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SUMMARY

Cloud storage provides external data storage services by combining and coordinating different
types of devices in a network to work collectively. However, there is always a trust relationship
between users and service providers, therefore, an effective security auditing of cloud data and
operational processes is necessary. We propose a trusted cloud framework based on a Cloud
Accountability Life Cycle (CALC). We suggest that auditing provenance data in cloud servers is a
practical and efficient method to log data, being relatively stable and easy to collect type of
provenance data. Furthermore, we suggest a scheme based on user behaviour (UB) by analysing
the log data from cloud servers. We present a description of rules for a UB operating system log,
and put forward an association rule mining algorithm based on the Long Sequence Frequent
Pattern (LSFP) to extract the UB. Finally, the results of our experiment prove that our solution
can be implemented to track and forensically inspect the data leakage in an efficient manner for
cloud security auditing.

KEY WORDS: cloud security auditing; provenance data; log analysis; user behaviour;
association rule mining algorithm.

1. INTRODUCTION

Lately, cloud computing has become an active research area. Since cloud computing requires of
its users to share data and resources with service providers, it brings several security
problems, which could potentially limit the development of cloud computing [1-3]. The
Hewlett Packard security research centre proposed the “Trusted Cloud” concept and model of
cloud security - the Cloud Accountability Life Cycle (CALC) [4]. In this model, the general
solution to cloud data security is described as a correlate cycle structure. It divides the security
process into seven stages: Policy, Trace, Logging, Store, Reporting, Auditing and Optimizing,
and the whole security process is progressive [5]. On this basis, Ryan et al. proposed Flogger
[6], S2Logger [7] and other schemes for collecting log data. The basic idea is to collect
operating system log data in a whole-cloud data environment. These schemes are different
from previous ones, which detected input and output data [8-9], in such a way that they are
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able to ascertain the state of the data, and can solve the problems of credibility and security in
the cloud environment [10-11]. Thus, it is improving the feasibility of the trusted cloud.
However, with the huge increases in data traffic, limiting log analysis to the Logging stage
alone, cannot satisfy the basic requirements for the trusted cloud. Therefore, an inductive
method is needed which can analyse log data. Alternatively, more log data analysis in the CALC
process are needed. To solve the above-mentioned problem, we compared the different cloud
security controlling methods and proposed our own trusted cloud framework based on Cloud
Accountability Life Cycle [12]. In this paper, we analyse the log data in this cloud framework
and propose a new algorithm based on our previous research.

Comparativly, this paper introduces a trusted cloud framework and an association rule mining
algorithm already used in Knowledge Discovery in Database (KDD) [13], in Data Mining as well
as in Data Analyse. The original algorithm was used to solve the classic “Basket” issue by
analysing the product bought by customers, and determining the relationship between
different products (based on a statistical, not logical relationship). This paper focuses on the
Frequency Pattern growth (FP-growth) algorithm, and proposes a practical, improved
algorithm based on the real need for log analysis in cloud security auditing. The contribution of
our work is presented as follows:

1. In the Store stage, having the introduction of log analysis, the original operating system log
should be converted into data that can describe user behaviour (UB).

2. In the Reporting and Auditing stages, our solution provides a more readable and practical
description, generating data the users are more familiar with, offering “Cloud Credibility”
with more direct support and proof.

3. In the Optimizing and Policy stages, our process improves the Optimizing stage from the
level of technology to the constraint of actual behaviours, and also guarantees simpler and
more accurate accountability.

The rest of the paper is organized as follows. In Section 2, related work is discussed, and the
provenance of the cloud security auditing system framework is demonstrated. In Section 3, our
proposed approach is described. The experimental procedure, results and dataset explanation
are given in Section 5, followed by the conclusion and suggestions for the future work in
Section 6.

2. RELATED WORK

2.1 CALC MODEL

The development of the cloud environment has led to the complexity of auditing, including the
need to perserve data, and of determining any redundant information. Therefore, a security
model that includes all key steps becomes especially important, for it can simplify many
complex problems and make them clearer for data security auditors. It can also help auditors
to focus on a particular step to carry out more research. Therefore, the CALC is designed for
this purpose as illustrated in Figure 1.
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Fig. 1 CALC Model

Policy Planning

Cloud service suppliers must decide which data items need to be collected and which
events should be recorded in logs. There are four important points to consider:

a) Event Data: a series of actions and related information;

b) Action Data: the operator who deals with events (such as a human or an internet
crawler);

c) Timestamp Data: times and dates of events;
d) Location Data: physical and virtual addresses of events.
Sense and Trace

At this stage, the purpose is to recognize all operations in the cloud. Auditing schemes need
to be able to track the data. The tracking is from the lowest-level system read/write calls,
all the way up to irregularities in high-level workflows hosted in virtual machines in
disparate physical servers and locations. It is also necessery to trace data packets
transformed among network routes within the cloud [14].

