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In perceptual decision making the brain extracts and accumulates decision evidence

from a stimulus over time and eventually makes a decision based on the accumulated

evidence. Several characteristics of this process have been observed in human

electrophysiological experiments, especially an average build-up of motor-related signals

supposedly reflecting accumulated evidence, when averaged across trials. Another

recently established approach to investigate the representation of decision evidence

in brain signals is to correlate the within-trial fluctuations of decision evidence with the

measured signals. We here report results of this approach for a two-alternative forced

choice reaction time experiment measured using magnetoencephalography (MEG)

recordings. Our results show: (1) that decision evidence is most strongly represented

in the MEG signals in three consecutive phases and (2) that posterior cingulate cortex is

involved most consistently, among all brain areas, in all three of the identified phases. As

most previous work on perceptual decision making in the brain has focused on parietal

and motor areas, our findings therefore suggest that the role of the posterior cingulate

cortex in perceptual decision making may be currently underestimated.

Keywords: MEG (magnetoencephalography), posterior cingulate cortex (PCC), perceptual decision making,

decision evidence, event-related regression, within-trial fluctuations

1. INTRODUCTION

During perceptual decision making observers make inference about the state of their environment.
Supported by findings in single neurons of non-human primates, the underlying mechanism has
been characterized as an accumulation-to-bound process (Gold and Shadlen, 2007). Specifically,
the current consensus is that during perceptual decision making the brain accumulates noisy pieces
of sensory evidence across time until it reaches a confidence bound. Most experimental results on
this process have been based on stimuli which have been designed to provide the same amount of
evidence per unit time on average across trials. Trial-averaged accumulated evidence then should
follow a gradual build-up with evidence-dependent slope and a maximum close to the response
within trial (Gold and Shadlen, 2007).

In humans, evidence of this kind of average build-up have been found using magneto- and
electroencephalography (M/EEG). For example, lateralized oscillatory signals in the beta band
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measured with magnetoencephalography exhibit this build-up,
where sources were located to dorsal premotor and primary
motor cortex (Donner et al., 2009). In EEG, there are similar
findings of a build-up for lateralized readiness potentials and
oscillations (de Lange et al., 2013; Kelly and O’Connell, 2013).
Furthermore, when human participants have to detect the
presence of stimuli in noise, a centro-parietal positivity shows the
characteristics of an evidence-dependent build-up independently
of the type of stimulus used and the kind of response made
(O’Connell et al., 2012; Kelly and O’Connell, 2013). Together
these findings suggest that the human parietal and motor cortices
are involved in perceptual decision making and in particular
represent accumulated evidence. This view is compatible with
electrophysiological recordings in non-human animals (Hanks
and Summerfield, 2017) and with an active role of the motor
system during decision making (Cisek and Kalaska, 2010).

It has long been known that electromagnetic signals over
motor areas build up toward a motor response and can signal an
eventual choice even before the response (Smulders and Miller,
2012). This means that the crucial aspect of decision evidence
representations is not the build-up as such, but its covariation
with the theoretically available evidence. Consequently, more
recent approaches have induced consistent, within-trial changes
in available decision evidence (Wyart et al., 2012; Brunton et al.,
2013; Thura and Cisek, 2014; Hanks and Summerfield, 2017).
These within-trial changes allow for more specific analyses,
because one can directly assess the covariation between decision
evidence and neural signals (a) across a much richer sample
of evidences than available with the trial-constant evidences in
previous analyses and (b) while the decision is ongoing.

Although it has previously been shown that electromagnetic
signals in the human brain correlate with within-trial changing
decision evidence (de Lange et al., 2010; Gould et al., 2012;
Wyart et al., 2012; Gluth et al., 2013), these studies had
either rather long stimulus presentation times atypical for
fast perceptual decisions (Gould et al., 2012; Gluth et al.,
2013), or did not employ a reaction time paradigm (de Lange
et al., 2010; Gould et al., 2012; Wyart et al., 2012). In the
present work we therefore sought representations of decision
evidence in a two-alternative forced choice reaction time
paradigm in which we induced changes in decision evidence
every 100 ms. That is, our paradigm aims at mimicking
natural perceptual decision making behavior more closely than
previous investigations with controlled, within-trial changing
evidence while still observing neural responses across the whole
human brain.

Specifically, we investigated correlations between decision
evidence and human MEG signals and their sources. We found
particularly large effects of decision evidence in the human
MEG in three consecutive phases after a particular piece of
evidence became available. The underlying sources indicate
that the information delivered by the evidence propagated, as
expected, from visual over parietal to motor areas. In addition,
our results implicate posterior cingulate cortex in all of three
identified phases suggesting a central role of this brain region
in the transformation of sensory signals to decision evidence
in our task.

2. MATERIALS AND METHODS

2.1. Experimental Design
2.1.1. Participants
Thirty-seven healthy, right-handed participants were recruited
from the Max Planck Institute for Human Cognitive and Brain
Sciences (Leipzig, Germany) participant pool (age range: 20–35
years, mean 25.7 years, 19 females). All had normal or corrected-
to-normal vision, and reported no history of neurologic or
psychiatric disorders. One participant was excluded from MEG
measurement due to low performance during training. In total,
36 participants participated in the MEG study. Two participants’
data were excluded from analyses due to excessive eye artifacts
and too many bad channels. Finally, 34 participants’ data were
analyzed (age range: 20–35 years, mean 25.85 years, 17 females).

2.1.2. Stimuli
In each trial, a sequence of up to 25 white dots were
presented on a black screen. Each dot was displayed for
100 ms (6 frames, refresh rate 60 Hz). The white dots
were located at x, y coordinates which were sampled from
one of two-dimensional Gaussian distributions with means
located at ±25 pixels horizontal distance from the center of
the screen. The standard deviation was 70 pixels in both
axes of the screen. The mean locations were the two target
locations [(–25, 0): left, (25, 0): right]. These target locations
corresponded to visual angles ±0.6◦ from the center of the
screen. The standard deviation of the Gaussian distribution
corresponded to ±1.7◦. See Figure 2A for a visualization of
the stimulus.

We reused a subset of stimuli generated for a previous

behavioral study (Park et al., 2016). From this study we know

that some white dot sequences (also called “stimuli,” or “trials”)
tend to lead to long response times (RTs) across participants

while others lead to short RTs, as expected. To increase the

statistical power of within-participant analyses in the present

study, i.e., to increase the amount of MEG data available while
participants observe the stimulus, we selected 28 trials (from

a total of 200 trials) from the previous study which tended

to have the longest RTs (∼70% of the participants had RTs
> 700 ms). These stimuli were copied 6 times and modified,
as described below, to result in a set of 168 stimuli/trials. We
further added 72 stimuli which had the lowest average RTs
across subjects in the previous study as catch trials, to prevent
participants from adapting to the long RT stimuli. We then
duplicated this resulting set of 240 stimuli by mirroring the
x-coordinate of each white dot position, e.g., x = 5 became
x = −5. This manipulation ensured that irrespective of
the choice tendencies for the selected individual stimuli, e.g.,
participants may have tended to respond “left” for a stimulus,
the stimulus set was balanced across responses and had no
behavioral bias.

