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Abstract – Drying fruit is one of the simplest ways to extend the shelf-life of fruit, especially 

berries. Both higher temperature and time of heating significantly change the contents of some 

primary and secondary metabolites in honeysuckle fruit. Differences in their contents arising 

from different heat treatments were determined with the aid of high-performance liquid 

chromatography (HPLC) coupled with mass spectrophotometry (MS). The content of sugars 

showed a small change with drying, while organic acid contents decreased with a longer drying 

time. Ascorbic acid was totally degraded, regardless of the time or heating temperature. 

Different phenolic groups responded differently to heat intensity and time of drying. Flavanols 

were more sensitive to higher temperature than to duration of heating and they decreased by 

more than 70% at 75 °C. In contrast, the content of hydroxycinnamic acids, increased with 

drying by more than 75%, regardless of the time and temperature. 
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Introduction 

Small fruit berries, such as blueberries, strawberries, blackberries and raspberries, are 

widely consumed all over the world. They are a rich source of polyphenolics, especially 

flavonols and anthocyanins, which have health benefits (Sablani et al. 2010, Mikulic-Petkovsek 

et al. 2012). Minor fruits, such as quince, rose hip, hawthorn, saskatoon, chokeberries and 

honeysuckles, are easier to grow and hardy in nature, producing a crop even under adverse soil 

and climatic conditions (Gündüz and Özbay 2018). Their fruits have a unique aroma and taste 

and play a vital role in nutrition and as a source of livelihood, in particular providing 

employment and income generation for rural and tribal groups (Vijayan et al. 2008, Mikulic-

Petkovsek et al. 2012, Ercisli et al. 2012, Cuce and Sokmen 2017). The blue honeysuckle berry 

(Lonicera caerulea var. edulis Turcz. ex Herder) (WFO 2019) from the Lonicera genus and the 

plants can be organically grown. Their natural growth areas are wetland spaces along rivers, 

marshes or forest clearings in northeastern Asia and America (Thompson 2008, Miyashita et 

al. 2009). The berries are similar in color to blueberries, dark purple with a waxy coating, but 

with an obvious difference in the berry shape. Blue honeysuckle berries have a more elongated 

or cylindrical shape than the blueberry (Thompson 2008, Hummer et al. 2012). The taste is 

bitter to tart-sweet, a mixture of known berry flavors (Hummer et al. 2012). The berries from 
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blue honeysuckle have become popular because of their health-promoting properties. They 

contain nutraceutical compounds, such as vitamins, minerals, polyphenolics, iridoids and 

saponins (Jurikova et al. 2009, 2012, Becker et al. 2017, Oszmiański and Kucharska 2018). 

Additionally, they contain a low sugar content compared to some other fruits, which could make 

them a good source of nutrition for people with diabetic troubles (Palikova et al. 2009). The 

berries have a short shelf-life and it is important to keep the product fresh to maintain its 

nutritional value as far as possible. Most storage techniques require low temperatures, which 

are difficult to maintain throughout a distribution chain (Sagar and Kumar 2010). In addition to 

freezing, drying is the simplest procedure for preserving fruit (Senica et al. 2016). Not only 

does it extend the shelf-life of fruit, but it retains the characteristics of natural products, reduces 

the costs of packing, storage and transportation, due to the reduced weight and volume of the 

product, and additionally inhibits the growth of micro-organisms (Wang and Xu 2007, Chauhan 

and Srivastava 2009, Sagar and Kumar 2010, Mundada et al. 2010). Another advantage is the 

higher prices of commodities and accessibility of food in the season when fresh berries are not 

available. Disadvantages of drying are an alternation of color, in terms of browning, lipid 

oxidation, degradation of enzymes and change of aroma, flavour and taste. The texture of dried 

products is influenced by their moisture content, composition, pH, and product maturity. During 

drying, the collapse of cell structures causes, reduction in size through shrinkage of the berries 

(Sagar and Kumar 2010).  

Freshly harvested blue honeysuckle berries have a short shelf-life. In Europe, fresh blue 

honeysuckle berries can be purchased from mid-May to the end of June. There are many food 

preservation methods for prolonging the presence of fruit in the market and to ensure product 

nutritional and health quality. The most suitable fruits for drying are apples, pears, plums, 

grapes, apricots, figs, persimmons and peaches. They can be purchased dried on the market or 

prepared at home. They are principally dried on average for less than 30 hours (depending on 

the fruit) at 60 degrees (Garden-Robinson 2012, FAO 2019). There have been a several studies 

investigating anthocyanin contents during different preservation processes in blue honeysuckle 

berries (Khattab et al. 2016, Oszmiański et al. 2016) and some other fruit species, such as 

blueberries (Brownmiller et al. 2009, Sablani et al. 2010), persimmon (Karaman et al. 2014, 

Senica et al. 2016), gooseberry (Kucner et al. 2014) and strawberry (Wojdyło et al. 2009). 

Mineral content changes were observed in strawberries stored at different temperatures 

(Çavuşoğlu 2018). The aim of this study was to identify appropriate drying conditions for 

preparing dried blue honeysuckle berries while achieving a high quality. We evaluated the 

influence of a combination of different temperatures (40, 50, 60, 65 and 75 °C) and times of 

heating (240, 200, 66, 30 and 20 hours) on the thermal stability of ascorbic acid, sugars, organic 

acids and phenolic content of blue honeysuckle berries.  