Logging
Log records should work in both virtual and physical layers in the cloud if documents are

considered the centre. In addition, a log's active time, conservation place in the cloud, and
other related factors should be taken into consideration.

Safe-keeping of Logs

After log collection, the integrity of the log should be protected by preventing unauthorized
users to illegally obtain or revise log data, while data encryption as well as some reasonable
backup mechanism should be introduced.

Reporting and Replaying

Reporting tools consist of a log summary that considers the documents as the centre,
reports auditing clues, documents records obtained with operational cycle time in the
cloud. Therefore, the report may include many factors, such as historical records of virtual
machine, physical services and 0S-level read/write files.
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6) Auditing

Auditors or stakeholders audit logs and reports, and imply possible illegal actions. The
auditing products can be assigned if automation is possible. Automatic and mandatory
auditing is very practical for a cloud environment since it has a large data storage
capability. It can also be very effective for identifying any illegal action.

7) Optimizing and Rectifying

In this part of the process, any problem areas in the cloud, and any security gaps, can be
removed or revised; regarding the controls and supervision that need to be further
improved.

2.2 ASSOCIATION RULES ALGORITHMS

In 1993, Agrawal [15] first proposed an association rule mining algorithm for the purpose of
finding associations between a product and a customer transaction. The basic idea was to find
the datasets that satisfied the requirements of frequency and analysed any hidden associations
between them. Since then, another research has been carried out that led to the improvements
and extensions in the performance of this algorithm.

Two particular algorithms, Apriori and Frequent Pattern (FP)-growth [16], have been
proposed. The Apriori algorithm gradually produces multiple sets of association analysis based
on iterative thought in order to obtain sets with more items, all leading to a better analysis
result. In 2000, Jiawei Han proposed the FP-growth algorithm. To overcome the problems of
time and space complexity caused by iterations in Apriori, FP-growth had a “tree” concept
introduced into algorithm. Consequently, it changed the iteration process to one that scans a
dataset only once to produce an FP-tree. The structure of the tree is able to describe the
frequency of the dataset and to gain the frequent multiple dataset, using the tree’s growth
algorithm. As a result of its good performance, FP-growth entered the mainstream of
association rule mining algorithms.

As for the objective aspect, the AprioriAll algorithm [17] adds a time constraint to item sets
based on the Apriori algorithm in order to analyse any associations between short sequences.
AprioriAll produces candidate sequences based on the last scanned database, while at the
same time it can calculate the minimum support degree needed and select suitable sequences
for next scanning.

The Generalized Sequential Pattern (GSP) algorithm [18] is an extension of the AprioriAll
algorithm. The GSP algorithm introduces time constraint, sliding window, and classified level
technology, and also adds the constraint of a scan. It decreases the number of candidate
sequences efficiently and overcomes the limitations of the basic sequence model. It also
decreases the production of excessive useless sequences. Furthermore, GSP uses a hash tree to
store candidate sequences and decreases the amount of sequences to be scanned. In addition,
the GSP algorithm converts the representations of data sequences, so that it is easier to detect
whether a candidate is the consequence of the data sequence. Nevertheless, Apriori and its
improved algorithms must still produce a large number of intermediate sets (candidate sets) in
the cloud environment. However, it causes the complexity of time and space to become larger,
and thus the efficiency of these algorithms is suboptimal for dealing with big data.

FP-growth introduces a graphic structure to process the innovative algorithm, calculative
framework and database structure. Improved algorithms based on FP-growth focus on active
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areas such as the distributed system [19] and the project database [20]. However, these
algorithms rely too heavily on a “tree data structure”.

2.3 CONSTRAINT PATTERNS

In order to improve the association rule of the algorithms, it is necessary to introduce one
constraint condition [21]. The Apriori algorithm is based on a simple logical constraint. This
means that any subset of a frequent set must also be recurrent. The AprioriAll and GSP
algorithms filter useless multiple sets introducing a time constraint to the dataset. Moreover,
the FP-growth algorithm introduces a “tree” to more obvious claim constraints. Hence, this
kind of algorithm can improve the efficiency of mining technique.