When designing the study, we further aimed to ensure that
the 28 long RT stimuli contained a large, regular variation
of x-coordinates roughly half-way through the trial. This was
supposed to lead to corresponding variation in MEG signals that
could be easily picked up by an across-trial regression analysis.
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We implemented this by manipulating the x-coordinate of the
5th dot in each of the long RT white dot sequences. Especially,
from each one of these sequences we created 6 variants in which
the 5th dot x-coordinate took on values –160, –96, –32, 32, 96,
and 160 (pixels) while all other dot positions were unaltered so
that any unexpected, stimulus-specific effects were equal across
the 6 variants. To prevent that participants notice that the 5th
dot took on only one of 6 possible x-coordinates in roughly two
thirds of the trials, we pseudo-randomized the trial order for each
participant so that long RT stimuli were randomly interleaved
with short RT stimuli. In a post-experiment questionnaire no
participant reported to have noticed any regularity in the stimuli.

In a preliminary analysis we found that the natural variation of
the stimuli, e.g., of the first dot, already induced observable effects
in the MEG. To increase statistical power, we, consequently,
included all trials and dot locations for analysis, as described
below, and did not analyse the 5th dot in any special way.

2.1.3. Procedure
Participants were seated in a dimly lit shielding room during
the training and the MEG measurement. Visual stimuli
were presented using Presentation R© software (Version 16.0,
Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.
com). The display was a semi-transparent screen onto which
the stimuli were back-projected from a projector located outside
of the magnetic shielding room (Vacuumschmelze Hanau,
Germany). The display was located 90 cm from the participants.
The task was to find out which target (left or right) was the
center of the white dot positions. Participants were instructed
as follows: Each target represented a bee hive and the white dot
represented a bee. Participants should tell which bee hive is more
likely the home of the bee. They were additionally instructed
to be both accurate and fast, but not too fast at the expense
of being inaccurate, and not too slow that the trial times out.
Participants went through a minimum 210 and maximum 450
trials of training, until they reached a minimum of 75% accuracy.
Feedback (correct, incorrect, too slow, too fast) was provided
during the training. After training, a pseudo-main block with 200
trials without feedback preceded MEG measurement. After the
pseudo-main session, the 480 trials in randomized order were
presented to each participant divided into 5 blocks. The MEG
measurement lasted ca. ∼ 60 min, including breaks between
blocks. Each trial started with a fixation cross (randomized,
1,200–1,500 ms uniform distribution) followed by two yellow
target dots. After 700 ms, the fixation cross disappeared and
the first white dot appeared. The white dot jumped around
the screen and stayed at each location for 100 ms, until the
participant submitted a response by pressing a button using
either hand, corresponding to the left/right target, or when the
trial timed-out (2.5 s). See Figure 2A for a visualization of the
sequence of events in a trial. In order to maintain motivation
and attention throughout the measurement, participants were
told to accumulate points (not shown to the participants) for
correct trials and adequate (not too slow and not too fast,
non-time-out) RTs. Bonus money in addition to compensation
for participating in the experiment were given to participants
with good performances. RTs and choices were collected for

each trial for each participant. Although the trial order was
randomized across participants, every participant saw exactly the
same 480 trials.

2.2. Definition of Momentary and
Accumulated Evidence
Momentary and accumulated decision evidence are theoretical
constructs defined through a model of the decision process
applied to the specific task at hand. For our task it can be
shown that momentary evidence corresponds to the signed x-
coordinate values of the white dot positions and accumulated
evidence can be equated with the simple cumulative sum of these
x-coordinates across the sequence of dot positions. The model
used to define this is an ideal observer model for this task that we
described in earlier publications (Bitzer et al., 2014; Park et al.,
2016).

It may be surprising that the y-coordinates and the two targets
do not directly contribute to decision evidence. This results
from the symmetries of the task: Both targets are on the same
horizontal line meaning that only the x-coordinate separates the
two targets and thus is sufficient to decide between the targets.
Because the targets are mirrored across the y-axis, i.e., have the
same distance to the screen center, any white dot on the left side
of the screen is evidence for the left target and any white dot
on the right side is evidence for the right target -in proportion
to the distance to the screen center. This means that the raw x-
coordinate values are validmeasures of decision evidence without
explicit reference to the targets.

2.3. MEG Data Acquisition and
Preprocessing
MEG data were recorded with a 306 channel VectorviewTM

device (Elekta Oy, Helsinki, Finland), sampled at 1,000 Hz.
The MEG sensors covered the whole head, with triplet
sensors consisting of two orthogonal gradiometers and one
magnetometer at 102 locations. Additionally, three electrode
pairs were used to monitor eye movement and heart beats at
the same sampling rate. The raw MEG data was corrected for
head movements and external interferences by the Signal Space
Separation (SSS) method (Taulu et al., 2005) implemented in the
MaxFilterTM software (Elekta Oy) for each block. The subsequent
preprocessing was performed using MATLAB (Mathworks,
Massachusetts, United States). The head movement corrected
data was high-pass and low-pass filtered using a linear phase
FIR Kaiser filter (corrected for the shift) at cut-off frequencies of
0.33 and 45 Hz respectively, with filter orders of 3,736 and 392,
respectively. The filtered data was then down-sampled to 250 Hz.
Then independent component analysis (ICA) was applied to the
continuous data using functions in the EEGLAB (Delorme and
Makeig, 2004) to remove eye and heart beat artifacts. The data
dimensionality was reduced by principal component analysis
(PCA) to 50 or 60 components prior to running the ICA.
Components which had high temporal correlations (> 0.3) or
typical topographies with/of the EOG and ECG signals were
identified and excluded. On average 4.6 components (SD: 2.8)
were removed (excluding data from 2 participants, which were
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not saved) during this initial ICA. The ICA-reconstructed data
for each block was combined, and epoched from –300 to 2,500
ms from the first dot onset (zero). Another ICA was applied to
these epoched data in order to check for additional artifacts and
confirm typical neural topographies from the components. The
data dimensionality was reduced by PCA to 40 components, and
on average 2.1 components (SD: 2.0) were removed across all
participants. The ICA reconstructed data and original data were
compared and inspected in order to ensure only artifactual trials
were excluded. Before statistical analysis we used MNE-Python
v0.15.2 (Gramfort et al., 2013, 2014) to downsample the data to
100 Hz (10 ms steps) and perform baseline correction for each
trial where the baseline value was the mean signal in the period
from –300 to 0 ms (first dot onset).

2.4. Source Reconstruction
We reconstructed the source currents underlying the measured
MEG signals using noise-normalized minimum norm estimation
(Dale et al., 2000) implemented in the MNE software. We
conducted source reconstruction on single trial measurements,
not on evoked signals. To create participant-specific forward
models we semi-automatically co-registered the head positions
of participants with the MEG coordinate frame while at the
same time morphing the participants’ head shape to that of
Freesurfer’s fsaverage by aligning the fsaverage head surface to
a set of head points recorded for each participant. We defined
a source space along the white matter surface of the average
subject with 4098 equally spaced sources per hemisphere and
an approximate source spacing of about 5 mm (MNE’s "oct6"
option). For minimum norm estimation we assumed a signal-
to-noise ratio of 3 (lambda2 = 0.11). We estimated the noise
covariance matrix for noise normalization (Dale et al., 2000)
from the MEG signals in the baseline period spanning from
300 ms before to first dot onset in each trial. We further
used standard loose orientation constraints (loose = 0.2), but
subsequently picked only the currents normal to the cortical
mantle. We employed standard depth weighting with a value
of 0.8 to overcome the bias of minimum norm estimates
toward superficial sources. We computed the inverse solution
from all MEG sensors (magnetometers and the two sets of
gradiometers) returning dynamic statistical parametric maps
for each participant. Before some of the subsequent statistical
analyses we averaged the reconstructed source signals across all
sources of a brain area as defined by the HCP-MMP parcellation
of the human connectome project (Glasser et al., 2016).