 

 

Materials and methods 

Plant material 

The blue honeysuckle berries were from the cultivar 'Aurora', grown organically in 

Slovenia. The berries were hand-harvested at the fully ripe stage on 11 June 2017, at the location 

Šmartno pri Litiji (46°2'38.7ʺ N 14°50'47ʺ E, 250 m a.s.l.). Fresh berries were immediately used 

for control treatment. Other berries were dried in a drying oven at different durations and 

temperatures. In addition to the control, we applied five treatments: at 40 °C for 240 hours (10 

days), at 50 °C for 200 hours, at 60 °C at 66 hours, at 65 °C for 30 hours and at 75 °C drying 

for 20 hours. Fifty grams of blue honeysuckle berries were used per repetition (10 repetitions). 
 

Drying process 
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The drying process was carried out using a hot-air drying oven (Suša 6, wood dryer, 

Splošno mizarstvo, Slovenia) at 40, 50, 60, 65 and 75 °C. Drying was continued for up to 30 h 

or the time needed to reach 15% of moisture or lower.  

 

Determination of ascorbic acid in dried honeysuckle berries 

For control 5 g of berries mashed and extracted with 10 ml of 2% meta-phosphoric acid 

was used. Half of one gram of dried berries from each drying treatment was extracted with 5 

ml of 2% meta-phosphoric acid. The control and all dried mixtures were then left at room 

temperature for 1 hour on a shaker (Grant-Bio POS-300, Grant Instruments, Shepreth, England) 

for ascorbic acid extraction. The samples were afterward centrifuged at 4 °C at 10 000 rpm for 

7 min and filtered through a Chromafil A-20/25 mixed ester filter (Macherey-Nagel, Düren, 

Germany) into vials and left to wait until HPLC analysis. Determination of ascorbic acid was 

carried out with the Thermo Finnigan Surveyor HPLC system (Thermo Scientific, San Jose, 

CA). Conditions were previously described in Mikulic-Petkovsek et al. (2016) study. Contents 

were expressed in mg of ascorbic acid per 100g of dry weight.  

 

Determination of sugars and organic acids in dried honeysuckle berries 

Sugar and organic acid contents among various dried honeysuckle berries were estimated 

according to the method of Mikulic-Petkovsek et al. (2016). For control 5 g of fresh 

honeysuckle berries was mixed with an Ultra-Turrax T-25 macerator and extracted with 25 ml 

double-distilled water. Half of one gram of dried honeysuckle berries was extracted with 10 ml 

of double-distilled water. Each sample was then left at room temperature for 1 hour on a shaker. 

Samples were afterwards centrifuged at 4 °C at 10 000 rpm for 7 min and filtered through a 

Chromafil A-20/25 mixed ester filter into vials and allowed to wait until HPLC analysis. 

Determination of individual sugars and organic acids was carried out with the Thermo Finnigan 

Surveyor HPLC system, as previously described in Mikulic-Petkovsek et al. (2016) study. 

Contents were expressed in mg per g of dry weight.  

 

Determination of individual phenolics  

The extraction of phenolic compounds for 5 different honeysuckle berry products was 

carried out as described by Senica et al. (2016) with some modifications. For control 

honeysuckle berries were homogenized with an Ultra-Turrax T-25 and 5 g of fruit paste was 

extracted in 30 ml-centrifuge tubes with 15 ml methanol containing 3% formic acid. For other 

treatments, one gram of dried honeysuckle berries was extracted with 10 ml of methanol 

containing 3% formic acid. All samples were then placed in a cool ultrasonic bath for 1 hour. 

The mixtures were then centrifuged for 10 min at 12 000 rpm. Each supernatant was filtered 

through a Chromafil AO-20/25 polyamide filter (Macherey-Nagel, Düren, Germany) and 

transferred into vials until HPLC and MS analysis. Separation of phenolic compounds was 

performed on a mass spectrometer (LCQ Deca XP MAX, Thermo Scientific) with electrospray 

ionization (ESI) operated in negative and positive ion modes. The ESI parameters were 

described by Senica et al. (2016). Analyses were carried out using the Accela HPLC system 

(Thermo Scientific, San Jose, CA), equipped with a diode array detector (DAD), controlled by 

CromQuest 4.0 chromatography workstation software, with technical characteristics as 

described by Senica et al. (2016) with the mobile phase gradient according to Wang et al. 

(2002). Individual phenolic compounds were identified by fragmentation with HPLC-MS, 

comparison of retention times with standards and monitoring UV-VIS spectra from 200-550 

nm. Calibration curves were prepared from all standards and the individual compounds were 

identified and quantified by comparison with pure standards. 

