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SUMMARY 

Cloud storage provides external data storage services by combining and coordinating different 
types of devices in a network to work collectively. However, there is always a trust relationship 
between users and service providers, therefore, an effective security auditing of cloud data and 
operational processes is necessary. We propose a trusted cloud framework based on a Cloud 
Accountability Life Cycle (CALC). We suggest that auditing provenance data in cloud servers is a 
practical and efficient method to log data, being relatively stable and easy to collect type of 
provenance data. Furthermore, we suggest a scheme based on user behaviour (UB) by analysing 
the log data from cloud servers. We present a description of rules for a UB operating system log, 
and put forward an association rule mining algorithm based on the Long Sequence Frequent 
Pattern (LSFP) to extract the UB. Finally, the results of our experiment prove that our solution 
can be implemented to track and forensically inspect the data leakage in an efficient manner for 
cloud security auditing. 

KEY WORDS: cloud security auditing; provenance data; log analysis; user behaviour; 
association rule mining algorithm. 

1. INTRODUCTION Lately, cloud computing has become an active research area. Since cloud computing requires of its users to share data and resources with service providers, it brings several security problems, which could potentially limit the development of cloud computing [1-3]. The Hewlett Packard security research centre proposed the “Trusted Cloud” concept and model of cloud security – the Cloud Accountability Life Cycle (CALC) [4]. In this model, the general solution to cloud data security is described as a correlate cycle structure. It divides the security process into seven stages: Policy, Trace, Logging, Store, Reporting, Auditing and Optimizing, and the whole security process is progressive [5]. On this basis, Ryan et al. proposed Flogger [6], S2Logger [7] and other schemes for collecting log data. The basic idea is to collect operating system log data in a whole-cloud data environment. These schemes are different from previous ones, which detected input and output data [8-9], in such a way that they are 
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able to ascertain the state of the data, and can solve the problems of credibility and security in the cloud environment [10-11]. Thus, it is improving the feasibility of the trusted cloud. However, with the huge increases in data traffic, limiting log analysis to the Logging stage alone, cannot satisfy the basic requirements for the trusted cloud. Therefore, an inductive method is needed which can analyse log data. Alternatively, more log data analysis in the CALC process are needed. To solve the above-mentioned problem, we compared the different cloud security controlling methods and proposed our own trusted cloud framework based on Cloud Accountability Life Cycle [12]. In this paper, we analyse the log data in this cloud framework and propose a new algorithm based on our previous research. Comparativly, this paper introduces a trusted cloud framework and an association rule mining algorithm already used in Knowledge Discovery in Database (KDD) [13], in Data Mining as well as in Data Analyse. The original algorithm was used to solve the classic “Basket” issue by analysing the product bought by customers, and determining the relationship between different products (based on a statistical, not logical relationship). This paper focuses on the Frequency Pattern growth (FP-growth) algorithm, and proposes a practical, improved algorithm based on the real need for log analysis in cloud security auditing. The contribution of our work is presented as follows: 1. In the Store stage, having the introduction of log analysis, the original operating system log should be converted into data that can describe user behaviour (UB). 2. In the Reporting and Auditing stages, our solution provides a more readable and practical description, generating data the users are more familiar with, offering “Cloud Credibility” with more direct support and proof. 3. In the Optimizing and Policy stages, our process improves the Optimizing stage from the level of technology to the constraint of actual behaviours, and also guarantees simpler and more accurate accountability. The rest of the paper is organized as follows. In Section 2, related work is discussed, and the provenance of the cloud security auditing system framework is demonstrated. In Section 3, our proposed approach is described. The experimental procedure, results and dataset explanation are given in Section 5, followed by the conclusion and suggestions for the future work in Section 6. 
2. RELATED WORK 