2.5. Statistical Analysis
2.5.1. Regression Analyses
Most of our results were based on regression analyses with a
general linear model giving event-related regression coefficients
(Hauk et al., 2006; Clarke et al., 2013). We differentiate between
(i) a standard regression analysis on events aligned at the
time when the white dot appeared in each trial, (ii) expanded
regression analyses on events aligned at the times of white dot
position changes, and (iii) response-aligned regression analyses.

In sensor space we opted to apply regression analyses only to
magnetometer measurements to avoid additional complexity in

the models induced by trying to properly combine measurements
from magnetometers and planar gradiometers. Solutions for this
problem are already built into source reconstruction procedures
so that regression analyses automatically used all sensor data
when applied in source space.

2.5.1.1. Standard regression analysis
In the standard regression analysis we defined dot-specific
regressors with values changing only across trials. For example,
we defined a regressor for momentary evidence (x-coordinate) of
the 2nd white dot position presented in the trial. For brevity we
also call white dot positions (1st, 2nd, and so forth in the sequence
of dot positions) simply “dots.”

We only report results of a standard regression analysis
in Figure 4. The data for this analysis were the preprocessed
magnetometer time courses. This analysis included the dot x-
and y-coordinates of the first 6 dots as regressors of interest
(in total 12 regressors). Additional nuisance regressors were:
the response of the participant, a participant-specific trial count
roughly measuring time within the experiment and an intercept
capturing average effects.

2.5.1.2. Expanded regression analyses
Expanded regression analyses were based on an expanded set of
data created by dividing up the data into partially overlapping
epochs centered on the times of dot position changes. For each
time point after this dot onset the data contained a variable
number of time points depending on how many more dots were
presented in each individual trial before a response was given by
the participant. For example, if a participant made a response
after 880 ms in a trial, 9 dots were shown in that trial (onset
of the 9th dot was at 800 ms). If we are interested in the time
point 120 ms after dot onset (dot position change), this gives us
8 time points within that trial that were 120 ms after a dot onset.
Further excluding all time points 200 ms before the response and
later, would leave us with 6 data points for this example trial, see
Figure 1 for an illustration. For each time after dot onset and for
each participant we concatenated all of these data points across
trials to one long vector and inferred regression coefficients on
these expanded data sets. Note that this approach can equally be
interpreted as statistical inference over how strongly the sequence
of momentary evidence caused by the dot updates is represented
in the signal at 100ms wide steps with a delay given by the chosen
time from dot onset.

These analyses included two regressors of interest: momentary
evidence (x-coordinate) and y-coordinate of the associated dots.
We additionally included the following nuisance regressors: an
intercept capturing average effects, the absolute values of x-
and y-coordinates, perceptual update variables for x- and y-
coordinates (Wyart et al., 2012) defined as the magnitude of the
change from one dot position to another and accumulated values
of x- and y-coordinates. Other than the standard regression
analysis, the expanded regression analysis did not include the
response as nuisance regressor, because the expanded regression
analysis specifically models within-trial changes while the
response is fixed throughout each trial. Because we found that the
accumulated values can be strongly correlated with the individual
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FIGURE 1 | Diagram demonstrating the selection of data points entering the expanded regression analyses. Dot positions (d1, d2, d3, . . . ) changed every 100 ms in

the experiment (black). Colored dots indicate times at which signal data points entered the analysis for a given time from dot position change (dot onset, shown

exemplarily for 80 and 220 ms from dot onset). We only considered time points up to 200 ms before the response in each trial. Colored d1, d2, d3 above the points

indicate the dot positions associated with the corresponding signal data points for the given time from dot onset. For each trial, these pairs of signal data and dot

positions entered the expanded regression analyses.

x- and y-coordinates (cf. Figure S1), we only used accumulated
values up to the previous dot in the regressor. For example, if a
data point was associated with the x-coordinate of the 4th dot,
the accumulated regressor would contain the sum of only the
first three x-coordinates. This accumulated regressor is equal to
the regressor resulting from Gram-Schmidt ortho-normalization
of the full sum of x-coordinates with respect to the last shown
x-coordinate. The accumulated evidence regressor was derived
from the ideal observer model as the log posterior odds of
the two alternatives, but this was almost 100% correlated with
the simple sum of x-coordinates. The small differences between
model-based accumulated evidence and sum of x-coordinates
after normalization resulted from a small participant-specific
offset representing the overall bias of the participant toward one
decision alternative. Note that we do not show any results for this
(previous) accumulated evidence regressor.

In Figures 6, 8 we report results from separate expanded
regression analyses in which we replaced the x-coordinate
regressor with the sum of x-coordinates and dropped the
previous accumulated evidence regressor. We did this, because
the previous accumulated evidence regressor did not allow
us to estimate effects of accumulated evidence for the first
100 ms after dot onset which is possible with the separate
regression. We also did not see any benefits from using
the previous accumulated evidence regressor in comparison
to the simple sum of x-coordinates up to the current dot.
Although the previous accumulated evidence regressor is in
principle Gram-Schmidt orthogonalized with respect to the
current, i.e., last presented x-coordinate and therefore provides
independent information from the current x-coordinate, this
is not the orthogonalization that we are most interested in.
Ideally we would want to orthogonalize with respect to any
information about x-coordinates, i.e., momentary evidence
including information contributed by the whole series of
x-coordinates. So, while the previous accumulated evidence
regressor is orthogonal to the current x-coordinate, it still
correlates with the x-coordinates of previously presented dots.
As accumulated evidence is just the sum of x-coordinates,
this cannot be prevented so that momentary and accumulated
evidence regressors will always partially capture overlapping
effects. We still found it informative to present a separate analysis
for accumulated evidence under the premise that the effects
of the accumulated evidence regressor more strongly relate to

accumulated evidence than momentary evidence and vice-versa
for the momentary evidence regressor.

2.5.1.3. Response-aligned regression analyses
Additional to the first-dot onset and dot onset aligned analyses,
we conducted response-aligned analyses in which time was
referenced to trial-specific response times of participants.
The regressors in this analysis were the trial-specific choice
of the participant, trial-time and an intercept. Choice was
encoded as –1 for left and +1 for right so that the
direction of correlations was compatible with that for the
evidence regressors. The trial-time regressor simply counted
the trial number within the experiment per participant.
Timed out trials were excluded from analysis. As in the
other regression analyses we z-scored regressors and data
across trials before estimating the regression coefficients,
except for trial-time which was only scaled to standard
deviation equal to 1.

We performed two different analyses in sensor and source
space. In sensor space (magnetometers) we ran independent
univariate regressions for each combination of sensor and time so
that we ran 102 ∗ 70 regressions with maximally 480 data points
(one per trial, minus excluded trials). We report results of this
analysis in Figure 9.

After having identified time windows of interest based on
the sensor level results, we estimated the mean regression
coefficients across the selected time window for each brain
area and participant. To do this, we aggregated data from
the identified times into a common regression on source
data. We concatenated the data from all times in the time
window and performed the regression on this expanded data
set, then including maximally number of trials ∗ number of
time points data points. We report results of this analysis
in Figure 10.