 

Chemicals 
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Quinic acid, shikimic acid, 5-caffeoylquinic acid, neochlorogenic acid 3-caffeoylqinic 

acid, cyanidin-3-glucoside, ellagic acid, naringenin and luteolin-3-rutinoside and ascorbic acid 

standards as well as meta-phosphoric acid and methanol were obtained from Sigma Aldrich 

Chemie (Steinheim, Germany). We obtained fructose, glucose, sucrose, citric, malic, fumaric 

and tartatic acid, standards for sugars and organic acids; additionally epicatechin, quercetin-3-

galactoside, quercetin-3-glucoside, quercetin-3-rutinoside, p-coumaric acid, procyanidin B2, 

luteolin-3-glucoside, genistein and kaempferol-3-glucoside for standards of phenolics from 

Fluka Chemie (Buchs, Switzerland). Phenolic standards catechin, p-coumaric acid and caffeic 

acid were obtained from Roth (Karlsruhe, Germany); quercetin-3-xyloside, quercetin-3-

arabinofuranoside from Apin Chemicals (Abingdon, UK) and isorhamnetin-3-rutinoside, 

loganin, petunidin- and peonidin-3-glucoside from Extrasynthese (Genay, Frence). Ultrapure 

water used to prepare all water extractions and the mobile phases was obtained from the Milli-

Q system (Millipore, Bedford, MA, USA). For phenolics where standards were lacking, they 

were tentatively identified based on their fragmentation pattern obtained from MS2/MS3 

analysis and by comparison with data from the literature. Their contents were calculated using 

chemically similar phenolic compounds. Thus quercetin glycosides were quantified in 

equivalents of quercetin-3-galactoside, isorhamnetin glycosides in equivalents of isorhamnetin-

3-rutinoside, luteolin derivatives in equivalents of luteolin-3-glucoside, genistein derivate in 

equivalents of genistein, kaempferol glycosides in equivalents of kaempferol-3-glucoside, 

procyanidins in equivalents of procyanidin B2, pelargonidin- and peonidin derivatives on 

pelargonidin or peonidin-3-glucoside and ellagic acid derivatives in equivalents of ellagic acid. 

 

Statistical analysis 

The results were analyzed statistically using a one way analysis of variance (ANOVA) 

with the statistical program R commander. Duncan’s mean separation tests were done for 

comparisons of the contents of the primary and secondary metabolites studied. Statistically 

significant differences were accepted at P < 0.05. 

 

 

Results 

All compounds were expressed on a dry weight basis to ensure reliable comparison 

among different thermal treatments. At lower temperatures, they needed a longer time to dry 

and for water to be removed from the fruit. The contents of ascorbic and organic acids as well 

as of sugars in dried honeysuckle berries are shown in Tab. 1. In Tab. 2, the identification of 

individual phenolic compounds is given, while their contents are presented in Tab. 3. 

 

Sugars, ascorbic and organic acid levels 

Contents of sugars, glucose, fructose and sucrose in blue honeysuckle berry fruit were 

determined. Fructose content ranged from 51 to 58%, glucose from 41 to 47% and sucrose from 

1-5% of total sugar content (Tab. 1). Determined fructose contents were from 15.5-22.6 g 100 

g-1 DW, glucose 11.5 to 17.7 g 100 g-1 DW and sucrose 0.47 to 1.8 g 100 g-1 DW of honeysuckle 

berries. In general, sugar contents in dried berries dropped one third less than non-treated 

berries. The highest total sugar content was measured in honeysuckle berries dried at 50 °C for 

200 hours and at 65 °C for 30 hours, after which sugar contents were 20% lower than before 

drying (Fig. 1). The lowest total sugar content was measured in honeysuckle berries dried at 75 

°C for 20 hours, with their contents 33% lower than in the control.  

The drying process caused a decrease of ascorbic acid as well. Fresh berries contained 

154.89 g 100 g-1 DW of ascorbic acid. After the heat treatment there was no detected vitamin 

C content in any dried blue honeysuckle berries (Tab. 1). 
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Five organic acids were identified in the blue honeysuckle berries. The most abundant 

was citric acid (36 to 57% of total organic acids), followed by malic and quinic acids (19 to 

28%), tartaric acid (4 to 14%), while fumaric and shikimic acids contributed under 1% of total 

organic acids (Tab. 1). In general, the contents of organic acids significantly varied according 

to the different heat treatments (Fig. 1), but all organic acids slightly increased (Tab. 1) with 

heating above 65 °C (Fig. 2).  

 

Phenolic compounds composition  

Forty different individual phenolics were quantified by HPLC-MS in the honeysuckle 

berries (Tab. 2). We detected and identified some less known phenolics, such as loganin-

pentoside, an iridoid determined according to its molecular ion at m/z 521 [M-H]- and its 

corresponding fragment ions m/z 389, 227. An isoflavone genistein hydroxyhexoside (Tab. 2) 

was confirmed according to the fragmentation pattern; from molecular ion at m/z 449 we got 

fragment ion m/z 269. Ellagic acid hexoside was identified according to its molecular ion at m/z 

463 [M-H]- and its corresponding fragment ions m/z 301, 229 and 257. All phenolic compounds 

were divided into 9 groups (Tab. 2). The groups in our study had different tolerances to 

temperature and time of heating (Fig. 2). 

The group of hydroxycinnamic acids (HCA) represented only 3% of total phenolics in 

fresh blue honeysuckle berries. The main contributors to HCA in fresh berries were 

neochlorogenic (3-caffeoylquinic acid) and dicaffeoylquinic acids, while in dried blue 

honeysuckle berries there were neochlorogenic and p-coumaric acids (Tab. 3). In our study their 

content was higher after the drying than in fresh berries. The highest content of total HCA 

derivatives was measured in honeysuckle berries dried at 65 °C for 30 h (355.94 mg 100 g-1) 

(Fig. 2). 