2.1 CALC MODEL The development of the cloud environment has led to the complexity of auditing, including the need to perserve data, and of determining any redundant information. Therefore, a security model that includes all key steps becomes especially important, for it can simplify many complex problems and make them clearer for data security auditors. It can also help auditors to focus on a particular step to carry out more research. Therefore, the CALC is designed for this purpose as illustrated in Figure 1. 
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Fig. 1  CALC Model 1) Policy Planning Cloud service suppliers must decide which data items need to be collected and which events should be recorded in logs. There are four important points to consider: a) Event Data: a series of actions and related information; b) Action Data: the operator who deals with events (such as a human or an internet crawler); c) Timestamp Data: times and dates of events; d) Location Data: physical and virtual addresses of events. 2) Sense and Trace At this stage, the purpose is to recognize all operations in the cloud. Auditing schemes need to be able to track the data. The tracking is from the lowest-level system read/write calls, all the way up to irregularities in high-level workflows hosted in virtual machines in disparate physical servers and locations. It is also necessery to trace data packets transformed among network routes within the cloud [14]. 3) Logging Log records should work in both virtual and physical layers in the cloud if documents are considered the centre. In addition, a log's active time, conservation place in the cloud, and other related factors should be taken into consideration. 4) Safe-keeping of Logs After log collection, the integrity of the log should be protected by preventing unauthorized users to illegally obtain or revise log data, while data encryption as well as some reasonable backup mechanism should be introduced. 5) Reporting and Replaying Reporting tools consist of a log summary that considers the documents as the centre, reports auditing clues, documents records obtained with operational cycle time in the cloud. Therefore, the report may include many factors, such as historical records of virtual machine, physical services and OS-level read/write files.   
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6) Auditing Auditors or stakeholders audit logs and reports, and imply possible illegal actions. The auditing products can be assigned if automation is possible. Automatic and mandatory auditing is very practical for a cloud environment since it has a large data storage capability. It can also be very effective for identifying any illegal action. 7) Optimizing and Rectifying In this part of the process, any problem areas in the cloud, and any security gaps, can be removed or revised; regarding the controls and supervision that need to be further improved. 
2.2 ASSOCIATION RULES ALGORITHMS In 1993, Agrawal [15] first proposed an association rule mining algorithm for the purpose of finding associations between a product and a customer transaction. The basic idea was to find the datasets that satisfied the requirements of frequency and analysed any hidden associations between them. Since then, another research has been carried out that led to the improvements and extensions in the performance of this algorithm. Two particular algorithms, Apriori and Frequent Pattern (FP)-growth [16], have been proposed. The Apriori algorithm gradually produces multiple sets of association analysis based on iterative thought in order to obtain sets with more items, all leading to a better analysis result. In 2000, Jiawei Han proposed the FP-growth algorithm. To overcome the problems of time and space complexity caused by iterations in Apriori, FP-growth had a “tree” concept introduced into algorithm. Consequently, it changed the iteration process to one that scans a dataset only once to produce an FP-tree. The structure of the tree is able to describe the frequency of the dataset and to gain the frequent multiple dataset, using the tree’s growth algorithm. As a result of its good performance, FP-growth entered the mainstream of association rule mining algorithms. As for the objective aspect, the AprioriAll algorithm [17] adds a time constraint to item sets based on the Apriori algorithm in order to analyse any associations between short sequences. AprioriAll produces candidate sequences based on the last scanned database, while at the same time it can calculate the minimum support degree needed and select suitable sequences for next scanning. The Generalized Sequential Pattern (GSP) algorithm [18] is an extension of the AprioriAll algorithm. The GSP algorithm introduces time constraint, sliding