2.5.1.4. Normalization
The regression analyses described above used normalization
of data and regressors to produce coefficients that can be
interpreted as approximate measures of correlation. Specifically,
we normalized data (sensor values or estimated source currents)
to have mean 0 and standard deviation 1 (z-score) across trials,
but within time points and participants. In expanded regression
analyses this normalization was conducted before combining
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FIGURE 2 | Course of events within a trial in the single dot task and behavior of individual participants. (A) Each trial started with the presentation of a fixation cross,

followed by the appearance of the two yellow targets after about 1 s. 700ms after the appearance of the targets the fixation cross disappeared and a single white dot

was presented at a random position on the screen (drawn from a 2D-Gaussian distribution centered on one of the targets). Every 100 ms the position of the white dot

was changed to a new random draw from the same distribution. Participants were instructed to indicate the target which they thought was the center of the observed

dot positions. After 25 dot positions (2.5 s) without a response, a new trial was started automatically, otherwise a new trial started with the response of the participant.

(B) Average behavior (accuracy and median response time) for each of the 34 participants shown as blue dots and histograms.

data from single time points into one regression analysis.
We also z-scored the individual regressors of the regression
analyses (except for the constant intercept). We conducted this
normalization directly on the constructed, participant-specific
design matrices that were passed to the optimization procedure
solving the regression model, i.e., in expanded regression
analyses this was after the data of single time points from
one participant was combined into one regression model. We
say that this normalization leads to approximate correlation
coefficients, because it can be shown that the coefficients resulting
from a least-squares fit of a linear regression with z-scored
data and z-scored regressors are equal to Pearson correlation
coefficients between data and regressors, if the z-scored
regressors are perfectly uncorrelated. For further information
about normalization see Supplementary Data Sheet 2.

2.5.2. Identification of Significant Source-Level

Effects
To identify significant correlations between regressors of interest
and source signals we followed the summary statistics approach
(Friston et al., 2006) and performed two-sided t-tests on
the second level (group-level, t-tests across participants). We
corrected for multiple comparisons across time points and
brain areas by controlling the false discovery rate using
the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995). Specifically, for identifying significant effects reported in
Figure 7 we corrected across 25,340 tests covering 70 time points
(0 to 690 ms from dot onset in 10 ms steps) and 362 brain areas
(180 brain areas of interest per hemisphere plus one collection
of sources per hemisphere that fell between the area definitions
provided by the atlas). We report all significant effects of this
analysis in Supplementary Data Sheet 1.

2.5.3. Identification of Significant Differences in

Correlation Patterns
We formally investigated the differences in correlation patterns
of the response-aligned analysis between the two time windows
of interest (Figures 9, 10). As we were interested in the
differences between spatial patterns, we accounted for the overall

increase in correlation magnitudes from the build-up to the
response window by normalizing the correlation magnitudes.
This normalization consisted of first shifting the minimum
magnitude to 0 and then scaling the resulting magnitudes so
that their mean equals 1 across sensors or brain areas. The shift
of the magnitudes prevents excessive shrinking of magnitude
variances for magnitude patterns with overall large magnitudes
and ensures that the magnitudes have similar distributions across
the involved sensors or brain areas in both considered time
periods. We subsequently computed the differences between the
selected time periods on the first level and report second-level
(across participant) statistics.

The difference topography in Figure 9 directly shows the
computed mean difference. Additionally we applied a t-test
across participants within each sensor, corrected the resulting
p-values for false discovery rate at α = 0.01 across sensors and
indicate the resulting significant effects with white dots.

The analysis on the source level was in principle equal to the
one on the sensor level, but in addition accounted for the fact
that most brain areas were not involved in encoding the choice.
We achieved this by computing the normalization parameters for
a time window only across brain areas with a significant effect
in this time window. We then computed magnitude differences
for all brain areas with a significant effect in at least one of the
timewindows and proceededwith second-level statistics for these
areas as before.

2.6. Code Accessibility
Code implementing the statistical analysis which produced
all presented results is available at https://github.com/sbitzer/
BeeMEG.

3. RESULTS

While MEG was recorded, 34 human participants observed a
single white dot on the screen changing its position every 100 ms
and had to decide whether a left or a right target (two yellow dots)
was the center of the white dot movement (Figure 2). Under
moderate time pressure (see Methods), participants indicated
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A B

FIGURE 3 | Participants accumulate momentary evidence provided by dot positions for making their decisions. (A) Each shown point corresponds to the Pearson

correlation coefficient for the correlation between choices of a single participant and the sequence of presented dot positions across the 480 trials of the experiment.

We plot, over stimulus duration, the momentary (blue) and the accumulated evidence (orange). The dotted vertical line shows the median RT across participants. Until

about the 10th dot presentation the correlation between accumulated evidence and participant choices rises, reaching values around 0.7 while the momentary

evidence is only modestly related to participant choices across all dots. (B) The same format as in A but all measures are computed from the y-coordinates of dot

positions which were irrelevant for the decision. As expected, y-coordinates do not correlate with participant choices.

their choice with a button press using the index finger of the
corresponding hand. The distance of the target dots on the
screen was chosen in behavioral pilots so that participants had
an intermediate accuracy around 75% while being told to be as
accurate and fast as possible. The average median response time
across participants was 1.1 s with an average accuracy of 78%
(cf. Figure 2B).

Our paradigm dissociates two different kinds of information

available to the participants from the stimulus. The x-
coordinates of the jumping white dot convey decision-
relevant perceptual information while the y-coordinates convey

perceptual information that is irrelevant for the decision. We
assume that both signals are processed by the brain, but only
the decision-relevant x-coordinates are taken into account when
making a decision.

To define decision evidence, we used a computational

model. An ideal observer model for inference about the

target given a sequence of single dots has been described

before (Bitzer et al., 2014; Park et al., 2016). This model

identifies, as expected, the x-coordinates of the white dot

positions as momentary decision evidence. Specifically, there

is a direct linear relationship between x-coordinates and

momentary evidence so that in the following regression
analyses we could directly use the x-coordinates as independent
variables instead of having to compute decision evidence
from the x-coordinates through the model (see Methods).
We further identified the cumulative sum of x-coordinates
across single dot positions as accumulated evidence which
corresponds to the average state of a discrete-time drift-diffusion
model (Bitzer et al., 2014).

3.1. Participants Integrate Evidence
Provided by Single Dot Positions to Make
Decisions
As the task required and the model predicted, participants
made their decision based on the provided evidence. In
Figure 3 we show this as the correlation of participants’
choices with momentary and accumulated evidence. Momentary
evidence was mildly correlated with choices throughout the
trial (correlation coefficients around 0.3) while the correlation
between accumulated evidence and choices increased to a
high level (around 0.7) as more and more dot positions were
presented. This result indicates that participants accumulated the
momentary evidence, here the x-coordinate of the dot, to make
their choices. In contrast, as expected, the y-coordinates had no
influence on the participants’ choices as indicated by correlation
coefficients around 0 (Figure 3B).

Previous work has investigated the influence of individual
stimulus elements on the eventual decision and whether this
influence differed across elements (Wyart et al., 2012; Hubert-
Wallander and Boynton, 2015). In our analysis this corresponds
to checking whether the correlations with momentary evidence
shown in Figure 3A differ across dots. This is clearly the case
[F(13, 462) = 65.49, p ≪ 0.001]. Contrary to previous work
(Hubert-Wallander and Boynton, 2015) we do not observe a
primacy effect. Instead, we observe a particularly large difference
in the influence of the 4th and 5th dots on the decision (post-hoc
paired t-test: t(33) = –34.90, p ≪ 0.001 with the 5th dot having
a strong influence while the 4th dot having a relatively small
influence. This reflects our pre-selection and manipulation of
stimuli which were partially chosen from a previous experiment
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FIGURE 4 | Time course of correlations with momentary evidence repeats for each dot shifted by dot onset times. In the standard regression analysis there was one

regressor for each element in the sequence of dot positions (dots). This allowed us to test, when after first dot onset, correlations with the considered dot could be

observed. The figure demonstrates, for the magnetometer channel with the strongest average correlations, that the correlation time course exhibits roughly a

stereotyped profile relative to the onset time of the dot on the second level (average across subjects, grand average). Dotted lines show the same quantity, but for data

that we permuted over trials before the regression analysis.

to induce large response times (leading to the small influence
of the 4th dot) and a manipulation of the 5th dot to create
large variation in x-coordinates (see Methods for further details).
Taken together these results confirm that the used stimuli were
effective in driving the decisions of the participants and that
the theoretically defined momentary and accumulated evidence
integrate well with observed behavior.

