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ON-LINE WORKPIECE HARDNESS MONITORING  
IN STONE MACHINING 

Summary 

The application of four types of process signals in the indirect on-line monitoring of 
stone hardness has been analysed in this paper. Cutting forces, servomotor currents, vibration 
and acoustic emission signals were measured during the drilling of three types of stones 
characterised by different hardness and heterogeneity values. A group of features were 
extracted from each signal from the time and frequency domain. Their capacity to correctly 
classify stone hardness was analysed using an artificial neural network classifier. Stone 
samples were drilled with new drill bits and drill bits worn to three different wear levels in 
order to analyse the influence of tool wear on the hardness classification process. Nine 
combinations of cutting parameters were applied for each drill wear level and stone type. 
Features extracted from the vibration signals obtained the best results in the stone hardness 
classification. The results indicate their potential industrial application, since they have 
achieved a high classification precision regardless of the drill bit wear level. 
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1. Introduction 

Although stone is one of the oldest materials, market demands for products made of 
stone are still continuously rising. Stone is a heterogeneous and anisotropic material 
characterized by mineral composition, texture and structure. Significant property variations of 
different types of stones affect the complexity of the machining process. Hardness is one of 
the most important stone properties with a strong influence on cutting forces. Variations in 
hardness in the cutting zone often increase wear dynamics of the cutting tool and, 
consequently, result in the cutting tool and/or workpiece breakage. The determination of 
hardness and other physico-mechanical parameters of non-homogeneous and anisotropic 
stone structures is a challenging task and is usually performed in accredited laboratories [1].  

Testing of mechanical properties can be performed by direct and indirect methods. 
Direct methods provide precise information about material properties, but also require a 
relatively complex preparation of surface samples. Direct methods for measuring stone 
hardness were suggested in 1978 by the International Society for Rock Mechanics [2]. They 
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primarily include methods according to Knoop and Vickers, while Brinell's and Rockwell's 
methods are not recommended due to stone fragility. Hardness measurements according to 
Shore and Schmidt are also proposed. However, those measurements provide general 
information about hardness without specifying its value for each phase of the stone sample. 

Several studies have shown a correlation between hardness measured by direct methods 
and other mechanical properties, such as compressive strength or elasticity [3-5]. They have 
resulted in the conclusion that stone microstructure (density, grain size and porosity) must 
also be taken into consideration. The correlation between hardness and atmospheric 
conditions has also been observed in [6] and explained as a consequence of a chemical 
reaction.  

All those methods are mainly carried out in laboratory conditions and are limited by the 
size of samples collected in the field or by the method used for sample collection in the case 
of interventions on historical heritage or cultural monuments [7]. They can give precise 
information about stone hardness in the case of monolithic, homogeneous types of stones, but 
are fairly unreliable for heterogeneous stones with complex textures. Furthermore, direct 
methods cannot be used on-line during the machining process. From the aspects of machining 
process safety, higher productivity and product quality, as well as potential application of 
adaptive process control systems, it is necessary to provide a reliable hardness monitoring 
during the cutting operation. Therefore, an indirect monitoring approach based on the 
correlation of stone hardness and different process signals measured during the cutting 
process has been analysed in this study.  

Several indirect methods for the estimation of stone mechanical properties in drilling 
operations have already been proposed. The most frequently utilised process parameters are 
axial force and feed velocity. Billim [8] and Stavropoulou et al. [9] determined a correlation 
between stone sample hardness and tool feed velocity in the drilling process at a constant 
axial force. Valentini et al. [10] and Pamplona et al. [11] found a correlation between 
compressive strength, axial force and feed velocity. Al-Naddaf et al. [12] compared the 
impact of stone porosity on an axial force during stone drilling and indicated a great 
possibility of error when direct methods for measuring stone porosity are used due to the 
nonhomogeneous structure of stone. Yurdakul and Akdas [13] determined the sample 
hardness by means of current signals of servomotors drives.  

