gL the leak conductance,
Vrest the resting potential and I the synaptic input current. A
spike is triggered as soon as the membrane potential crosses
the threshold Vth and the membrane is reset to Vreset:

V (t)← Vreset if V (t) ≥ Vth . (2)

The synaptic current is defined by

I(t) = gexc(t)(V (t)− Eexc) + ginh(t)(V (t)− Einh) , (3)
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using gi(t) and Ei as the conductance and reversal potential
of the excitatory and the inhibitory channel. The conductance
is driven by input spikes and is exponential decaying:

−τi
dgi(t)

dt
= gi(t) (4)

gi(t)← gi(t) + wi ∀ Spikes at time t at synapse i (5)

introducing the additional synapse time constant τi, while i
represents the two channels (excitatory and inhibitory). This
synapse model simplifies computation by using shared synapse
parameters (except the connection weight wi) for all synapses
of a post-synaptic neuron. Only inhibitory and excitatory
synapses can still be distinguished leading to two distinct sets
of parameters. Whether a synapse acts inhibitory or excitatory
solely depends on the sign of (V (t) − Ei) (inhibitory for
positive values).

Using current-based synapses is a second possibility, and
we only employ these where explicitly stated.

−τi
dIi(t)

dt
= Ii(t) (6)

Ii(t)← Ii(t)± wi ∀ Spikes at time t at synapse i (7)

Here, two current variables for excitatory and inhibitory cur-
rents are directly altered by the connection weights, and the
exponential decay is similar to the one in conductance-based
models. Reversal potentials are not necessary in this model,
thus the model is less complex.

B. NEST

The software simulator NEST [16] was used in version 2.14.
Recently it was shown that the simulator can be efficiently
scaled to larger networks [17]. In this publication, we will
only make use of rather small networks, which is why we
avoid the usage of MPI, and only use four threads for parallel
simulation of our networks. All networks are simulated us-
ing the iaf_cond_exp (iaf_currr_exp) model, which
implements the model described above.

C. SpiNNaker

A single chip of the fully digital many-core architecture
SpiNNaker [1] is composed of 18 general purpose ARM968
cores. Systems are available in different sizes, beginning with
a four chip board (called SpiNN-3), a larger 48-chip board
(SpiNN-5) and up to the large scale neuromorphic cluster
provided in the Human Brain Project (see e.g. [18]. To access
the hardware, the platform developers provide the software
tool-chain sPyNNaker, which is used in the current release
version 4.0.0 and provides an API based on PyNN version
0.8.3 [19]. The system supports several neuron and synapse
models while most of our experiments make use of PyNN’s
IF_cond_exp model only. Here, the default setup allows
to simulate up to 255 neurons per core in real-time, which
yields roughly 16,000 neurons for the smallest board. This
model implementation has the disadvantage that using large
inhibitory inputs leads to numerical artefacts, which can be
countered by reducing the time-step of the system from 1.0ms

to 0.1ms. In the current release software, this will lead to
a slow-down of the simulation by a factor of 10 compared
to real-time. In some experiments, these artefacts still appear
despite the increased accuracy of the reduced time-step. We
will make use of the current-based IF_curr_exp model
instead, which does not suffer from these issues. Furthermore,
we reduced the number of neurons per core to avoid network
bottlenecks and allow higher firing rates in general.

D. Spikey

Spikey is a single chip system [20] and is the predecessor to
BrainScaleS (see below). It implements a physical (analogue)
VLSI replacement for the above mentioned Integrate-And-
Fire models, which is restricted in the number of parameters
available through the front-end software (an early version of
PyNN). Thus, some neuron model parameters are fixed (like
the membrane capacitance) while all others are limited in
the available range. The communication between neurons is
however realized in a digital way. The full system composed
of two chips supports the emulation of 384 neurons each pro-
viding 256 synapses accelerated by a factor 10, 000 compared
to biological real-time.

E. BrainScaleS

Similar to the Spikey system, BrainScaleS provides a phys-
ical model for accelerated emulation of the Adaptive Expo-
nential Integrate-And-Fire model [2]. The adaptive part can
be turned off such that the circuits emulate the behaviour of
the above mentioned IF_cond_exp model. This system uses
waferscale-integration [21] to combine 352 HICANN chips in
a single system, with each of them containing 512 neuron
circuits with 220 synapses, respectively. Up to 64 circuits are
combined to form a single neuron, and in this publication we
always combine 4 circuits to a single neuron. These neurons
communicate via a digital communication fabric. In contrast
to the Spikey system, the front-end software allows to set all
aforementioned parameters.