3.2. MEG Signals Covary With Momentary
Evidence at Specific Time Points After
Stimulus Update
For the analysis of the MEG data we used regression analyses
computing event-related regression coefficients of a general
linear model (Hauk et al., 2006; Clarke et al., 2013). For our

main analysis the regressors of interest were the momentary
evidence and, as a control, the y-coordinates of the presented
dots. We normalized both the regressors and the data so
that the resulting regression coefficients can be interpreted as
approximate correlation values while accounting for potential
covariates of no interest (see Methods). Note that this correlation
analysis is different from standard event-related field analyses,
where one would only test for the presence of a constant time-
course across trials. With the correlation analysis, the estimated
regression coefficients describe how strongly the MEG signal, in
each time point and each sensor (or source), followed the ups and
downs of variables such as the momentary evidence, across trials.

As a first result, we found that correlations between
momentary evidence and MEG signals followed a stereotypical
temporal profile after each dot position update (Figure 4).
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A B

FIGURE 5 | Time course of correlation strengths between magnetometer measurements and momentary evidence and perceptual control variable. (A) The top panel

shows the time courses of the mean (across sensors) magnitude of grand average regression coefficients (β). For comparison, dotted lines show the corresponding

values for data which were randomly permuted across trials before statistical analysis. Black dots indicate time points for which the sensor topography is shown

below the plot. These topographies directly display the grand average regression coefficients at the indicated time without rectification, i.e., with negative (blue) and

positive (red) correlation values. The momentary evidence has strong correlations with the magnetometer signal at 120, 180 ms and from about 300 to 500 ms after

dot onsets. (B) The correlations with the decision irrelevant y-coordinate are visibly and significantly weaker than for the evidence, but there are two prominent peaks

from about 120 to 210 ms and at 320 ms after dot onset. There is no sustained correlation with the y-coordinate beyond 400 ms and the topographies of

magnetometers differ strongly between evidence and y-coordinates. Specifically, the evidence exhibits occipital, centro-parietal and central topographies whereas the

y-coordinate exhibits strong correlations only in lateral occipito-parietal sensors.

Therefore, we performed an expanded regression analysis where
we explicitly modeled the time from each dot position update,
which we call “dot onset” in the following. To exclude the
possibility that effects from the button press motor response
influenced the results of the dot onset aligned analysis, we only
included data, for each trial, up until at most 200 ms prior to the
participant’s response.

We first identified time points at which the MEG signal
correlated most strongly with the momentary evidence. For
these sensor-level analyses we used magnetometer sensors only.
We performed separate regression analyses for each time point
from dot onset, magnetometer sensor and participant, computed
the mean regression coefficients across participants, took their
absolute value to yield a magnitude and averaged them across
sensors. Figure 5 shows that the strongest correlations between
momentary evidence and magnetometer signals occurred at
120 ms, 180 ms and in a prolonged period from roughly
300 to 500 ms after dot onset. In contrast, correlations with
the decision irrelevant control variable, that is, the dot y-
coordinates, were significantly lower in this period from 300
to 500 ms (two-tailed Wilcoxon test for absolute average
coefficients across all sensors and times within 300–500 ms,
W = 382781, p≪ 0.001).

The sensor topographies shown in Figure 5 indicate for the
momentary evidence a progression of the strongest correlations
from an occipital positivity over a centro-parietal positivity to a
central positivity. y-coordinate correlations, on the other hand,
remained spatially at occipito-parietal sensors.

3.3. Correlations With Accumulated
Evidence
Guided by themodel we used dot x-coordinates as representation
of momentary evidence, but dot x-coordinates also do have a
purely perceptual interpretation similar to the y-coordinates as
they simply measure the horizontal location of a visual stimulus.
Correlations with x-coordinates, therefore, may reflect at some
time points early visual processes independent of the decision,
at some time points momentary evidence and other time points
both of them. Contrasting the strength of significant effects for
x- and y-coordinates (Figure 5) already suggested that at least
from 400 ms after dot onset x-coordinates indeed represented
a form of decision evidence. Here we further corroborate this
finding by turning to a form of decision evidence that has no
direct purely perceptual interpretation and is more closely related
to the decision itself: the accumulated evidence.

The accumulated evidence is, through the final choice, more
strongly related to the motor response than the momentary
evidence (cf. Figure 3A, Figure S1). To account for this potential
confound we excluded, as before, all data later than 200ms before
the response so that the results only contain effects unrelated to
the actual motor response.

Figure 6 depicts the time course of overall correlation
magnitudes for accumulated evidence together with effect
topographies at chosen time points. We found significant
correlations between the MEG signal and accumulated evidence
at all peri-stimulus times until about 550 ms after dot onset.
Crucially, during this time period we observed centro-parietal
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FIGURE 6 | Correlation of accumulated evidence and magnetometer signals relative to dot onset display central sensor topographies. Format as in Figure 5, i.e., the

blue line in the top panel shows the time course of the mean (across sensors) magnitude of grand average regression coefficients (β) together with corresponding time

courses after 3 different permutations across trials (dotted). In addition, we show the momentary evidence time course (dark gray shade, cf. Figure 5A) and two

replica of it which are shifted by 100 ms to the past (lighter grays). These time courses, therefore, are associated with the representation of the momentary

evidence/x-coordinates of the current dot, the previous dot and the dot before that in the brain.

and, especially, central sensor topographies suggesting that
these represent specifically decision-relevant information such as
momentary or accumulated evidence, as hypothesized based on
the correlations with x-coordinates shown in Figure 5.

While the brain may represent momentary evidence only
transiently until it is included in the accumulated evidence,
accumulated evidence should, by definition, be represented more
persistently. Except for the two dips at 20 and 120 ms, the
correlation time course shown in Figure 6 indeed suggests that
accumulated evidence is represented in the MEG signals more
persistently than the momentary evidence. In fact, The early
dips in the accumulated evidence correlations are likely artifacts
resulting from an interaction with ongoing perceptual processing
of the individual input stimulus (x-coordinate of white dot)
that we observe as the 120 ms peak in momentary evidence
correlations (Figure 5). To make this clear, we overlayed the
correlation time course of the accumulated evidence with that
of the momentary evidence from Figure 5, along with a time-
shifted replica of the momentary evidence. The two momentary
evidence time courses visualize the times at which the MEG
signals correlated strongly with the x-coordinates of the white
dot shown from 0 to 100 ms, as well as the previous dot shown
from –100 to 0 ms (light gray replica in Figure 6). Figure 6
therefore shows that the early dips in accumulated evidence
correlations coincide with the early 120 ms peaks of each of
the momentary evidence correlations. Furthermore, comparing
the associated topographies in Figures 5, 6, we see that the
momentary evidence has a central negativity at 120 ms, while
accumulated evidence has a central positivity throughout the
time window of interest. The two representations of momentary

and accumulated evidence in the MEG therefore correspond
to opposite effects which cancel, when they co-occur. This
apparently happens during the early perceptual processing stage
of a dot around 120 ms after its onset resulting in a lowered
correlation with the accumulated evidence at these time points.