Flavanols (catechin, epicatechin and procyanidins) contribute approximately 50% of total 

analyzed phenolics in fresh berries. Their contents decreased with heating. The highest level, 

which was still only half that of fresh berries, was determined in berries dried at 60 °C for 66 h 

(374.13 mg 100 g-1). Berries dried at 50 °C for 200 h (190.45 mg 100 g-1 DW) had the lowest 

flavanol content (Tab. 3).  

The group of flavonols (quercetin, kaempferol and isorhamnetin glycosides), with up to 

18% of total analyzed phenolics, did not show a clear trend of increase or decrease with heating. 

At temperatures of 60 °C and 75 °C, the content of flavonols was higher than in the control, 

while their contents in other treatments slightly decreased (Fig. 2). Honeysuckle berries dried 

at 75 °C for 20 h had the highest flavonol content (326.60 mg 100 g-1), while berries dried at 

65 °C for 30 h had the lowest flavonol content (248.61 mg 100 g-1) (Tab. 3).  

Flavanones and flavones contributed less than 1% of total phenolics. Naringenin hexoside 

of the flavanone group showed a decrease in content with longer heating time and an increase 

at higher temperatures. Flavones in our study decreased with all heat treatments, but a higher 

decrease occurred after longer drying than at higher temperature (Tab. 3).  

In our study, anthocyanins comprising 26% of the total phenolics, had the lowest content 

among phenolics in all heat treatments (Fig. 2). The most abundant of total anthocyanins was 

cyanidin-3-glucoside and the least was pelargonidin-dihexoside. Cyanidin-3-glucoside 

represented from 45 to 65% of total anthocyanins in the various drying treatments. Their level 

decreased by 64% with drying at 40 °C for 240 hours, by 80% at 50 °C for 200 hours, by 57% 

at 60 °C for 66 hours, by only 40% with berries dried at 65 °C for 30 hours and by 66% at 75 

°C for 20 hours (Fig. 2).  

 

 

Discussion 
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Oszmiański et al. (2016) reported that honeysuckle berries mainly consist of water and 

soluble solids. Selected bioactive compounds start to alter soon after harvest. Particularly, after 

harvesting, different fruit ingredients are subject to various enzymatic and non-enzymatic 

reactions. Enzymatic reactions involve some enzymes, which react in the presence of individual 

compounds and oxygen, resulting in a change in their contents and composition. Other, non-

enzymatic processes do not require enzymatic catalysis, but they include three main reaction 

pathways: Maillard reaction, caramelization and ascorbic acid oxidation (Sanz et al. 2001). The 

drying process additionally changes the contents of selective primary and secondary 

metabolites. Water solubility and heat sensitivity are the main two factors that alter the content 

of selected compounds in dried fruits (Karaman et al. 2014). Honeysuckle berries have 

extremely firm skins, which impeded water evaporation in our study. We thus needed much 

more time to dry the berries to an acceptable dryness (85%) than is needed for other often-dried 

fruits. FAO (2019) reported the desirable final moisture content in dried fruits to be 15%. In 

general, heat treatment means water conversion into vapor, which passes in a gaseous state 

across a disrupted cell and consequently changes the concentration of solid components and the 

evaporation of some volatile compounds (Karathanos 1999, Yadav and Singh 2014, Karaman 

et al. 2014). At lower temperatures, the transformation process lasts longer than at higher 

temperatures, in which water passes from the fruit faster. Enough moisture (85%) must be 

removed for the product to be considered dried, otherwise mold starts grow on the berries in a 

few days (FAO 2019). Singh et al. (2006) found that a low temperature of drying caused 

minimum damage to dried material, retaining more nutrients in the fruits than other drying 

methods.  

Sugars in blue honeysuckle berries in general decrease with drying. Our sugar contents 

were in accordance with previous published studies (Oszmianski et al. 2016, Auzanneau et al. 

2018). One of the reasons for the decrease in the sugar content was the Maillard reaction. This 

is a complex series of reactions between amines, amino acids and proteins with sugars and it is 

the major cause of fruit browning during heating processes. The result of that reaction is reduced 

sugar content and the formation of brown pigments (Yilmaz and Toledo 2005). The Maillard 

reaction was not the only reason for sugar reduction. Caramelization also occurs, taking place 

above the melting point of sugar, which darkens to a brown color and decreases the sugar 

content (Sanz et al. 2001). Furthermore, heating of the berries caused water evaporation and 

partial decomposition of sugars i.e. transformation to volatiles, such as water vapor and carbon 

dioxide, or other types of carbon-containing volatiles (Karathanos 1999). The other elements 

of sugars were modified into crystallized structures (Senica et al. 2016), which only diffuse 

from the berry with difficulty. All heat treatment caused some extent of water evaporation and 

the formation of soluble sugars, but a longer duration at higher temperatures can destroy sugar 

molecules, which are prone to chemical transformation at elevated temperatures (Karaman et 

al. 2014).  