F. Network Description

All introduced systems support the PyNN API [19]. How-
ever, the supported version of PyNN differs from simulator to
simulator necessitating platform specific network descriptions.
In [10] the framework Cypress has been proposed, which
allows to access all aforementioned platforms with a single
network description1. In this framework, all network descrip-
tions are implemented using the C++ programming language.
Furthermore, the library provides all kind of auxiliaries like a
C++ plotting interface.

G. Network Architecture

Here, we describe the network architecture for our spiking
Sudoku solver. We will use the term connection for a single
synaptic connection, while projection refers to the connectivity
between populations (a projection consists of at least one
connection). The architecture is based on a Winner-Takes-All

1https://github.com/hbp-unibi/cypress

https://github.com/hbp-unibi/cypress
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Fig. 1. Network architecture of the spiking Sudoku solver for a small scale
Sudoku only containing the numbers 1-4. Green circles represent populations
of neurons, boxes express sub-squares of the Sudoku. Every cell of the
puzzle is shown as four populations placed next to each other. Arrows
depict projections, with orange arrows for inhibitory projections, black arrows
for excitatory projections. Only the outgoing projections of the population
representing 1 in the upper left cell and 4 in the lower right cell of the
Sudoku are shown.

architecture [22]. Populations are connected such that their
activity is in competition. Lateral inhibition between different
populations allows only a single population to be activated at
a time. Through self activation a population can sustain its
activity for an extended period of time. The last ingredient
for a working Winner-Takes-All setup is independent random
Poisson distributed spike input to all of the neurons. As soon
as there is enough random input to one population, it gets
activated, and stays active due to its self-excitation. At the
same time, lateral inhibition will suppress all other competing
populations from becoming activated.

This architecture can now be employed to solve a Sudoku
problem. First, every assignable number in a specific cell
is represented by a dedicated population. For a small scale
example using only the numbers 1 to 4 the Sudoku problem
consists of 4 · 4 cells, while the corresponding spiking neural

network uses 4 · 4 · 4 populations to encode all possible
solutions to this Sudoku problem (compare Fig. 1). Second,
every population has self-excitation as described above. The
only difference from the general winner-takes-all architecture
is related to the inhibition: a population is not inhibiting all
other populations, instead the constraints of the Sudoku rules
lead to exactly these inhibitory projections:

1) Every cell can only have a single value. Populations have
to inhibit all other populations situated in the same cell

2) A value can only appear once in a row: every population
is inhibiting all other populations in the same row
that are representing the same number as the source
population

3) A value can only appear once in a column: every
population inhibits all other populations in the same
column if they represent the same value as the source
population

4) A value appears only once in a sub-block: every popula-
tion inhibits populations representing the same number
in a sub-block of the Sudoku

In the small scale example this leads to 3+3+3+1 outgoing
inhibitory projections per population and thus to 640 inhibitory
connections (see also Fig. 1). On top of that, there is one
self-excitatory projection and one random input projection per
population.

This completes the architecture for solving arbitrary Su-
dokus (of size 4 × 4). To solve a specific Sudoku puzzle we
further excite those populations that represent the numbers
given in the specific Sudoku puzzle, which is the only puzzle
specific part in the architecture. This architecture well be
referred to as architecture#1.

For evaluation, spikes are sorted into time-bins and the
population with the highest number of spikes per bin is marked
as the activated population for that bin.

For most of the target simulators, run-time termination as
soon as the Sudoku is solved is not available. Thus, we need
to specify the run-time before the beginning of the simulation.
This means that possibly not all Sudokus are solved, as
statistical outliers might need more solving time than provided.

H. Alternative Implementations for neuromorphic hardware

When trying to execute the above described network on
SpiNNaker, the middle-ware will make use of more cores
than actually necessary for simulating networks of that size.
This is due to the fact that currently the software maps at
most one population to a single core. In the above mentioned
example of a 4× 4 Sudoku, the network itself consists of 64
populations, and additional populations for the random input.
This unnecessarily exceeds the capacity of a small SpiNN-3
board consisting of 4 × 18 cores of which 4 × 16 cores are
used for the simulation of the network itself. One remedy is
to employ the bigger SpiNN-5 board, which provides 49× 16
cores for simulating neurons. The alternative is the merging
of all populations into a single virtual population, and to man-
ually select individual sub-populations. This however requires
us to expand projections on a higher level instead of using



predefined connectors that are provided by the backend. Thus,
set-up time might increase with the merged virtual population.
We will reference this approach as architecture#2.