In conclusion, these results suggest that the correlations
with accumulated evidence indeed are a representation of
accumulated evidence and not momentary evidence. Further this
representation appears to manifest itself with a central positivity
in the MEG magnetometers.

3.4. Sources of Stimulus-Aligned
Momentary Evidence Effects
By investigating the sources of the evidence correlations at
sensor level, we aimed to better understand the nature of these
effects and to confirm their locations in the brain suggested
by the shown sensor topographies. In particular, we were
interested in linking the time points for which we found strong
momentary evidence correlations to potential functional stages in
the processing of decision evidence, such as sensory processing,
relating sensory information to the decision and integrating
momentary evidence with previous evidence.

We reconstructed source currents along the cerebral cortex
for each participant and subsequently repeated our regression
analysis on the estimated sources (see Methods and Materials
for details).

The time course of correlation magnitudes shown in Figure 5

suggested three time windows at which particularly strong
correlations with momentary evidence were present in the
brain. The source analysis gives equivalent results: Multiple
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FIGURE 7 | Correlations with momentary evidence shift from visual over parietal to motor and posterior cingulate areas. We investigated the three time windows with

strong correlations in the sensor-level results: early (110–130 ms), intermediate (160–200 ms), and late (290–510 ms). For each of these phases only brain areas with

at least one significant effect (p < 0.01, FDR corrected) within the time window are colored. For display purposes, colors show average second-level t-value

magnitudes where the average is taken over time points within the time window. The 5 areas with the most consistent, strong correlations per hemisphere and time

window are marked by black outlines. These were (in that order; specified as Brodmann areas with subdivisions as defined in Glasser et al., 2016): early, left—V3, FST,

LO3, VMV2, MST; right—VMV2, LO1, v23ab, VMV1, VVC; intermediate, left—POS2, AIP, V2; right—IP0, VIP, 7AL, PGp, DVT; late, left—1, 3a, 6d, 3b, 31pd;

right—v23ab, 7m, 31pd, 31pv, d23ab.

comparison corrected effects occurred only within 110–130 ms,
160–200 ms, and 29–510 ms (cf. Supplementary Data Sheet 1).
In subsequent analyses we, therefore, focused on these time
windows and call them according to their temporal order "early,"
"intermediate," and "late" phases. Figure 7 depicts the brain areas
with at least one significant multiple comparison corrected effect
within the corresponding phase. The color scale indicates the
average t-value magnitudes within the time window for these
significant areas (we chose to display t-value magnitudes instead
of correlationmagnitudes here, because the estimated correlation
values had larger second-level variability differences across brain
areas than sensors).

As the sensor topographies suggested, we observed that in
the early phase the strongest correlations were located in visual
areas such as V3, V1 and areas in the lateral occipital cortex
(e.g., FST, MST, LO3 according to Glasser et al., 2016), but also
in a small area of posterior cingulate cortex (v23ab) and there

was an effect in a parietal area of the left hemisphere (MIP). In
the intermediate phase most of the correlations in visual areas,
especially those in lateral occipital areas, vanished. Instead, more
parietal areas exhibited significant correlations with momentary
evidence, especially in the right inferior (IP0, PGp) and superior
parietal cortex (VIP, 7AL, 7Am). Additionally, we found strong
correlations in posterior cingulate cortex (POS2 and DVT). In
the late phase some correlations in parietal areas persisted, but
only focal at some time points so that on average across the
time window correlations were weak compared to other brain
areas. Specifically, the strongest correlations were spread across
the posterior cingulate cortex in both hemispheres (especially
areas v23ab, 31pd, 7m, 31pv, d23ab). Further strong correlations
occurred in motor areas, especially in the left hemisphere,
including somatosensory areas (3a, 3b, 1), primary motor cortex
(area 4) and premotor areas (6a, 6d). Note that we excluded
from the analysis all time points later than 200 ms before
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FIGURE 8 | Sustained correlations with accumulated evidence in motor and cingulate areas. Following the procedure in Figure 7, we colored only areas with a

significant correlation with accumulated evidence (p < 0.05 FDR corrected) with color indicating the average t-value magnitude in the extended time window from 0

ms to 550 ms after dot onset. The 5 largest effects were (marked by black boundaries): left—3a, 6d, 1, 2, v23ab; right—V6, 6a, 7m, p24pr, 24dv.te.

the trial-specific motor response. Additionally, we observed
weaker correlations in mid and anterior cingulate motor areas
(e.g., 24dv, p24pr).

These results confirm that the information carried by the
decision-relevant x-coordinates shifts from visual over parietal
areas toward motor areas. Given that the total number of time
points with significant momentary evidence correlations was
larger for motor regions than for parietal regions, it appears
that parietal areas represented momentary evidence for a shorter
duration than motor areas. As this was no central question in
the present work, we did not further substantiate this finding
with a formal statistical analysis so that we cannot draw definite
conclusions about its validity.

The results also reveal that source currents of brain areas
in posterior cingulate cortex had strong correlations with x-
coordinates throughout all three phases. Accordingly, the areas
with the largest correlation magnitudes on average across all
time points within 0 to 500 ms were predominantly located
in posterior cingulate cortex (5 areas with strongest average
effects in that order: left—v23ab, 3a, 31pd, 3b, 1; right—v23ab,
DVT, d23ab, 31pv, 7m). This suggests a potentially central role
of posterior cingulate cortex in the processing of momentary
evidence in the task.

3.5. Sources of Stimulus-Aligned
Accumulated Evidence Effects
The sensor topographies for the accumulated evidence effects
suggested that accumulated evidence was represented in
common brain sources across the whole time window of 0 to
550 ms from dot onset. Therefore, we used this full time window
to investigate the underlying sources. As for the momentary
evidence, cf. Figure 7, we identified brain areas with significant
correlations after FDR correction across locations and times (p <

0.05, no significant effects for p < 0.01) in at least one time point
and then averaged the t-value magnitudes across time points
within the time window in these areas. Given the similarity of
sensor topographies of momentary evidence in the late phase and
the sensor topographies of accumulated evidence we expected
their sources to overlap.

In Figure 8, one can see that, although the estimated
correlation magnitudes were slightly higher for the accumulated
evidence than for the momentary evidence, fewer effects were
statistically significant for accumulated evidence. This is most
likely because the variability of correlation magnitudes across

FIGURE 9 | The button press motor response peaking at 30 ms is

represented most strongly in central magnetometers, but the corresponding

topography differs slightly from that associated with momentary and

accumulated evidence. We computed the correlation between participant

choices and MEG magnetometers using linear regression for data aligned at

response time. Following the format of Figure 5 we here show the time course

of the mean (across sensors) magnitude of grand average regression

coefficients (β). Sensor topographies for time points indicated by the black

dots are shown below the main panel. Note that for the time points before the

response we use a different scaling of colors than for time points around the

response and later. This is to more clearly visualize the topography around the

response which contains larger values. The color scaling for the time points

before the response is equal to that of Figures 5, 6. The topography at –300

ms strongly resembled that for accumulated evidence, but the topography

around the response (30 ms) additionally exhibited stronger fronto-lateral and

weaker occipital anti-correlations (p < 0.01 corrected, cf. middle difference

topography, see Methods for details). Positive values / correlations mean that

measured sensor values tended to be high for a right choice (button press)

and low for a left choice and vice-versa for negative values.