window, and classified level technology, and also adds the constraint of a scan. It decreases the number of candidate sequences efficiently and overcomes the limitations of the basic sequence model. It also decreases the production of excessive useless sequences. Furthermore, GSP uses a hash tree to store candidate sequences and decreases the amount of sequences to be scanned. In addition, the GSP algorithm converts the representations of data sequences, so that it is easier to detect whether a candidate is the consequence of the data sequence. Nevertheless, Apriori and its improved algorithms must still produce a large number of intermediate sets (candidate sets) in the cloud environment. However, it causes the complexity of time and space to become larger, and thus the efficiency of these algorithms is suboptimal for dealing with big data. FP-growth introduces a graphic structure to process the innovative algorithm, calculative framework and database structure. Improved algorithms based on FP-growth focus on active 
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areas such as the distributed system [19] and the project database [20]. However, these algorithms rely too heavily on a “tree data structure”. 
2.3 CONSTRAINT PATTERNS In order to improve the association rule of the algorithms, it is necessary to introduce one constraint condition [21]. The Apriori algorithm is based on a simple logical constraint. This means that any subset of a frequent set must also be recurrent. The AprioriAll and GSP algorithms filter useless multiple sets introducing a time constraint to the dataset. Moreover, the FP-growth algorithm introduces a “tree” to more obvious claim constraints. Hence, this kind of algorithm can improve the efficiency of mining technique. Based on the types of constraints in mining, association rule mining can be divided into the following: 1) Monotone Constraint: The constraint Cm is called a monotone constraint, because set S can satisfy Cm, and any superset of S can also satisfy Cm. 2) Anti-monotone Constraint: The constraint Ca is called “anti-monotone”, because if there is any item of set S which does not satisfy Ca, there are no supersets of S that can satisfy Ca. 3) Convertible Constraint: A convertible Constraint is that one where the constraints can be transferred between the item set and its subset. What makes it difficult to use is if one constraint cannot be given in the form of monotone or anti monotone. Thence, in order to solve it, the problem can be converted by the special organization of data. 4) Succinct Constraint: The succinct constraint is that a subset of item Is can be represented as a selection operation δp(I) by using a selective predicate p. Obviously, if a constraint is succinct, then it can directly use an SQL query to achieve this set so as to meet the conditions. In the different stages of data mining, it can be used to assess succinct constraints to avoid unnecessary testing. Depending on the source of constraint conditions, the constraints can be classified as follows: 1) Knowledge type constraint: Background knowledge can be used to filter irrelevant information. 2) Data constraint: Using some properties of the data, this type of constraint can isolate unrelated information from the current problem. 3) Dimension, layer, degree constraint: Using the structure and the scale of data or a database, data mining can be limited to a certain range to filter out any additional information. 
3. PROVENANCE CLOUD SECURITY AUDITING SYSTEM Aiming at one or more steps in the whole cloud auditing framework, this paper outlines a “provenance” cloud security auditing approach. It records the actions in the system (including documents, the internet, and programs) to describe clearly the status of data in a cloud environment. In different cloud environments, a provenance system can decide on the data content of security auditing. This means that it can obtain information about users’ data, actions, etc., over a certain period of time, and place this information as a data source for a cloud security auditing system. In this paper, the provenance data refers to information that 
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can describe the operational status and the source of any data across all sequences of an operation. 
3.1 TRUSTED CLOUD FRAMEWORK CALC describes a whole process of log auditing at every step, but it focuses more on the theoretical integrity of the model. It is possible to set up a cloud data security system with specific CALC, making it more operationally useful. Therefore, a plan is proposed that is based on the trusted cloud framework proposed by Ko and colleagues [22], with an auditing framework based on provenance cloud data as shown in Figure 2. 