One of the most important influential factors in on-line hardness monitoring during 
stone machining is tool wear. Tool wear was not analysed in the aforementioned studies, but 
only in studies concerning rock drilling, such as [14, 15]. Higher tool wear levels imply 
higher forces and servomotor currents, which can then be misinterpreted as higher stone 
hardness. Cutting forces and servomotor currents were two most utilised types of signals for 
the indirect monitoring of stone mechanical properties or the machining process modelling 
[16, 17]. Other types of signals often used in industrial monitoring systems, such as vibration 
and acoustic emission signals [18-21], were not analysed.  

Therefore, the main goal of this experimental study was to analyse a multi-sensor 
approach to the stone hardness classification during the drilling process as well as the capacity 
of the selected process signals to correctly classify stone hardness without the information 
about the tool wear level. Classification features were extracted from four types of signals 
(cutting forces, servomotor currents, vibration and acoustic emission signals) in the time and 
frequency domain. Three stone types of different hardnesses, drills belonging to four different 
wear levels and nine combinations of machining parameters were mutually combined. The 
details about the experiment, results and discussion are given in the following sections. 
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2. Materials and methods 

2.1 Stone samples and hardness measurements 
Hardness classification during the stone drilling process was performed using three 

types of stones whose chemical composition is characterized by different major constituents 
or their content: S1 (micrite 60%, sparry calcite 35%), S2 (dolomite 80.9%, calcite 18.6%) 
and S3 (dolomite 97.8%, calcite 2.1%). During the preparation of stone samples, larger pieces 
of stone were cut into smaller samples (200 x 90 x 30 mm). Due to a relatively high surface 
roughness, samples were additionally wet polished in several phases (3000 grit polishing pad 
was used in the last phase).  

Most of the commercially available hardness testers are stand-alone instruments, which 
either lack a camera support or use single camera for indentation measurement. Such vision 
systems lack lighting and a field of view required for the texture-based measurement area 
selection. None of the available testers have a second camera with a suitable setup for 
targeting specific textures, which would be very practical for stone materials. In order to 
overcome the abovementioned disadvantages, an advanced hardness measurement device was 
built and mounted on a CNC testbed z-axis instead of the main spindle (Fig. 1).  

The device is composed of 3 sections: a texture vision system (I), an indentation feed 
drive (II) and an indentation measurement vision system (III). The sample measurements 
began with the selection of an initial starting point using surface texture camera images taken 
with the texture vision system. The indentation position was marked and the texture image 
was saved for reference. The indentation feed drive was then moved to a previously marked 
position using CNC axes and the intender was pressed on the surface using a 5 N axial force 
within a period of 10 s. After that, the indenter drive was retracted and an image of 
indentation was taken using the indentation measurement vision system. The image was 
subsequently analysed using the IC Measure software (v.1.2, April 2016). The software gave 
information about the length of the longest diagonal of the indentation (Fig. 2). This 
parameter, together with the load applied to the indenter, was necessary for quantifying the 
hardness value according to the Knoop hardness test (EN 14205:2003). 

 
Fig. 1  Hardness testing device 
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Fig. 2  Images of indents performed by using Knoop hardness test indenter 

Considering the non-homogenous sample structure, 1,440 hardness measurements were 
performed in total on the same CNC machine used for machining all drilling cycles. As a 
custom-made hardness measuring device was used, samples did not have to be additionally 
prepared for the measurements, i.e. cut to a smaller size, which is time consuming and 
sometimes problematic due to the workpiece damages caused by the cutting process. For each 
type of stone, 480 hardness values were collected (120 measurements performed on each of 
four samples belonging to every stone type – Fig. 3). The median hardness values for each 
type of stone were 1651.5 MPa (S1), 1868.7 MPa (S2) and 2661.6 MPa (S3). 

 
Fig. 3  Hardness measurements 

2.2 Experimental setup and drilling parameters 
Samples were drilled using a 5 mm twist drill bit with a 120o point angle and cemented 

carbide inserts (Officina Martello di GIORGI F.LLI s.r.l., Italy). Drilling was performed on a 
custom-made triaxial milling machine retrofitted for the purpose of stone drilling 
investigation (Fig. 4).  