Based on the types of constraints in mining, association rule mining can be divided into the
following:

1) Monotone Constraint: The constraint Cy, is called a monotone constraint, because set S can
satisfy Cp, and any superset of S can also satisfy Cp.

2) Anti-monotone Constraint: The constraint Cy is called “anti-monotone”, because if there is
any item of set S which does not satisfy Cq, there are no supersets of S that can satisfy Ci.

3) Convertible Constraint: A convertible Constraint is that one where the constraints can be
transferred between the item set and its subset. What makes it difficult to use is if one
constraint cannot be given in the form of monotone or anti monotone. Thence, in order to
solve it, the problem can be converted by the special organization of data.

4) Succinct Constraint: The succinct constraint is that a subset of item I; can be represented as
a selection operation J,(I) by using a selective predicate p. Obviously, if a constraint is
succinct, then it can directly use an SQL query to achieve this set so as to meet the
conditions. In the different stages of data mining, it can be used to assess succinct
constraints to avoid unnecessary testing. Depending on the source of constraint conditions,
the constraints can be classified as follows:

1) Knowledge type constraint: Background knowledge can be used to filter irrelevant
information.

2) Data constraint: Using some properties of the data, this type of constraint can isolate
unrelated information from the current problem.

3) Dimension, layer, degree constraint: Using the structure and the scale of data or a
database, data mining can be limited to a certain range to filter out any additional
information.

3. PROVENANCE CLOUD SECURITY AUDITING SYSTEM

Aiming at one or more steps in the whole cloud auditing framework, this paper outlines a
“provenance” cloud security auditing approach. It records the actions in the system (including
documents, the internet, and programs) to describe clearly the status of data in a cloud
environment. In different cloud environments, a provenance system can decide on the data
content of security auditing. This means that it can obtain information about users’ data,
actions, etc.,, over a certain period of time, and place this information as a data source for a
cloud security auditing system. In this paper, the provenance data refers to information that
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can describe the operational status and the source of any data across all sequences of an
operation.

3.1 TRUSTED CLOUD FRAMEWORK

CALC describes a whole process of log auditing at every step, but it focuses more on the
theoretical integrity of the model. It is possible to set up a cloud data security system with
specific CALC, making it more operationally useful. Therefore, a plan is proposed that is based
on the trusted cloud framework proposed by Ko and colleagues [22], with an auditing
framework based on provenance cloud data as shown in Figure 2.
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Fig. 2 Provenance cloud security auditing system framework

3.2 FRAMEWORK INTRODUCTION

This framework has two external and three internal parts. The external part consists of legal
provision and strategy, and the internal part contains data mining layer, data storage and
protection layer, and an application analysis layer. Each of these five parts will be discussed as
follows.

1) Legal Provision

With the development of e-commerce and cloud computing, people started paying more
attention to the protection of private data. Relevant organizations in all countries have realized
the necessity to improve relevant laws and regulations. These laws relate to the collection,
management, storage, and transformation of data and are also, undoubtedly, suitable for log
data which should be protected as well.

Relevant laws stipulate some important issues related to data security, such as the content,
purpose, time, methods, authorization, and surface of data collection. All organizations and
individuals must develop strategies for data collection and analysis that are subjected to these laws.

2) Policy

A complete implementation strategy is necessary in order to achieve cloud security auditing
based on the log collection. In the first part of the framework, laws and regulations limit the
approach to data collection and analysis. Any organization or individual involved in the
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formulation of strategies should fully consider the constraints of these laws. These constraints
penetrate all three levels of the log audit system. Each organization and individual can choose
their own strategies under the constraints of such a law for the data to be collected, as well as
the technique of storing the data.

3) System Data Mining Layer

The lowest abstract layer of the provenance system is the data mining layer. In this layer, one
needs to know where to get useful system data for analysis and auditing in the next step. Data
collection centred on files mainly occurs in the system and internal network.

a) File System

Cloud computing technology makes people no longer focus only on a physical server within
a company, but it draws their attention more to a file-centred system. Log data collection
mainly happens in this location, and it will record any sensitive behaviour related to the
files such as opening, modifying, and closing them. At the same time, core data from such
system information, like the virtual and physical storage addresses, operators, and times,
can be obtained.

b) Cloud Network

Due to the characteristics of a cloud data storage system, a large amount of network data
communications between the hosts is produced across the whole system. This kind of
network information contains such items as the storage address of data, file details, and
system call information. Therefore, the secure collection and management of network
information within the cloud is also necessary.