Application Layer

Internal Provenance Cloud Security 
Auditing System External Influence Factors

Policy

Legal Provision

Data Storage and Protection Layer

Provenance Consistency

System Data Mining Layer

Cloud Network File System

 

Fig. 2 Provenance cloud security auditing system framework 

3.2 FRAMEWORK INTRODUCTION This framework has two external and three internal parts. The external part consists of legal provision and strategy, and the internal part contains data mining layer, data storage and protection layer, and an application analysis layer. Each of these five parts will be discussed as follows. 1) Legal Provision With the development of e-commerce and cloud computing, people started paying more attention to the protection of private data. Relevant organizations in all countries have realized the necessity to improve relevant laws and regulations. These laws relate to the collection, management, storage, and transformation of data and are also, undoubtedly, suitable for log data which should be protected as well. Relevant laws stipulate some important issues related to data security, such as the content, purpose, time, methods, authorization, and surface of data collection. All organizations and individuals must develop strategies for data collection and analysis that are subjected to these laws. 2) Policy A complete implementation strategy is necessary in order to achieve cloud security auditing based on the log collection. In the first part of the framework, laws and regulations limit the approach to data collection and analysis. Any organization or individual involved in the 
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formulation of strategies should fully consider the constraints of these laws. These constraints penetrate all three levels of the log audit system. Each organization and individual can choose their own strategies under the constraints of such a law for the data to be collected, as well as the technique of storing the data. 3) System Data Mining Layer The lowest abstract layer of the provenance system is the data mining layer. In this layer, one needs to know where to get useful system data for analysis and auditing in the next step. Data collection centred on files mainly occurs in the system and internal network. a) File System Cloud computing technology makes people no longer focus only on a physical server within a company, but it draws their attention more to a file-centred system. Log data collection mainly happens in this location, and it will record any sensitive behaviour related to the files such as opening, modifying, and closing them. At the same time, core data from such system information, like the virtual and physical storage addresses, operators, and times, can be obtained. b) Cloud Network Due to the characteristics of a cloud data storage system, a large amount of network data communications between the hosts is produced across the whole system. This kind of network information contains such items as the storage address of data, file details, and system call information. Therefore, the secure collection and management of network information within the cloud is also necessary. 4) Data Storage and Protection Layer This layer gathers basic data obtained via a log collector such as the data from a file system and the cloud network. It also guarantees the security of the stored data and ensures back up. This paper focuses on two important properties of the log collector i.e., the provenance and consistency. a) Provenance History tracking allows users to control the real operating conditions of their own data. Provenance data is considered to be the basis for privacy and trust models. It improves the reliability of cloud computing relying on the provenance of data. It can help people distinguish between legal and illegal operations. The features of the Provenance data are discussed in the next section. b) Consistency It is almost impossible to guarantee data consistency for cloud service providers. However, it is very important for cloud computing services to respond quickly, restore data to their original state, recover data, and perform valid backup procedures. Cloud service providers should implement these features for data consistency. 5) Application Layer After collecting and storing data, the application layer needs to be analysed in order to obtain valid data. There are three points to focus on in the application layer i.e., auto-audit, cloud fragments audit, and service audit. 
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a) Auto-audit There are many possibilities for implementing auto-audits based on the excellent computing power of cloud computing and the reliability of data provided by a trusted cloud framework. This is a prerequisite for the application in financial and commercial areas of cloud computing. However, the virtualized environments continuous auditing is a very complex process, and requires both business logic and financial auditing software. b) Cloud Fragments Audit There are many file fragments within the cloud and their fixing and updating also needs to be audited. Especially, the interrelated documents need to be audited more strictly to ensure the data validity. c) Service Audit Cloud computing is a service-oriented hierarchy, each of which is easy to copy. Therefore, a combination of services is highly feasible. Once services are integrated among different levels, credibility will be tested, and service integration audited. 
4. LONG SEQUENCE FREQUENT PATTERN ALGORITHM With the development of network technology, association rules about streaming data, a dataset with time constraints, draw more attention. Based on the analyses of our previous research, we realized that the object of association rule mining is still used for discrete data. Even though the GSP algorithm introduces time constraints into transactions, its oriented dataset still remains discrete. Hence, aiming at a dataset of long sequence structure it cannot meet the necessary functional requirements. Our scheme is based on the FP-growth algorithm, introducing reasonable constraint conditions. These include a strong time constraint, as well as the comparable “Directed Graph” structure, to express the constraint conditions directly. Through the transformation of the algorithm structure and the introduction of a new model, we designed an association rule mining algorithm based on a Long Sequence Frequent Pattern (LSFP), adapted for a cloud security auditing system. 
4.1 LSFP ALGORITHM The frequent pattern tree structure of the FP-growth algorithm is not effective when describing the ordering of a dataset that aim at the characteristic of strong time constraints of a dataset. For sequence-type datasets, the nature of the data itself may make the frequent pattern tree size too large to be applied. The main reason for this is that the tree structure can more easily express the relationship between nodes, but the order of the data makes the “edges” between the nodes more meaningful when describing the data. A kind of graph structure that can directly express the relationship among the “edges” is needed for ordered data. Therefore, our scheme introduced a new graphical structure called “directed graph”. This structure has two main advantages. First, a directed graph is not the same as the tree structure. The “edge” of a directed graph can describe the transfer relationship from node-to-node, which could effectively describe the “order information” of strong time constraints in the data. Second, in comparison with the tree structure, a directed graph structure can guarantee no redundancy node in the graph providing the improvements in space complexity. Based on this theory, the algorithm structure and process design are outlined below. 
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The algorithm is divided into two steps. The first step is the algorithm training phase which uses the training set to get the frequency of the entire dataset. The second step is the analysis of the data mining stage performed through the obtained data frequency to acquire UB which meets the frequency in the dataset. Related parameter definitions are given in Table 1. 
Table 1  Parameter definition 

Parameter Designation Interpretation 

1 2 nTS { i ,i , ...,i }=  Training 
sequence 

i  is known as the item, in the actual data, represents a process level of 
system operation. 