The machine has been equipped with 0.4 kW permanent magnet synchronous motors 
(Model APM-SB04A, LS Mecapion, Korea), servomotor drives (Models DPCANIE-
030A400 and DPCANIE-060A400, Advanced Motion Control, USA), and ball screw 
assemblies (Model R16-5B1, Hiwin, Taiwan). It was controlled by a Linux-based, open 
architecture CNC system (EMC2 v2.3, 2009, from 2011 renamed to LinuxCNC and 
downloadable from linuxcnc.org). 
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Fig. 4  Experimental setup 

Four types of process signals were measured during the drilling process. Apart from the 
control loop servomotor reference currents taken from the main spindle and feed drives, 
cutting forces were measured by using a triaxial Kistler piezoelectric dynamometer 9257B 
coupled with a charge amplifier 5017B, vibration signals were measured by using a triaxial 
Kistler piezoelectric accelerometer 8688A50 (measuring range of 0–5 kHz) coupled with an 
adequate signal conditioner 5134B, and acoustic emission (AE) signals were measured by 
using a Kistler piezoelectric industrial sensor 8152B1 (measuring range of 50–400 kHz) 
coupled with a 5125B interface module. Direct observations of drill bit cutting edges were 
performed by an industrial camera DMK41AF02 equipped with telecentric lenses TC2309. 

Nine combinations of cutting parameters, i.e., cutting speeds vc = [10, 15, 20] m/min 
and feed rates f = [0.03, 0.06, 0.09] mm/rev, were used in this study (Table 1). They were 
chosen based on tool manufacturer recommendations. Measurements performed with each 
combination of cutting parameters were randomly repeated seven times for each of four 
different wear levels: sharp drill bit – SD (VBMAX = [0, 0.03] mm), low worn drill bit – LWD 
(VBMAX = [0.13, 0.15] mm), medium worn drill bit – MWD (VBMAX = [0.24, 0.29] mm), and 
worn drill bit – WD (VBMAX = [0.48, 0.57] mm). This means that for each combination of 
cutting parameters and stone sample 28 sets of process signals were measured. Overall, 756 
sets of process signals were collected (28 sets per each of nine combinations of cutting 
parameters and three stone types). At the end, hardness features were extracted from all four 
types of process signals for each data set. 
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Table 1  Cutting parameters 

Cutting speed, vc  
Rotational speed* 

Feed rate, f 
mm/rev 

0.03 0.06 0.09 
m/min *rev/min mm/s 

10 637 0.31 0.64 0.95 
15 955 0.48 0.96 1.43 
20 1274 0.64 1.27 1.91 

2.3 Data acquisition and signal processing 
Four types of servomotor current signals were measured: horizontal (IX, IY) and vertical 

(IZ) feed drive currents, and main spindle current (IMS). Whereas the horizontal feed drive 
currents (IX, IY) were low (usually below 0.1 A), the hardness classification features were 
extracted from only IZ and IMS signals. 

On the other hand, the main intention of measuring cutting forces was to compare 
performances of their features with those extracted from the current signals. Potential 
replacement of the force signals with the motor drive currents would simplify the design of 
the hardness monitoring system and significantly reduce its cost. Similarly to the feed drive 
currents, the force components FX and FY were significantly smaller (approx. 10 times) than 
the vertical component FZ. Therefore, IZ and IMS were compared with FZ and the resultant 
cutting force FR, respectively. The resultant force was determined based on all three force 
components ( 2 2 2

R X Y ZF F F F   ). 

Both types of signals were continuously sampled every 1 ms. Maximum force/current 
values (FZ_MAX, FR_MAX, IZ_MAX, IMS_MAX) were extracted from signals previously filtered with 
a Butterworth low-pass filter (cut-off frequency of 2 Hz). In addition, the power of spectral 
components determined by using the Fast Fourier Transform (FFT) algorithm at the rotating 
frequency (FZ_RF, IMS_RF) and the tool frequency (FZ_TF, IMS_TF) were also used as features 
needed for a hardness classification. 