High ascorbic acid content in fresh blue honeysuckle berries is also found in the study of 

Jurikova et al. (2009). Ascorbic acid content can be affected by many factors like heat intensity, 

drying time, final moisture content and air velocity (Santos and Silva 2008). Ascorbic acid is a 

water-soluble compound (Khattab et al. 2017) and it is lost from the berries with vapor. Khattab 

et al. (2017) reported the reduction of vitamin C by 90% at a temperature of 60 °C following 

24 h drying. Our results are in agreement with Khattab et al. (2017) as ascorbic acid was lost 

from berries after less than 24 hours of drying at 75 °C. Degradation of ascorbic acid in dried 

fruit starts with the first-order reaction, followed by the effect of the reduction of the moisture 

content which, as the process of drying proceeds with the temperature effect, becomes 

predominant (Santos and Silva 2008, Goula and Adamopoulos 2006, Qiu et al. 2018; Di Scala 

and Crapiste 2008). The first reactions may depend on water activity, pH and the presence of 

degraded enzymes. With an increase of the water content, the aqueous phase becomes less 
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viscous, which enhances diffusion in the media. This facilitates the reaction of oxidation and, 

consequently, the degradation of certain compounds (Santos and Silva 2008). The same authors 

also reported that both heat intensity and time of drying have a major effect on ascorbic acid 

degradation. A longer drying time results in a lower retention of ascorbic acid. In addition, 

higher temperatures (> 65 °C) and the consequent increase in relative humidity resulted in a 

lower retention of ascorbic acid. 

During the drying process, moisture and temperature altered with drying time and their 

combination caused degradation, and the formation of organic acids (Qui et al. 2018). Tartaric, 

fumaric and shikimic acids increased with both higher temperature and duration of heating. 

Quinic, citric and malic acids, the most abundant of the organic acids in blue honeysuckle 

berries seem to be sensitive to drying time (more than 30 hours), but their contents increased 

with temperatures above 60 °C. It seems that organic acids tolerate higher temperatures better 

than a long time of heating. Regardless of the temperature, dry matter was similar among 

treatments. Higher temperatures mean faster water transfer from the berries, which is linked to 

a higher loss of low-molecular weight components (Kucner et al. 2014, Zorenc et al. 2017), the 

same as with sugars. On the other hand, organic acid content seems to be more sensitive to a 

long duration of heating. Lower temperatures (40 and 50 °C) imply low porosity of the 

epidermal layer of various berries, which is reflected in slower mass transfer, and the 

destruction of molecules (Kucner et al. 2014). Chen et al. (2012) reported that organic acids, 

including citric acid, degraded via the gamma-aminobutyrate shunt pathway following a longer 

time of heating at lower temperatures. 

Blue honeysuckle berries are rich in phenolic compounds and their presence as 

established here is in accordance with some other studies (Senica et al. 2017, 2018; Oszmiański 

et al. 2018). The last mentioned study put special emphasis on iridoids with high health 

properties. In our study, significant changes occurred in their contents during the thermal 

treatment at different heating times and heat intensities. Total phenolic content has been 

reported to diminish as a result of food processing (Bornšek et al. 2015). The main reason for 

phenolic content decrease is the transfer of phenolics to the hypertonic solution. Heat treatment 

causes cellular disruption and the exposure of phenolics to oxidative and hydrolytic enzymes 

(Wojdyło et al. 2009, Karaman et al. 2014). The most important enzymes are polyphenol 

oxidases (PPO), which catalyze the oxidation of colorless phenolic compounds into o-quinones, 

which are red to brown in color. Heating and poor handling of fruits or vegetables cause greater 

PPO activation and, accordingly, a decrease in the content of some phenolic compounds (Sanz 

et al. 2001, Yilmaz and Toledo 2005). Additionally, with the drying process, a longer time or a 

higher heat intensity increases the presence of PPO (Kucner et al. 2014). Additionally, Wojdyło 

et al. (2009) reported that drying temperatures between 55 and 85 °C reduced the content of 

phenolics. They suggested that an irreversible oxidative process and prolonged exposure to 

thermal degradation may be the cause of altered levels of phenolic compounds.  

Unlike other groups of phenolics, the content of hydroxycinnamic acids (HCA) increased 

with both heating time and temperature. That is in agreement with several reports (Brownmiller 

et al. 2009, Wojdyło et al. 2009, Oszmiański et al. 2016). Zorić et al. (2014) also noted the high 

heat stability of HCA. Kaneko et al. (2016) reported that selected HCA have extremely high 

thermomechanical performance. The thermal degradation temperature for HCA was around 

300 °C (Kaneko et al. 2016), which was four times higher than our highest studied drying 

temperature. 

Flavanols, flavonols, flavanones, flavones and isoflavones made up the group of 

flavonoids. Their heat sensitivity caused by drying depends on the structural stability of the 

selected compound. In particular, compounds with a double bond in the structure need more 

energy in order to be degraded (Chaaban et al. 2017). Wang et al. (2000) reported that 

compounds from the flavanol group, especially epicatechin, are highly sensitive to oxidation 
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processes. In our study, their contents greatly decreased regardless of the temperature and time 

of heating. Flavonols have two more double bonds in their basic molecular structures than the 

previously described flavanols. They are therefore more stable during heat treatment. The 

structure of flavonones resulted in greater stability with respect to the intensity but not with 

respect to the duration of drying. Degradation of these contents occurred, but more slowly than 

with some more thermolabile compounds, such as anthocyanins and flavanols (Zorić et al. 

2014).  

Anthocyanins, with high beneficial properties for human health, are mostly concentrated 

in the skin of the blue honeysuckle berry (Oszmiański et al. 2016). Accordingly they are more 

exposed to degradation, including from heating. Total anthocyanins showed significant 

differences among the various heat treatments (Figure 2). Berries dried at 65 °C for 30 h (241.72 

mg 100 g-1) had the highest anthocyanin content, but still only approximately half that of fresh 

berries (413.15 mg 100 g-1). Berries dried at 50 °C for 200 h had the lowest anthocyanin content. 