1 2 mI {i ,i ,...,i }=  Item set 
I  is a proper subset of the training set, including all items in TS . Each of 
them has properties: begin , end . 

D  Incidence 
matrix 

It is an m m×  matrix, the item ( ),i j  in a matrix represents the number of 
times directed edge appears from node ii  to node ji . That is, the number 

of times node ji appears after the node ii  in TS . 

D  
Frequency 
incidence 
matrix 

D  is correlation matrix after optimizing (pruning) D . When ( , )D i j s<  (
s  is threshold), ( , ) 0D i j = ; when ( , )D i j s> , ( , ) ( , )D i j D i j= . 

1 2 nS { i ,i , ...,i }=  Operation 
sequence Pending set formed by process level log. 

1 2 nB { b ,b ,...,b }=  
User 
behaviour 
set 

Result set obtained by algorithm process. 

1 2 nb { i ,i , ...,i }=  User 
behaviour 

Formed by ordered items, representing an approved system operation 
combination. 

min_sup  Minimum 
support 

The threshold of frequency, i smaller than minimum support degree is 
not frequent. In the item set, the node contains attributes im.begin and im.end, utilized to describe whether the node can be used as a starting node and terminating node for UB. 

4.2 ALGORITHM STEPS 1) Algorithm first stage: Step 1: Scan training set, generate set I Step 2: Generate the directed graph and describe D Step 3: Select the appropriate threshold min_sup to prune the directed graph Step 4: Introduce priority rules to optimize D, and obtain the complete D  Step 5: Obtain the possible b of the short sequence format, through the directed graph search 2) Algorithm second stage: Step.1: According to D , divide the long sequence S into several short sequences, and produce the sequence set to be extracted; Step.2: Extract b from this kind of sequence set, and generate B. 
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5. ALGORITHM IMPLEMENTATION AND PERFORMANCE ANALYSIS 

5.1 EXPERIMENTAL ENVIRONMENT  1) Algorithm environment For algorithm design reasons and practical issues, we selected a Linux operating system log as a dataset, because it possesses good time properties and suitable representative. Then the appropriate hardware and software environments based on the complexity of the algorithm were selected. 
Virtual machine VMware WorkStation 

CPU Intel i7 2.4GHz 

RAM 4G 

Operation system CentOS 6.4, 64bit 

Programming language C language 2) Algorithm parameters The impact of key parameters on the performance of the algorithm mainly includes two aspects, i.e., the training set size and minimum support (min_sup). 
The size of the training set: The proposed algorithm selects part of the dataset as a training set to obtain frequency, mainly because the dataset and the training set have same source. Since they have similar characteristics, the frequency obtained from analysing the training set is also suitable for the dataset. When using the entire dataset as a training set, both sets must have the same frequency. However, an oversize training set reduces the overall efficiency of the algorithm. Thus, selecting an appropriately sized training set can have a great impact on the performance of the algorithm. 
Minimum support: Minimum support determines the operation combinations “b” can consider. It will inevitably obtain more operation combinations by picking a smaller support. However, whether these combinations occur frequently enough to be treated as b, this cannot be guaranteed. However, the accuracy of gaining b can be guaranteed if a larger support is picked. Contrariwise, it will also mean that the algorithm will get less operation combinations. 
5.2 ALGORITHM ANALYSIS Before analysing the algorithm’s performance, we need an intuitive perception of the results of the algorithm. Here, several common user behaviours corresponding to log sequences (rules) from an operating system are shown: File Creation 

Create,wzq,3103,2406,2406,2387,nautilus,/home/wzq/Deskto
p/test/new file,/home/wzq/,193,438,30 
Close,wzq,3103,2406,2406,2387,30    
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support had a direct influence on the results and the efficiency of the proposed algorithm. In future work, our focus will be on designing and implementing a more suitable method for calculating the minimum support and improving the performance of the algorithm. Such improvements can track and forensically investigate the data leakage during the development of cloud data privacy. 
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