In order to analyse the applicability of vibration and AE signals, a set of features were 
extracted only from the frequency domain. Considering the vibration signals, measurements 
were performed in all three orthogonal directions (x-, y-, and z-axis) and sampled using a 4–
channel acquisition board (PCI-DAS4020/12, Measurement Computing, USA). All signals 
were measured with a sampling frequency of 100 kHz for a period of two seconds after both 
cutting edges entered the material. The signals were transformed into the frequency domain 
by using the FFT algorithm. The power spectrum range of the transformed signals was 
constrained by the sensor operating range within an interval from 5 Hz to 5 kHz.  

After the transformation, the power spectrum of each signal was divided into a series of 
samples, depending on the selected bandwidth. Altogether, 23 bandwidths (5, 10, 20, ..., 100, 
200, ..., 1000, 1500, 2500, and 5000 Hz) were chosen and used in the analysis. For example, 
if the signal power spectrum was divided using a 1000 Hz bandwidth, we obtained five 
samples per signal, where each sample belonged to one of the following five frequency 
ranges: 5-1005, 1005-2005, 2005-3005, 3005-4005, 4005-5000 Hz. Since the upper frequency 
value of the last sample could not exceed 5 kHz, the bandwidth related to that sample was 
usually somewhat lower than the chosen one. The aforementioned predefined set of 
bandwidths was chosen in order to provide an analysis of vibration signals using different 
numbers of features per signal. In the case of the 5 Hz bandwidth, each signal was described 
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by 999 features/samples, while in the case of the 5000 Hz bandwidth, only one feature per 
signal was extracted. The idea was to find the minimum number of features per signal which 
can adequately identify the stone hardness during drilling. 

Once all samples of the analysed vibration signal related to the chosen bandwidth were 
determined, the energy (2) of each sample was calculated using the expression 

U

L

2 d
f

f

S f   , (1) 

where S is the one-sided power spectrum density function of the analysed vibration signal and 
fL and fU are the lower and upper frequencies of the sample for which the energy is calculated 
[22]. The energies of the vibration signals were then used as stone hardness features. The 
features were analysed for each type of vibration signal individually (X, Y, Z) and in 
combinations (XY, XZ, YZ, XYZ, XYZSUM). A detailed explanation of the methodology for 
feature extraction from vibration signals can be found in [23]. 

The last type of the analysed signal, i.e., the AE signal, was sampled at a frequency of 2 
MHz using the same acquisition board as in the case of vibration signals. One sample with a 
duration of 0.1 s was taken per hole after both cutting edges entered the material. The signals 
were filtered using the Butterworth band-pass filter with a frequency bandwidth from 40 kHz 
to 500 kHz. This was in accordance with the specified measurement range of the utilised 
sensor. Hardness features were extracted from the AE signals using the same methodology as 
in the case of the vibration signals, but with different frequency bandwidths of 5, 10, 15, 20, 
30 and 40 kHz. The features were also analysed individually and in combinations. 

3. Results and discussion 

All features were processed by using a radial basis function neural network (RBF NN) 
algorithm. The utilised variant of the RBF NN algorithm is suitable for solving classification 
types of problems and is presented in [23]. From 756 sets of features, 432 sets were used in 
the RBF NN training phase, while the remaining 324 sets were used as test samples. Both, the 
training and the testing groups of data were built from features belonging to all tool wear 
levels, combinations of cutting parameters and stone types. The results are expressed as a 
classification success rate (CSR) factor, i.e., as the ratio of correctly classified samples to all 
tested samples belonging to each type of stone sample. The results achieved with features 
extracted from the forces and the currents signals are presented and compared in Table 2. It 
can be observed that both groups of features yielded very similar results (the CSR of the force 
features was in some situations up to 5 % higher comparing to the CSR of the comparative 
features form the currents signals). The features from the time domain achieved a higher CSR 
than those extracted from the frequency domain. After combining all features of each type of 
signal separately, both types of signals achieved a relatively low CSR, which was around or 
below 65 % (66.7 % vs 57.1 %).  