Khattab et al. (2016) also found a positive correlation between drying temperature and 

anthocyanin degradation. Those results are also in accordance with Zorić et al. (2014) and 

Zorenc et al. (2017), who reported that degradation of anthocyanins is significantly greater at 

higher temperatures. A higher stability of anthocyanins during heating was achieved by using 

a lower temperature and shorter duration of heating during processing (Wang and Xu 2007, 

Zorić et al. 2014). Our study showed that dried berries had the same losses at 40 °C as at 75 °C, 

which confirms that heat treatment in itself negatively affects the cyanidin content. 

Additionally, loss of anthocyanins can be attributed to various factors, such as residual enzyme 

activity or condensation reactions with other phenolics (Brownmiller et al. 2009). Some 

anthocyanins are more vulnerable than other phenols from that group, because of their different 

chemical structure (Srivastava et al. 2007), mainly due to different sugar and hydroxyl moieties. 

Cyanidin glycosides are considered to be less stable in relation to heating, which is in 

accordance with our study, in which cyanidin-3-glucoside and cyanidin 3.5-diglucoside was 70 

to 98% lower than in fresh berries. The results showed that peonidin and pelargonidin are more 

stable in relation to heat, which is in agreement with previous studies (Srivastava et al. 2007, 

Khattab et al. 2016). 

Dried blue honeysuckle berries are a durable and convenient product available throughout 

the year. It is important to recognize that drying has many advantages; apart from cost reduction, 

it also accelerates water loss and consequently prevents the growth of bacteria, fungi, and other 

microorganisms. The chief disadvantage is the loss of some important nutritional compounds. 

Sagar and Kumar (2010) reported that an optimal drying system for the preservation of fruits 

should be cost effective, with a short drying time and minimum damage to the food product. 

The studied contents of some primary and secondary metabolites in our study responded 

differently to drying conditions. Sugars, flavonols and HCA appeared to be more thermostable 

substances, especially HCA, which increased by more than 75% with drying, regardless of the 

drying time and temperature. On the other hand, anthocyanins and flavanols were highly 

thermolabile substances, their contents decreasing with an increase of  both drying time and 

temperature. Additionally, ascorbic acid totally degraded with heat treatment. What is more, 

organic acids seem to be more sensitive to long exposure to drying, than to higher temperature 

of heating, while iridoids are more sensitive to higher heating temperatures.  

In conclusion, we found that the optimal treatment was drying at 60 °C for 33 h, which is 

in agreement with Garba and Kaur (2014). Understanding the structural stability of selected 

active compounds in blue honeysuckle berries will help their processors to provide high quality 

dried berry products with rich nutritional properties. 
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Table and figure captions: 

 

Tab. 1. The content of sugars, organic acids (g 100 g-1 DW) and ascorbic acid (mg 100 g-1 DW) 

in fresh (control) and blue honeysuckle berries dried at different temperatures and times. Means 

± standard deviation are presented. Different letters (a-d) in rows denote statistically significant 

differences in some primary metabolites among fresh and dried blue honeysuckle berries by 

Duncan multiple range test (P < 0.05); n = 10. 

 

Parameters    Control 
40 °C  

(240 h) 
50 °C 

(200 h) 
60 °C 
(66 h) 

65 °C 
(30 h) 

75 °C 
(20 h) 

Fructose 22.57±0.51a 15.58±1.37c  17.5±0.87b  17.21±1.13b  17.83±0.41b 15.96±0.63c 

Glucose 17.75±0.28a 14.23±0.98c  15.29±0.72b  12.82±0.99d  13.24± 0.45d 11.50±0.54e 

Sucrose   0.86±0.21c   0.65±0.22c    0.47±0.31cd   1.40 ±0.52b   1.78±0.22a   0.18±0.04d 

Citric acid 18.10±1.30a   6.28±0.54f    9.74±1.16d   8.44±1.07e 15.14±0.50b 11.67±0.30c 

Fumaric acid 0.002±0.00d 0.009±0.002c 0.010±0.001bc 0.003±0.001d 0.013±0.001a 0.012±0.001b 

Malic acid  5.91±0.28b   3.71±0.40c   5.37±0.66b   2.63±0.46d   7.79±0.53a   7.82±0.28a 

Shikimic acid 0.002±0.001c 0.022±0.007b 0.038±0.008a 0.004±0.001c 0.019±0.002b 0.023±0.001b 

Tartaric acid  1.23±0.12d   2.49±0.52c   3.54±0.61b   1.38±0.05d   4.61±0.38a   4.37±0.10a 

Quinic acid  6.62±0.26a   4.76±0.42b   6.10±0.78ab   3.16±0.33c   6.56±0.46a   7.44±0.92a 
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Tab. 2. Identification of phenolic compounds in blue honeysuckle fruits in positive and 

negative ions with HPLC-MS, MS2 and MS3. 