A very different problem arises when employing the mixed-
signal Spikey hardware. This platform restricts us to use bio-
realistic connection schemes in a manner that all outgoing
connections of a neuron can only be either excitatory or
inhibitory. This conflicts with our approach of using self-
excitation. The network structure is thus changed to make up
for this limitation: Every population requires two additional
neurons, which are both excited by the population itself. One
of these neurons is then projected back to the population and
therefore implements the self excitation. The second neuron is
responsible for the inhibition according to the above mentioned
rules. This effectively restores both mechanisms and makes it
possible to solve Sudokus on this specific platform and will
be referred to as architecture#3.

III. RESULTS

This section presents the achieved results on all introduced
platforms. The architecture is analysed and chosen parameters
are motivated. We begin with small scaled Sudokus, which
can be used for extensive parameter sweeps and showcase
basic functionality. In the next step we show larger examples,
before looking at the second architecture suited for the Spikey
system. We conclude with the evaluation on all platforms, pro-
vide performance measures and roughly compare the energy
consumption of the platforms. The software that has been used
to create the results can be found online2.
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Fig. 2. Parameter Sweep for (left to right) 4× 4 with 2 neurons, 4× 4 with
3 neurons, 6× 6 with 2 neurons and 6× 6 with 3 neurons. y-axis represents
the inhibitory weight that is shared for all connections, x-axis is the self-
excitation weight, and the z-axis depicts the number of unsolved Sudokus of
100 assorted Sudokus. All images were created using the Nest simulator.

2https://github.com/hbp-unibi/SpikingSudokuSolver
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Fig. 3. Parameter Sweep for 4×4 Sudokus with 2 neurons on the BrainScaleS
system. Weights are set as low-level digital 4-bit value without unit.

A. Small Scale Sudokus

In the small scale case we make use of the fixed_fan_in
connector (PyNN’s FixedNumberPreConnector) for all
inhibitory and excitatory projections, which fixes the number
of actual in-going connections between two populations. First,
this reduces the actual number of connections in comparison
to a fully connected network. Second, the number of in-going
connections for a neuron is independent of the number of
neurons representing a number. Fig. 2 shows parameter sweeps
for connection weights for 4 × 4 and 6 × 6 Sudokus, where
the number of connections per target neuron is set to one.
The parameter sweeps show that the solving probability is
independent of the number of neurons, which is related to the
type of the connector we chose. Furthermore, the parameter
range for solving all 100 Sudokus is quite broad in both cases.
However, one can already see that with increasing Sudoku size
the probability of solving a random Sudoku is decreasing.

For the BrainScaleS system we had to adapt the parameters
found for the simulator. This is shown in Fig. 3. Limited
parameter ranges and analogue mismatch between different
neurons and synapses yield a degradation in solving capabili-
ties.

B. Larger Sudokus

In Fig. 4 parameter sweeps for larger Sudokus have been
executed. The images show that the range of valid parameters
can be described by a thin line, and only small spots of the
parameter space perform best. Furthermore, the number of
solved Sudokus is significantly reduced compared to small
scale Sudokus. This is partly due to the fixed simulation time
because we are not able to interrupt the simulation as a soon
as a Sudoku is solved. For parameter evaluation (see below),
run-times are significantly increased. The decreased robustness
in parameter space is most probably due to the increased
complexity range of larger Sudokus.

C. 3rd Network Architecture

The architecture#3 developed for the Spikey system
is different to those discussed before, thus we treat it as a
separate case. On the Spikey system we use maximal redun-
dancy to reduce the effects of neuron to neuron variations,

https://github.com/hbp-unibi/SpikingSudokuSolver
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Fig. 4. Parameter Sweep for (left to right) 8× 8 and 9× 9 Sudokus with 2
neurons.

which is due to the analogue nature of the system. This means
that populations encoding numbers consist of three neurons,
while external populations responsible for self-excitation and
inhibition consist of a single neuron. Hence, we use fully con-
nected projections between populations and helper neurons.
For the random input noise, we chose to have two random
noise sources per population. This network does not yet fully
utilize the available neurons on the Spikey system. However,
all synapse drivers are in use such that addition neurons could
not be connected to the network in any meaningful way.

The same network was evaluated in NEST, only using two
neurons per population. The results of the respective parameter
sweep are shown in Fig. 5. Again, rather broad parameter
ranges are available to solve nearly all tested Sudokus. Nev-
ertheless, the analogue platform is not able to solve all of the
given Sudokus puzzles.