4) Data Storage and Protection Layer

This layer gathers basic data obtained via a log collector such as the data from a file system and
the cloud network. It also guarantees the security of the stored data and ensures back up. This
paper focuses on two important properties of the log collector i.e., the provenance and
consistency.

a) Provenance

History tracking allows users to control the real operating conditions of their own data.
Provenance data is considered to be the basis for privacy and trust models. It improves the
reliability of cloud computing relying on the provenance of data. It can help people
distinguish between legal and illegal operations. The features of the Provenance data are
discussed in the next section.

b) Consistency

[t is almost impossible to guarantee data consistency for cloud service providers. However,
it is very important for cloud computing services to respond quickly, restore data to their
original state, recover data, and perform valid backup procedures. Cloud service providers
should implement these features for data consistency.

5) Application Layer

After collecting and storing data, the application layer needs to be analysed in order to obtain
valid data. There are three points to focus on in the application layer i.e., auto-audit, cloud
fragments audit, and service audit.
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a) Auto-audit

There are many possibilities for implementing auto-audits based on the excellent
computing power of cloud computing and the reliability of data provided by a trusted cloud
framework. This is a prerequisite for the application in financial and commercial areas of
cloud computing. However, the virtualized environments continuous auditing is a very
complex process, and requires both business logic and financial auditing software.

b) Cloud Fragments Audit

There are many file fragments within the cloud and their fixing and updating also needs to
be audited. Especially, the interrelated documents need to be audited more strictly to
ensure the data validity.

c) Service Audit

Cloud computing is a service-oriented hierarchy, each of which is easy to copy. Therefore, a
combination of services is highly feasible. Once services are integrated among different
levels, credibility will be tested, and service integration audited.

4. LONG SEQUENCE FREQUENT PATTERN ALGORITHM

With the development of network technology, association rules about streaming data, a
dataset with time constraints, draw more attention. Based on the analyses of our previous
research, we realized that the object of association rule mining is still used for discrete data.
Even though the GSP algorithm introduces time constraints into transactions, its oriented
dataset still remains discrete. Hence, aiming at a dataset of long sequence structure it cannot
meet the necessary functional requirements. Our scheme is based on the FP-growth algorithm,
introducing reasonable constraint conditions. These include a strong time constraint, as well
as the comparable “Directed Graph” structure, to express the constraint conditions directly.
Through the transformation of the algorithm structure and the introduction of a new model,
we designed an association rule mining algorithm based on a Long Sequence Frequent Pattern
(LSFP), adapted for a cloud security auditing system.

4.1 LSFP ALGORITHM

The frequent pattern tree structure of the FP-growth algorithm is not effective when
describing the ordering of a dataset that aim at the characteristic of strong time constraints of
a dataset. For sequence-type datasets, the nature of the data itself may make the frequent
pattern tree size too large to be applied. The main reason for this is that the tree structure can
more easily express the relationship between nodes, but the order of the data makes the
“edges” between the nodes more meaningful when describing the data. A kind of graph
structure that can directly express the relationship among the “edges” is needed for ordered
data. Therefore, our scheme introduced a new graphical structure called “directed graph”. This
structure has two main advantages. First, a directed graph is not the same as the tree structure.
The “edge” of a directed graph can describe the transfer relationship from node-to-node, which
could effectively describe the “order information” of strong time constraints in the data.
Second, in comparison with the tree structure, a directed graph structure can guarantee no
redundancy node in the graph providing the improvements in space complexity. Based on this
theory, the algorithm structure and process design are outlined below.
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The algorithm is divided into two steps. The first step is the algorithm training phase which
uses the training set to get the frequency of the entire dataset. The second step is the analysis
of the data mining stage performed through the obtained data frequency to acquire UB which
meets the frequency in the dataset. Related parameter definitions are given in Table 1.