Phenolic group 
[M]+ or [M-H]-

(m/z) 
MS2 
(m/z) 

MS3 
(m/z) 

Phenolic compound 

Hydroxycinnamic acid  353 191, 179, 135 
 Neochlorogenic acid  

(3-caffeoylquinic acid) 
 

353 173, 179, 191 
 Cryptochlorogenic acid  

(4-caffeoylquinic acid) 
 

353 191, 179, 173, 135 
 Chlorogenic acid  

(5-caffeoylquinic acid) 
 337 191, 173, 163  5-Coumaroylquinic acid 
 325 163, 119  p-coumaric acid hexoside 
 515 353 191, 179, 173 Dicaffeoylquinic acid 

Hydroxybenzoic acids  463 301 257, 229 Ellagic acid hexoside 

Flavanols 289 245  Catechin 
 289 245  Epicatechin 
 577 425, 407, 289  Procyanidin dimer 
 865 577, 451, 425, 407, 289  Procyanidin trimer 

Flavones 447 285  Luteolin hexoside 
 593 447 285 Luteolin-3-rutinoside 

Isoflavones 449 269 
 

Genistein hydroxyhexoside 

Flavonols 519 315  Isorhamnetin acetyhexoside 
 665 315  Isorhamnetin acetyl rhamnosylhexoside 
 609 315  Isorhamnetin hexosylpentoside 
 623 315  Isorhamnetin-3-rutinoside 
 489 285  Kaempferol acetylhexoside 
 579 285  Kaempferol hexosylpentoside 
 593 285  Kaempferol-3-rutinoside 
 447 285  Kaempferol-3-glucoside 
 505 301  Quercetin-3-acetylhexoside 
 433 301  Quercetin-3-arabinofuranoside 
 463 301  Quercetin-3-galactoside 
 463 301  Quercetin-3-glucoside 
 463 301  Quercetin hexoside 
 595 301  Quercetin hexoside pentoside 
 609 301  Quercetin-3-rutinoside 
 595 301  Quercetin-3-vicianoside 
 433 301  Quercetin-3-xyloside 

Flavanones 433 271  Naringenin hexoside 

Iridoid 521 389, 227  Loganin-7-pentoside 

Anthocyanins 611 449/287  Cyanidin-3,5-diglucoside 
 449 287  Cyanidin-3-glucoside 
 595 449/287  Cyanidin-3-rutinoside 
 595 433/271  Pelargonidin dihexoside 
 433 271  Pelargonidin-3-glucoside 
 625 463/301  Peonidin dihexoside 
 463 301  Peonidin-3-glucoside 
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Tab. 3. Individual phenolics content (mg 100 g-1 DW) in six different blue honeysuckle berry 

products. Means ± standard deviation are presented. Different letters (a-f) in rows denote 

statistically significant differences in individual phenolic levels among blue honeysuckle berry 

products by Duncan’s multiple range test (P < 0.05); n = 10.  

 
Control 

40 °C 
(240 h) 

50 °C 
(200 h) 

60 °C 
(66 h) 

65 °C 
(30 h) 

75 °C 
(20 h) 

Hydroxycinamic acids       

Neochlorogenic acid 
(3-CQA) 

 
19.69±0.34e 

 
154.56±8.97b 

 
86.70±3.56d 

 
161.58±20.94b 

 
198.99±15.14a 

 
119.10±23.42c 

Cryptochlorogenic acid 
(4-CQA) 

 
0.57±0.01c 

 
56.22±5.72a 

 
32.78±3.54b 

 
57.30±8.80a 

 
54.35±3.61a 

 
40.34±8.92b 

Chlorogenic acid (5-CQA) 0.26± .01a 0.04±0.00d 0.02±0.00e 0.05±0.00c 0.07±0.00b 0.01±0.00f 

Coumaroylquinic acid 1.84±0.01e 5.87±0.55d 9.21±0.46c 34.56±0.70a 19.75±1.10b 6.72±0.75d 
p-Coumaric acid hexoside 2.99±0.27d 68.05±5.65a 30.26±3.78bc 48.90±4.65ab 69.99±2.81a 14.96±1.84cd 

Dicaffeoylquinic acid 14.13±0.39a 10.51±0.73c 7.48±0.40d 14.38±0.56a 12.79±1.34b 11.77±1.71bc 

Hhydroxybenzoic acids 
      

Ellagic acid hexoside 16.09±1.75b 1.6±0.27e 7.12±0.41d 9.40±1.03c 10.73±0.72c 23.44±1.28a 

Flavanols 
      

(+)catechin 20.04±2.76a 16.03±1.31bc 7.93±0.63e 17.21±1.36b 14.59±1.11c 10.05±0.79d 

(-)epicatechin 232.83±23.50a 89.40±8.11c 81.62±14.64c 142.13±18.31b 91.77±6.70c 75.25±2.55c 

Procyanidin dimer 539.20±40.48 a 184.93±18.17c 100.73±14.99d 214.37±11.93b 169.72±6.68c 122.70±10.15d 

Procyanidin trimer 0.55±0.05b 0.49±0.03bc 0.16±0.02d 0.42±0.03c 0.21±0.03d 1.13±0.15a 

Flavones 
      

Luteolin hexoside 3.01±0.15a 1.55±0.81cd 1.13±0.09d 1.83±0.11bc 1.49±0.12cd 2.09±0.31b 

Luteolin-3-rutinoside 4.85±0.21a 3.84±0.65b 4.56±0.47a 4.81±0.48a 2.05±0.15c 4.56±0.51a 

Isoflavone 
      

Genistein hydroxyhexoside 1.91±0.07a 1.05±0.01d 1.05±0.01d 1.30±0.10c 2.07±0.19a 1.53±0.07b 