The most extensive analysis of features was conducted with vibration features due to the 
various number of combinations. The features (energies) were first analysed individually for 
each frequency bandwidth within the measurement range of 5 Hz-5 kHz. The features which 
satisfied the condition CSR ≥ 65 % were combined and additionally analysed. This condition 
was determined based on the fact that no feature individually achieved a CSR equal or higher 
than 70 %. All features used in combinations were related to non-overlapping frequency 
ranges. In the case of energies extracted from two or more overlapping ranges, the one with 
the highest CSR value was taken for further analysis [23]. The best results of each 
combination are presented in Table 3. 
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Table 2  Classification results achieved with features extracted from forces and current signals 

Force 
features 

Classification success rate, % Current 
features 

Classification success rate, % 
S1 S2 S3 Avg. S1 S2 S3 Avg. 

FZ_MAX 52.8 56.5 50 53.1 IZ_MAX 45.4 51.9 55.6 50.9 
FR_MAX 51.9 53.7 49.1 51.5 IMS_MAX 48.2 50.9 45.4 48.2 

FZ_MAX + FR_MAX 51.9 58.3 50 53.4 IZ_MAX + IMS_MAX 49.1 56.5 59.3 54.9 
FZ_RF 39.8 36.1 28.7 34.9 IMS_RF 28.7 37.1 52.8 39.5 
FZ_TF 39.8 27.8 58.3 41.9 IMS_TF 26.9 39.8 50 38.9 

FZ_RF + FZ_TF 61.1 46.3 62.9 56.8 IMS_RF + IMS_TF 49.1 45.4 64.8 53.1 
FZ_MAX + FR_MAX 
+ FZ_RF + FZ_TF 75.9 63.9 60.2 66.7 IZ_MAX + IMS_MAX 

+ IMS_RF + IMS_TF
59.3 59.3 52.8 57.1 

Table 3  Classification results of different combinations of features extracted from vibration signals which 
individually satisfied CSR > 65 % 

Feature 
combination 

Classification success rate, % 
S1 S2 S3 Avg. 

XY 71.3 75 77.8 74.7 
YZ 75.9 79.6 90.7 82.1 
XZ 66.7 70.4 95.7 77.7 

XYZ 80.6 75 95.7 83.6 
XYZ+XYZSUM 88.9 78.7 99.1 88.9 

XY - Combination of energies of different frequency ranges measured in x- and y-axis direction 
YZ - Combination of energies of different frequency ranges measured in y- and z-axis direction 
XZ - Combination of energies of different frequency ranges measured in x- and z-axis direction 
XYZ - Combination of energies of different frequency ranges measured in x-, y- and z-axis direction 
XYZSUM - Sum of energies of different frequency ranges measured in x-, y-, and z-axis direction 

The features extracted from the vibration signals showed a significantly higher precision 
in the stone hardness classification than the cutting forces and the servomotor currents. The 
best average CSR factor was near 90 %. These results indicate that vibration signals are 
capable of classifying stone hardness with a similar success regardless of the tool wear level. 
This can be observed from Table 4, where the CSR factors achieved with the best 
combination of vibration features (XYZ+XYZSUM) are presented for every tool wear level 
separately. 

Table 4  Stone hardness classification results achieved with vibration feature combination XYZ+XYZSUM 

Stone type 
Classification success rate, % 

Tool wear level 
Avg.

SD LWD MWD WD 
S1 88.9 100 92.6 74.1 88.9 
S2 70.4 70.4 77.8 96.3 78.7 
S3 100 100 100 96.3 99.1 

The average CSR values of the best combination of the vibration features (XYZ + 
XYZSUM) show that this combination can accomplish the highest classification precision for 
the stone sample S3 (CSR = 99.1 %), which was characterised by the highest median hardness 
value. The lowest classification result was accomplished for the stone sample S2  
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(CSR = 78.7 %), whose median hardness value was lower than in the case of S3 and slightly 
higher than in the case of S1. This result can be explained by the fact that all stone samples 
were very heterogeneous, and hardness values of stone samples S1 and S2 showed 
overlapping characteristics in some measurements. Hence, their median hardness values were 
not so distinctive. 