D. Comparison of platforms

For direct comparison of all platforms, we evaluate the
three architectures on all platforms where applicable. For
measuring the energy consumption during the simulations,
we used a Ruideng UM25C inserted into the 5/12V supply
lane of the hardware systems. We cross checked the accuracy
using a Keithley 2450 SourceMeter and deviations were in
the range of the measurement accuracy. NEST simulations
were executed using four threads of four-core Intel Core i7-
4710MQ, while power was measured using a PeakTech 9035
with idle values subtracted. The respective power usage was
then multiplied with the average wall-clock time to solution,
which yields the average energy that was used to solve a
random Sudoku. However, we were not able to measure the
power-consumption directly for the BrainScaleS system. To
still be able to give a rough approximation, we will estimate
the used power by falling back to published measurements. In
[3] the authors report an energy consumption of 0.1− 10 nJ.
Thus, we record the number of spikes per population and
assume a consumption of 5 nJ per pre-synaptic event.

Real-time to solution was calculated using the respective
speed-up/slow-down factor of the simulator. For NEST this is
non-trivial, because the simulator does not give any guarantee
about simulation speed compared to real-time. We approxi-

mate it by using the real-time of the full simulation, and scale
accordingly to biological time scales.

The results are presented in Table I, where simulation
times have been increased compared to the simulations in
the parameter sweeps above. All target systems show general
capability of solving most of the provided puzzles. Average
solving-times differ between systems due to accuracy and
implementation differences.

The SpiNNaker system was used with an increased time
resolution: the default time-step of the Euler-integrator, al-
lowing to execute simulations in real-time, is 1ms. Because
the neuron model in use is not yet fully optimised for the
platform, larger deviations in the simulation results appear.
This difference is negligible in many cases, but not when
using larger inhibitory input as in our model. The issue
reappears with larger Sudokus, which is why we evaluated
these simulations using the simpler current-based model. Thus,
we set the time-step to 0.1ms in all simulations on SpiNNaker,
which slows down the simulation by a factor of 10. The work
done in [13] shows, that using the current-based Integrate-
And-Fire model, SpiNNaker is able to solve Sudokus in real-
time. In their network, the authors do not use self-excitation
connections, which reduces the workload for the hardware
system. Nevertheless, an analysis whether their implementa-
tion is able to solve a broad range of Sudokus is missing.
All in all, it should be kept in mind that running in real-
time reduces the used energy by a factor of 10 for finding
the solution. Furthermore, architecture#1 was evaluated
on the SpiNN-5 board, which already needs more energy at
idling.

For the BrainScaleS system, we were able to solve a
reasonable amount of small 4 × 4 Sudokus. Scaling up to
6×6 was unproblematic, and only caused a very small (< 1%)
synapse loss during mapping process. Nevertheless, we were
not able to find a suitable parameter set allowing to solve
a reasonable number of Sudokus. Extended parameter space
evaluation and increasing redundancy should reveal that it is
possible to solve larger Sudokus on the BrainScaleS system.
Architecture#3, which was especially designed for

the Spikey system, performs on similar level as the other
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Fig. 5. Parameter sweep for architecture#3 using the simulator (left)
and the Spikey system (right). Both platforms differ in neuron parameters
significantly, which is responsible for the different look of the parameter space.



TABLE I
WE EVALUATED 100 ASSORTED SUDOKUS FOR THREE ARCHITECTURES AND CALCULATED THE FIRST POINT IN SIMULATION TIME, WHERE NETWORK

ACTIVITY SHOWED THE SOLUTION TO THE RESPECTIVE SUDOKU. HARDWARE TIME TO SOLUTION IS CALCULATED BY TAKING INTO ACCOUNT THE
HARDWARE ACCELERATION/SLOW-DOWN FACTOR. † CALCULATED APPROXIMATE VALUE.

Platform #Solved Bio-time Standard Real-time Power Energy to
Sudokus to sol. Deviation to sol. Solution

in ms in ms in s in W in J

4× 4 Sudokus using architecture#1

NEST 100 214.6 263.1 0.03 45 1.4
SpiNN-5 97 357.1 688.9 3.57 23.3 83.2
BrainScaleS 86 3,241.9 4,573.1 3.24 ·10−4 NA †0.0062

4× 4 Sudokus using architecture#2

NEST 100 214.6 263.1 0.03 45 1.4
SpiNN-3 99 241.2 250.0 2.41 2.7 6.5

4× 4 Sudokus using architecture#3

NEST 100 286.0 377.6 0.12 45 5.4
SpiNN-3 100 319.0 437.3 3.19 2.8 8.9
Spikey 75 3,745.8 6,041.1 3.75 ·10−4 5.6 0.0021