participants increased relative to momentary evidence effects
(results not shown). Otherwise, the identified brain areas were
consistent with those of the momentary evidence in the late
phase. In particular, we observed consistently strong correlations
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FIGURE 10 | Around the response time strongest correlations with choice occurred in primary motor, somatosensory and cingulate motor cortex (BA 24) while during

the build-up period (–500 to –120 ms) we found the strongest effects in premotor and cingulate motor cortex. The 5 largest effects per hemisphere were: build-up,

left—24dv, 6a, 24dd, 3a, SCEF; right—24dv, p24pr, 6a, SCEF, OP2-3; response, left—4, 3b, 24dv, 3a, SCEF; right—3b, 4, p24pr, 24dv, 2. When testing for

differences in the spatial pattern of correlation magnitudes (see Methods) between the two time windows, we only found significant differences in the motor and

cingulate areas: 1, 24dv, 2, 31a, 3a, 3b, 4, 6d, 6mp, SCEF, p24pr. All of these effects indicated that correlations with choice were stronger in the response window

(blue). The build-up and response panels show spatially normalized t-value magnitudes while the difference panel shows t-values of spatially normalized correlation

magnitude differences.

with accumulated evidence in motor, premotor, cingulate motor,
and posterior cingulate areas.

3.6. Correlations With Choice Reveal
Response-Aligned Build-Up and Separate
Motor Response
Our finding that momentary or accumulated evidence is
represented in motor areas is consistent with a wide range of
previous work (Donner et al., 2009; Michelet et al., 2010; Selen
et al., 2012; de Lange et al., 2013; Kelly and O’Connell, 2013;
Thura and Cisek, 2014). If motor areas are involved in processing
momentary or accumulated evidence prior to a response, as
these results indicate, the question arises how these processes
relate to motor processes linked to the response itself. More
specifically, we were interested in how the patterns of correlations
withmomentary and accumulated evidence related to correlation
patterns representing the motor response and whether these
could be linked to the absence or presence of the involvement
of certain brain areas. To investigate correlation patterns
representing the motor response we computed choice-dependent
effects centered on the response time of the participants. We did
this with a regression analysis using the participant choice as a
regressor of interest (seeMethods). The choice regressor provides
a measure for how well the choice of the participants can be
decoded from univariate brain signals.

Figure 9 depicts the estimated time course of correlation
magnitudes averaged across participants and sensors. From
about 500 ms before the response, correlations between choice
and MEG data became gradually stronger culminating in an

expected peak centered slightly after the response. The sensor
topographies of the build-up period before the response strongly
resembled those we found for accumulated evidence in our
previous analyses. In fact, these results most likely correspond
to the same effect, because the participant choice itself was
increasingly correlated with accumulated evidence as the trial
progressed (cf. Figure 3). That is, the build-up seen in the
figure only indirectly visualizes an increasing evidence signal
by depicting an increasing alignment of the final choice with
the internal representation before the response (presumably
accumulated evidence).

The motor response itself (peak around 30 ms) was, as
expected, much more strongly represented in the MEG signals
than the accumulated evidence, see Figure 9. Although the
motor response also had a predominantly central topography,
its topography visibly differed from that prior to the response
(at –300 and –120 ms). Specifically, the topography before the
response exhibited stronger anti-correlation in occipital sensors
than around the response while the topography around the
response exhibited stronger anti-correlations in fronto-lateral
sensors (p < 0.01 corrected, cf. Figure 9, difference topography).
Furthermore, the correlation with choice was relatively higher
over central sensors at 30 ms than at –120 ms (Figure 9,
difference topography).

To analyse this difference at the source level we applied
the regression analysis to the reconstructed source currents.
Figure 10 depicts the results of an analysis of two time windows:
the "build-up" window from –500 to –120 ms (when a dip
before the response indicates an end of the build-up) and the
"response" window capturing the response peak from –30 ms to
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100 ms. We only show brain areas with at least one significant
effect within the time window after correcting for multiple
comparisons (FDR with α = 0.01 across brain areas and the two
time windows). The shown colors indicate normalized second-
level t-value magnitudes (see Methods).

As expected, in the response window, the effects were
dominated by choice correlations in bilateral primary motor
and somatosensory cortices, but also choice correlations in
cingulate motor areas (around Brodmann area 24) were among
the effects with the strongest magnitudes. Other significant
correlations with choice within the response window occurred
in premotor and posterior cingulate cortices. In the build-up
window, the strongest correlations occurred predominantly in
cingulate motor cortex and premotor areas (especially 6a).

We further aimed at identifying brain areas with significantly
different correlation magnitudes in the two time windows.
Specifically, we were interested in the difference of the spatial
patterns of correlation magnitudes, across brain areas, between
the two time windows. To do this, we normalized correlation
magnitudes across brain areas within the time windows and
computed the differences between time windows within each
brain area and participant (see Methods for details). Figure 10,
bottom panel, shows that across participants the only statistically
significant differences occurred in the primary motor and
somatosensory cortices and, with smaller effect size, in cingulate
motor areas. In all these areas correlation magnitudes were larger
in the response as compared to the build-up window.

In summary, the response-centered analysis of choice
correlations suggests that the build-up of choice-correlations
leading toward a response is related to the accumulation of
momentary evidence, because sensor topographies and brain
areas were highly consistent across choice- and evidence-based
analyses. The correlation topographies for the build-up and the
response windows shown in Figure 9 had significant differences
in central, occipital and fronto-lateral sensors. When analysing
these differences at the source level (Figure 10), the only sources
with significant differences were located in motor areas. These
results together suggest that the brain areas representing decision
evidence are largely overlapping with those representing the
upcoming choice and the motor response. The difference in
correlation patterns at the source level between the upcoming
choice and motor response may be explained by an increase in
choice correlations in motor areas.

4. DISCUSSION

Using MEG, we analyzed the dynamics of evidence
representations in the human brain during perceptual decision
making. We induced fast, within-trial evidence fluctuations in
which new evidence appeared every 100 ms and correlated the
resulting momentary evidence dynamics with MEG signals. We
identified three main phases of the representation of momentary
evidence: an early phase around 120 ms post evidence update,
an intermediate phase around 180 ms and a late phase from
about 300 to 500 ms. These phases exhibited different sensor
topographies with positive correlations shifting from occipital
to centro-parietal to central sensors during the three phases.
We localized the sources of these representations in early

visual, parietal and motor areas respectively, with significant
correlations in posterior cingulate cortex occurring in all three
phases. Significant correlations with accumulated evidence
occurred continuously until about 550 ms after update onset and
exhibited a central topography similar to that in the late phase
of momentary evidence representations with corresponding
sources. Additionally, correlations with response-aligned MEG
signal shared a similar topography with a build-up phase
hundreds of milliseconds before the response. Further analysis
showed that the only significant differences between build-up
phase and motor response were higher choice correlations in
motor areas during response.

It has previously been shown that the MEG signals correlate
with individual pieces of momentary evidence (de Lange et al.,
2010; Gould et al., 2012; Wyart et al., 2012; Gluth et al., 2013).
In contrast to these studies we used a rapid evidence fluctuation
paradigm (10 Hz) presumably closer to natural settings. More
importantly, we track momentary evidence representations and
the corresponding areas in the human brain through the three
phases that we newly identified, although at least the early and
late phases were previously hinted at (Wyart et al., 2012).