Table 1 Parameter definition

Parameter Designation | Interpretation
TS ={iyiy i } Training i is known as the item, in the actual data, represents a process level of
1r520mn sequence system operation.
L, | is a proper subset of the training set, including all items in TS . Each of
I1={i},iy,..i,} | Itemset ) :
them has properties: begin , end .
It is an mxm matrix, the item (i, j) in a matrix represents the number of
D Incid?nce times directed edge appears from node i; to node i,. That is, the number
matrix
of times node i, appears after the node i; in TS .
B Ilire'ccziuency D is correlation matrix after optimizing (pruning) D. When D(, j)<s (
D incidence , - . e .
matrix s is threshold), D(i, j)=0; when D(i, j)>s, D(i, j)=D(, j) .
- . Operation .
S={ii,,..,Ii .
{i1,ip,0iy} sequence Pending set formed by process level log
User
B={b;,b,,...b,} | behaviour Result set obtained by algorithm process.
set
b={i i . User Formed by ordered items, representing an approved system operation
={iy,iz,..0n } . o
behaviour combination.
min_sup Minimum The threshold of frequency, i smaller than minimum support degree is
B support not frequent.

In the item set, the node contains attributes in.begin and im.end, utilized to describe whether
the node can be used as a starting node and terminating node for UB.

4.2 ALGORITHM STEPS

1) Algorithm first stage:
Step 1: Scan training set, generate set [
Step 2: Generate the directed graph and describe D
Step 3: Select the appropriate threshold min_sup to prune the directed graph
Step 4: Introduce priority rules to optimize D, and obtain the complete D

Step 5: Obtain the possible b of the short sequence format, through the directed graph
search

2) Algorithm second stage:

Step.1: According to D, divide the long sequence S into several short sequences, and
produce the sequence set to be extracted;

Step.2: Extract b from this kind of sequence set, and generate B.
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5. ALGORITHM IMPLEMENTATION AND PERFORMANCE ANALYSIS

5.1 EXPERIMENTAL ENVIRONMENT

1) Algorithm environment

For algorithm design reasons and practical issues, we selected a Linux operating system log as
a dataset, because it possesses good time properties and suitable representative. Then the
appropriate hardware and software environments based on the complexity of the algorithm
were selected.

Virtual machine VMware WorkStation
CPU Intel i7 2.4GHz

RAM 4G

Operation system Cent0S 6.4, 64bit
Programming language | Clanguage

2) Algorithm parameters

The impact of key parameters on the performance of the algorithm mainly includes two
aspects, i.e., the training set size and minimum support (min_sup).

The size of the training set: The proposed algorithm selects part of the dataset as a training set
to obtain frequency, mainly because the dataset and the training set have same source. Since
they have similar characteristics, the frequency obtained from analysing the training set is also
suitable for the dataset.

When using the entire dataset as a training set, both sets must have the same frequency.
However, an oversize training set reduces the overall efficiency of the algorithm. Thus,
selecting an appropriately sized training set can have a great impact on the performance of the
algorithm.

Minimum support: Minimum support determines the operation combinations “b” can consider.
It will inevitably obtain more operation combinations by picking a smaller support. However,
whether these combinations occur frequently enough to be treated as b, this cannot be
guaranteed. However, the accuracy of gaining b can be guaranteed if a larger support is picked.
Contrariwise, it will also mean that the algorithm will get less operation combinations.

5.2 ALGORITHM ANALYSIS

Before analysing the algorithm’s performance, we need an intuitive perception of the results of
the algorithm. Here, several common user behaviours corresponding to log sequences (rules)
from an operating system are shown:

File Creation

Create,wzq,3103,2406,2406,2387,nautilus,/home/wzq/Deskto
p/test/new file,/home/wzq/,193,438,30

Close,wzq,3103,2406,2406,2387,30
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File Copy

Open,wzq,3354,3054,3054,2752, test,log,/home/wzq/Desktop/
test/,577,438,4

Close,wzq,3355,3354,3054,2752,3
Duplicate2,wzq,3355,3354,3054,2752,4,1
Close,wzq,3355,3354,3054,2752,4

File Edit

Move,wzq,2956,2928,2928,2856,vim,aaa.txt,aaa.txt~,/home/wz
q/Desktop/test/
Create,wzq,2956,2928,2928,2856,vim,aaa.txt,/home/wzq/Desk
top/test/,577,436,3

Write,wzq,2956,2928,2928,2856,3,0,6 F6E650A0A

Read,wzq,2856,1,2424,2405,21,0,0D1B5B3F32356(226161612
E747B7422

Close,wzq,2956,2928,2928,2856,3
Chmod,wzq,2956,2928,vim,aaa.txt,33204

In addition, we need the theoretical analysis of the factors that may affect the proposed
algorithm. Here, experimental results may directly reflect the performance of the algorithm.