The AE features (energies) were extracted from raw AE signals using the 
abovementioned 5, 10, 15, 20, 30 and 40 kHz frequency ranges. They were also analysed 
individually and in combinations. The CSR values were noticeably lower than those achieved 
using the vibration features. The highest individually achieved CSR was 41.9 %, and it 
belonged to the energy extracted from the 120-125 kHz frequency interval (5 kHz range). 
Therefore, all features which satisfied the CSR ≥ 40 % condition were mutually combined in 
the second stage of the analysis and the results are shown in Table 5. 

Table 5  Classification results achieved with the AE feature combination (each feature individually satisfied 
CSR ≥ 40 % condition) 

Classification success rate, % 
S1 S2 S3 Avg. 

50.9 51.6 38.9 47.2 

At the end, the best features of the servomotor currents, vibrations and AE were 
mutually combined and the results are presented in Table 6. The results indicate that the 
combinations of features extracted from different types of process signals could not improve 
the classification precision achieved with the best combination of features extracted only from 
the vibration signals. 

Table 6  Classification results of combinations of the best feature combinations belonging to each type of signal 
(servomotor currents, vibrations and AE) individually 

Feature combination 
Classification success rate, % 
S1 S2 S3 Avg. 

(XYZ+XYZSUM) + I 79.6 80.6 79.6 79.9 
(XYZ+XYZSUM) + AE 88.9 72.2 94.4 85.2 

(XYZ+XYZSUM) + AE + I 86.1 71.3 75 77.5 
I - (IZ_MAX + IMS_MAX + IMS_RF + IMS_TF) 

4. Conclusions 

In this experimental study an application of four types of signals in the stone hardness 
classification during the drilling process has been analysed. Features were extracted from 
cutting forces, servomotor currents, vibration and acoustic emission signals for all 
combinations of the analysed cutting parameters, drill bit wear levels and stone types. The 
idea was to analyse the possibility of using the chosen types of process signals in the stone 
hardness monitoring without using the information about the drill bit wear level. Since drill 
bit wear cannot be measured in on-line hardness classification, but can only be estimated, this 
estimation would inevitably introduce an additional error in the hardness classification 
process.  

The obtained results indicate the efficacy and potential industrial applicability of 
features extracted from vibration signals in the indirect on-line monitoring of stone hardness 
during machining operations. The features extracted from vibration signals achieved a high 
classification precision, practically regardless of the intensity of the drill bit wear. 

TRANSACTIONS OF FAMENA XLIII-4 (2019) 51



M. Klaić, D. Brezak, On-Line Workpiece Hardness Monitoring  
T. Staroveški, Z. Murat in Stone Machining 

Furthermore, the integration of adequate vibration sensors in the machine tools structure is 
relatively simple and cost effective.  

The features extracted from other types of process signals accomplished a lower 
hardness classification precision when analysed individually for each type of signal or in 
combinations. This means that the features extracted from force signals, servomotor currents 
and acoustic emission were not able to adequately classify stone hardness and/or did not have 
the capacity to isolate the influence of the tool wear rate on the overall hardness classification 
process. Although force and current signals will not be used in our future research, additional 
analyses will be performed with vibration signals higher than 5 kHz (up to 10 kHz) as well as 
acoustic emission signals higher than 400 kHz (up to 900 kHz). 

Finally, it can be also concluded that the results obtained in this study can be 
particularly interesting from the aspect of the adaptive process control system 
implementation. Machine tools used in stone machining which can adjust cutting speed and 
feed rate during the machining process already exist on the market, but mostly without a 
possibility of automatic parameters adjustment due to the absence of quality process 
monitoring systems. 
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