There is overwhelming evidence that motor areas including
the premotor and primary motor cortex are involved in
perceptual decision making (Heekeren et al., 2008; Hanks
and Summerfield, 2017). Specifically, it has been shown
that some single neurons in primary motor cortex represent
momentary evidence (Thura and Cisek, 2014), that motor-
evoked potentials can be related to accumulated evidence
(Michelet et al., 2010; Hadar et al., 2016) and that classical
lateralized readiness potentials (Smulders and Miller, 2012)
also exhibit evidence-dependent build-up in a detection task
(Kelly and O’Connell, 2013), and single-trial pre-movement
MEG activities are correlated with reaction times in the motor
area (Smyrnis et al., 2012). Our results further substantiate
these findings by showing that human motor areas represent
each update of momentary evidence roughly within 300 to 500
ms after the update onset and that accumulated evidence is
represented in motor areas throughout the decision making
process. By analysing response-aligned data to detect choice-
dependent effects, we further showed that the stimulus-aligned
evidence representations resemble closely the representation of
the final choice during a build-up phase before the response.
This supports the hypothesis that observations of pre-response
representations of an upcoming choice, such as the lateralized
readiness potential, should be interpreted as expressions of an
ongoing decision making process about the next sensible motor
response. In sum, the present and previous findings affirm a
tight coupling between decision making and motor processes,
as formulated in the affordance competition hypothesis (Cisek,
2007; Cisek and Kalaska, 2010), and also in other cognitive
computational neuroscience theories (O’Regan and Noë, 2001;
Friston et al., 2009; Clark, 2013).

One potential caveat of our correlation results in motor
areas is that participants may have executed micro-movements
to track the changes of the stimulus either with their eyes,
or with minimal finger movements before response. In this
scenario the observed correlations in motor areas could be
explained by motor signals to the muscles. Although we cannot
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completely exclude this possibility we deem it unlikely; (i) Most
stimuli were within 5◦ diameter from fixation meaning that
most of them were well within the foveal visual field. (ii) The
sensor topographies representing evidence were very similar to
that associated with the motor response, that is, the evidence
representations do not appear to be specifically related to eye
movements. (iii) As mentioned above, a large body of work
already supports the interpretation that motor areas represent
decision evidence before motor execution. In conclusion, we
do not believe that the correlations observed in motor areas
of the brain are merely an expression of motor control signals
that caused stimulus-correlated micro-movements. Even if such
micro-movements existed, these would most likely follow the
time-course of decision evidence rather than decision-irrelevant
stimulus properties (Michelet et al., 2010; Selen et al., 2012; Hadar
et al., 2016).

Although we found some representations of momentary
evidence in the parietal areas during the intermediate and late
phase, the strongest representations were found predominantly
in the motor or somatosensory, and cingulate areas. This was
also the case for accumulated evidence. These results suggest that
in our task the parietal cortex was not the main area involved
in the processing of momentary evidence and did not appear to
accumulate evidence for the decision, or at least did not represent
accumulated evidence over an extended period of time.

These findings appear to be at odds with previous observations
in non-human primates which had identified neurons in inferior
parietal cortex that seemed to represent accumulated evidence
(Gold and Shadlen, 2007). More recent work, however, suggests
that the firing of these neurons is more diverse than originally
thought (Meister et al., 2013; Park et al., 2014; Latimer et al.,
2015). It is therefore possible that the signal from only few
evidence accumulating neurons in inferior parietal cortex is too
weak to be recorded with MEG. Another possibility is that the
representation of decision evidence in parietal areas follows a
more intricate dynamic process that is hard to identify with
simple correlation analyses (Churchland et al., 2010). If this was
the case, an interesting follow-up question would be why the
representations of accumulated evidence in parietal and motor,
or posterior cingulate areas apparently differ, as we clearly found
correlations with accumulated evidence in the latter areas.

We systematically manipulated decision evidence by changing
the position of a single dot. Only the x-coordinates of these
dot positions represented momentary decision evidence while
the decision-irrelevant y-coordinates acted as a perceptual
control variable. While this interpretation is dictated by an
ideal observer model of our task, in reality it could still
be that people also used the y-coordinate for making their
decision, for example, by determining the Euclidean distance
of the dot to the two beehives. In how far people actually
do this is unclear, but we can at least say that people’s
choices were largely unaffected by the y-coordinate (Figure 3).
We therefore believe that the behavioral relevance of the
y-coordinate was minimal in our task and that the x-
coordinate is a sufficiently good proxy of momentary decision
evidence for identifying momentary evidence representations in
the brain.

We have shown that correlations of MEG signals with the y-
coordinates, in contrast to momentary evidence, were strongly
diminished in the period from 300 to 500 ms after dot onset.
This suggests that the brain ceases to represent perceptual
information that is behaviorally irrelevant around this time
and that brain areas with strong correlations with momentary
evidence in this time window indeed are involved in the decision
making process. This interpretation is further supported by
previous work which has shown that purely perceptual stimulus
information is represented in electrophysiological signals only
until about 400 ms after stimulus onset (Wyart et al., 2012;
Mostert et al., 2015;Myers et al., 2015) while specifically decision-
related information is represented longer starting around 170
ms after stimulus onset (Philiastides and Sajda, 2006; Philiastides
et al., 2006, 2014; Wyart et al., 2012; Mostert et al., 2015; Myers
et al., 2015).

We further validated this interpretation by investigating
correlations with accumulated evidence, that is, the cumulative
sum of momentary evidences within a trial. In contrast to the
momentary evidence, this is more specifically related to the
decision and has no simple, purely perceptual interpretation.
The similarity of the correlation topographies for accumulated
evidence and momentary evidence in the late phase suggests
that specifically decision-relevant evidence is represented in the
late phase, within 300 to 500 ms after evidence updates. Our
results do not allow to clearly state whether momentary, or
accumulated, or both types of decision evidence were represented
in the brain in this time window, because both types of evidence
are correlated, especially early within a trial. However, we also
found that accumulated evidence exhibited the corresponding
central topography more consistently throughout peri-stimulus
time than momentary evidence, so it appears reasonable to
assume that accumulated evidence is predominantly represented
in the late phase.

Finally, and perhaps most surprisingly, we found significant
correlations with momentary and accumulated evidence in
posterior cingulate cortex across all phases. Especially a ventral
part of posterior cingulate cortex (v23ab) was involved already
in the early phase which was dominated by early visual areas
and may therefore relate to basic visual processing of the
stimulus. In the intermediate phase, the correlations were weaker,
but persisted. In the late phase it constituted one of the
main effects suggesting that it is a region contributing to the
maintenance and accumulation of momentary evidence in the
brain. Consequently, posterior cingulate cortex appears to be
involved in both early sensory processing and decision making
and, therefore, could act as a bridge between these processes.

Previous studies investigating the function of posterior
cingulate cortex have mostly concentrated on a rather slow time
scale, for example, contrasting different task conditions, while
we analyzed rapid fluctuations of neural signals. These studies
of slow activities in posterior cingulate cortex have implicated
its role in directing the focus of attention (Leech and Sharp,
2014). However, posterior cingulate cortex has been associated
with a wide range of functions which summarize to estimating the
need to change behavior in light of new, external requirements
(Pearson et al., 2011). Our findings are compatible with this
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view, in the context of fast perceptual decision making where
participants need to decide whether to follow one (press left) or
another (press right) behavior.

In the field of perceptual decision making, especially
in electrophysiological work with non-human animals, the
posterior cingulate cortex has not gained much attention
(Gold and Shadlen, 2007; Hanks and Summerfield, 2017).
Therefore, given our findings it appears that the role of
posterior cingulate cortex in perceptual decision making may
have been underestimated.
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