Flavonols 
      

Isorhamnetin 
acetylhexoside 

1.47±0.16a 0.03±0.00b 0.01±0.00b 0.02±0.00b 0.01±0.00b 0.02±0.00b 

Isorhamnetin acetyl 
rhamnosyl hexoside 

10.91±0.61ab 10.47±1.31ab 6.31±0.38c 11.78±0.56a 10.26±1.06b 9.69±1.40b 

Isorhamnetin 
hexosylpentoside 

1.95±0.11d 4.49±0.86c 5.55±0.53b 6.20±0.29a 5.28±0.44b 6.35±0.10a 

Isorhamnetin-3-
rutinoside 

14.08±0.92a 9.21±0.97c 9.90±1.64c 12.99±0.44ab 9.32±1.17c 11.98±1.27b 

Kaempferol acetylhexoside 0.51±0.00d 1.30±0.16a 0.47±0.03d 0.97±0.03b 0.74±0.05c 0.89±0.09b 

Kaempferol 
hexosylpentoside 3.55±0.08a 1.23±1.72b 0.58±0.05b 0.70±0.03b 0.75±0.05b 1.01±0.16b 

Kaempferol-3-rutinoside 2.20±0.25e 2.53±0.29de 3.03±0.37cd 3.56±0.34bc 3.88±0.58b 5.47±0.86a 

Kaempferol-3-glucoside 0.06±0.00a 0.10±0.01a 0.15±0.02a 0.12±0.01a 0.09±0.01a 0.09±0.01a 

Quercetin-3-
acetylhexoside 1.95±0.12e 3.09±0.06b 2.54±0.51d 3.53±0.22a 3.04±0.28bc 2.64±0.44cd 

Quercetin-3-
arabinofuranoside 18.90±0.96a 7.68±0.99c 4.88±0.28d 9.46±0.38b 7.82±0.63c 7.15±0.70c 

Quercetin-3-galactoside 30.73±1.90 d 30.43±2.66d 23.90±3.05e 43.93±2.68b 35.98±2.97c 54.52±2.97a 

Quercetin-3-glucoside 4.29±0.12d 37.74±8.85a 30.38±4.40bc 34.06±3.37ab 24.20±1.92c 37.95±4.90a 

Quercetin-hexoside 2.33±0.19a 0.57±0.08d 0.15±0.03e 0.76±0.09c 2.37±0.14a 1.92±0.24b 

Q hexoside-pentoside 6.60±0.05a 3.11±0.82d 3.89±0.65c 3.88±0.31c 3.49±0.32cd 4.85±0.18b 

Quercetin-3-rutinoside 173.44±15.19a 163.47±16.10a 157.39±17.29a 165.13±11.90a 131.02±12.15b 167.08±14.52a 

Quercetin-3-vicianoside 16.24±0.55a 11.89±0.81cd 12.45±2.42bc 14.11±1.72ab 10.02±0.91d 14.56±2.09ab 

Quercetin-3-xyloside 0.40±0.03ab 0.32±0.03c 0.36±0.06bc 0.45±0.05a 0.34±0.04c 0.44±0.05a 

Flavanones 
      

Naringenin hexoside 1.36±0.04c 0.76±0.13e 0.98±0.09de 1.72±0.11b 1.19±0.14cd 2.27±0.37a 

Iridoid 
      

Loganin-7-pentoside 3.28±0.38b 4.23±0.75a 1.81±0.16c 2.06±0.10c 1.80±0.31c 0.99±0.03d 

Anthocyanins 
      

Cyanidin-3,5-diglucoside 29.53±0.36a 0.51±0.09d 0.16±0.01e 2.82±0.17b 2.11±0.10c 0.44±0.08d 

Cyanidin-3-glucoside 268.46±17.30a 83.41±8.49c 42.90±9.15e 105.21±5.19b 107.60±11.54b 67.53±1.81d 

Cyanidin-3-rutinoside 44.19±2.52b 30.61±2.49d 18.61±4.91e 30.27±1.28d 93.03±3.20a 37.31±5.17c 

Pelargonidin dihexoside 7.21±0.45a 2.89±0.33d 1.46±0.11e 5.74±0.52b 3.85±0.21c 2.87±0.22d 

Pelargonidin-3-glucoside 10.76±0.43a 3.50±0.16e 3.94±0.15d 3.63±0.46de 6.03±0.21c 6.42±0.11b 

Peonidin dihexoside 12.39±0.90bc 14.75±0.81a 6.79±0.60d 11.46±1.14c 13.38±0.38b 11.79±0.55c 

Peonidin-3-glucoside 40.61±1.52a 13.07±0.74c 6.58±0.59d 16.70±1.79b 15.72±0.35b 12.17±0.21c 

Total 1565.37±42.52a 1035.56±61.54c 715.94±57.15e 1199.52±74.99b 1141.90±59.62b 902.06±49.25d 
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Fig. 1. The content of total sugars and organic acids during the different heating treatments 

expressed per 100 g DW. Different letters (a-d) mean significant differences among different 

heat treatments (P < 0.05) by Duncan’s multiple range test. 
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Fig. 2. The content of different phenolic groups during the different heating treatments 

expressed per 100 g DW. Different letters (a-d) mean significant differences among different 

heat treatments (P < 0.05) by Duncan’s multiple range test. 

 

 

 