6× 6 Sudokus using architecture#1

NEST 98 1,769.2 1,909.1 0.62 45 27.9
SpiNN-5 99 2,084.8 2,703.3 20.85 23.5 490.0

6× 6 Sudokus using architecture#2

NEST 98 1,769.2 1,909.1 0.62 45 27.9
SpiNN-3 91 1,641.1 1,463.0 16.41 2.7 44.3

8× 8 Sudokus using architecture#2 (current-based synapses)

NEST 87 10,893.8 8,524. 1.43 45 64.4
SpiNN-3 91 11,892.5 8,484.1 118.93 2.8 333.0

9× 9 Sudokus using architecture#2 (current-based synapses)

NEST 88 17,725.2 15,602.6 4.87 45 219.2
SpiNN-3 81 12,402.6 11,618.7 124.02 2.8 347.3

implementations. On the Spikey system we were able to
achieve a reasonable solving rate. For the remaining unsolved
puzzles, device mismatch will lead to nearly defect and also
to overly active populations, which deactivates or activates
certain numbers, resulting in the reduced accuracy.

All in all, we can make the following conclusions from
the results in Table I: the analogue platforms Spikey and
BrainScaleS allow us to solve Sudokus highly efficient at the
cost of a slightly reduced solving capability. The SpiNNaker
system, which is slowed down in this set-up, runs less efficient
than the simulator on a non-specialized CPU. The gap between
both approaches narrows when simulating larger networks due
to the fact that the NEST simulation will slow-down with
increasing network size. Not all cores of the SpiNNaker system
have been utilized in contrast to the NEST simulation, which
on the other hand applies a more accurate integrator. However,
a factor ten lies within the aforementioned slow-down of the
system, which will be solved with future software releases. An
additional factor is given by the more modern manufacturing
process of the Intel CPU, which accounts for another jump
in efficiency. Here, the next generation SpiNNaker 2 system
will also yield a jump in efficiency of an order of magnitude
[23]. Noticeable is also the rather large empirical standard

deviation found in the bio-time to solution measures. This is
related to the fact that the statistical distribution is not normal.
This can be verified by observing the Violin-plots in Fig. 6.
It reveals that most Sudokus can actually be solved within a
small interval of the mean value, however, single outliers have
unexpectedly long solving times. This justifies the approach
of reduced simulation times for parameter space exploration,
as most solutions are found within the first second of the
simulation.
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Fig. 6. Violin-plot for all 4x4 Sudokus. Analogue platforms are separated
due to the higher maximal simulation time.



IV. DISCUSSION AND OUTLOOK

In this contribution we have used Sudokus as a represen-
tative constraint satisfaction problem. Using a winner-takes-
all architecture, we demonstrated that all neuromorphic target
platforms were able to solve most of the given problem
instances. This fact can be used to actually compare platforms
in their efficiency of simulating/emulating spiking neural net-
works. The main performance indicator is the number of
Sudokus that could be solved in a fixed simulation time
window. Here, all platforms show their capability to solve
most of the given puzzles. The second indicator, bio-time
to solution, is however hardly comparable, as parameters for
the BrainScaleS and Spikey systems differ from those of the
digital simulators. Still, energy-to-solution is an important part
of the comparison of platforms. We showed that the analogue
systems are highly efficient in simulating these networks.
Furthermore, the SpiNNaker system becomes more and more
efficient with increasing network sizes. A future software
update allowing to increase the accuracy of the simulation
on SpiNNaker, while preserving the real-time capability the
system is designed for, is an important step towards a highly
efficient neuromorphic platform. This has been discussed with
the hardware maintainers and is planned for a future release.
On the BrainScaleS system, larger Sudokus were not solved
satisfactorily. This is basically not a hardware issue, but
more an issue of increasing redundancy and finding correct
parameters. A pilot study showed that these networks map well
onto the platform, and we expect to process larger Sudokus in
the future.

The next possible step is to exploit adaptability in several
directions: using adaptive integrate-and-fire neurons or using
STDP might bring some benefits, so might abating input noise
during simulation. Furthermore, as the algorithm allows direct
comparison of all target platforms, it is suitable to be used
as a benchmark for neuromorphic hardware platforms. Here,
we continuously improve our approach, trying to extend the
availability of network models to all target platforms, and to
augment the list of target platforms as well.
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