1) Analysis of the algorithm performance for the training set

In this section, the size of the dataset and the training set means the size of the log through
“pre-processing”. This is because the log collection process will produce large amounts of
system log information which is not concerned with data operations, that are more than 80%
of the original log data. In order to analyse the effect of training set size on the performance of
the algorithm, the same dataset and minimum support should be selected. However, these
should be the main indicators of algorithm performance evaluation, the number of rules, the
number of behaviours, and the running times.

a) Rule number and behaviour number

From the experiment shown in Figure 3, with the scale of the training set gradually
increasing from 1M to 10M, more complete rule information in the training phase can be
achieved. For the same dataset, the number of behaviours increasing from 400ms to 900ms.
These two results show that increasing the scale of the training set gives substantially a
non-linear logarithmic relationship.

Training set = Behavior —&— Training set - Rule

9 I 900
i 8 800
- - 700
@ 61 I 600
E

5 500

4 r 400

1 2 3 4 5 6 7 8 9

The scale of training set/Mbits

Fig. 3 The number of rules and behaviours when increasing the training set
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2)

b) Algorithm running time

Figure 4 illustrates that the running time is directly related to the scale of the training set.
When the scale of training set is increased, the time required for the training phase also
increase the relationship between them which is essentially linear. The number of rules
obtained increase with an increase in the training set, and both show a logarithmic
relationship. Increasing the rules will also lead to a more time consuming extraction stage.
During the experiment, along with the scale of the training set gradually increasing from 1M
to 10M, the algorithm running time also increases from 400ms to 900ms. The algorithm
running time and training set size show a substantially linear relationship.

900

=0~ Training set - Running time

800 A

600 A

Running time/ms

500 -

400 T T T T
0 2 4 6 8 10
The scale of training set/Mbits

Fig. 4 Running time with increased training set size

Performance analysis of minimum support

The minimum support of an association rule algorithm can be obtained through the use of

multiple methods, which is an important aspect of our research. In this paper, the influence of
different minimum supports on the performance of the algorithm is analysed.

In order to analyse the effect of minimum support on the algorithm’s performance, the same

dataset and training set is selected. The main indicators for evaluating the performance of the
algorithm are the number of rules, the number of behaviours, and the running times.

12

a) Rule number and behaviour number

A decrease in the minimum support is bound to increase the number of rules, and more
behaviours in the extract phase can be obtained. As illustrated in Figure 3, as the minimum
support increase from 20 to 100, the number of behaviours is reduced from 1200 to 400.
The numbers of behaviours, rules, and the minimum support show a non-linear exponential
relationship. However, by reducing the minimum support, the original infrequent operation
combination can be identified as a frequent rule which makes the accuracy of actual
behaviour extractions low, as shown in Figure 5.
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Minimm support degree - Behavior —@— Minimm support degree - Rule
12 - 1200
., 104 - 1000
E 8 - 800
£
6 - 600
4 400

20 30 40 50 60 70 80 90 100
Minimum support degree

Fig. 5 The number of rules and behaviours when increasing the degree of minimum support.

b) Algorithm running time

As the training set size is constant, the running time required for the algorithm training
phase remaines unchanged. However, if minimum support is decreased, leading to an
increase in the number of rules obtained, more time consuming algorithm in the extraction
phase is brought. Figure 6 shows that as minimum support increases from 20 to 100,
running time decreases from 1200ms to 400ms. The running time and the minimum support
show a non-linear exponential relationship.

1200

=0~ Minimum support degree - Running time
1100 4

1000 A

900 A

8001

Running time/ms

700 A

600 4

0 20 40 60 80 100
Minimum support degree

Fig. 6 Running time with increased minimum support degree

6. CONCLUSION

In terms of practical problems related to cloud security auditing, this paper described the
advantages and disadvantages of the existing solutions. It analysed the association rule mining
algorithms that are currently main-stream in the data mining field. A provenance cloud
security auditing system framework was introduced, and an association rule mining algorithm
based on Long Sequence Frequent Patterns (LSFP) was proposed. That converted a process of
log in to an operating system into a description of user behaviour. A directed graphical
structure for extracting user behaviour was designed reducing effectively both the space
complexity and the time consumption. The experiments evaluations showed that the minimum
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support had a direct influence on the results and the efficiency of the proposed algorithm. In
future work, our focus will be on designing and implementing a more suitable method for
calculating the minimum support and improving the performance of the algorithm. Such
improvements can track and forensically investigate the data leakage during the development
of cloud data privacy.
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