
Measuring Opencv.js performance with Wasm execution

engine in desktop, embedded and mobile browsers

Carlos A. Pérez1

CINAPTIC, Applied Research Centre of Information Technologies, Universidad Tecnológica
Nacional, Facultad Regional Resistencia. French 404, (3500) Resistencia, Chaco, Argentina.

cperez@rec.utn.edu.ar

Abstract. Current browsers have sophisticated execution environments for
Javascript, and fast rendering engines. With the advent of HTML5, they accept
digital cameras, and they can process, in real time, video streaming between
browsers, allowing instant communications. In addition, the introduction of the
low-level virtual machine (LLVM) allows image-processing libraries to be de-
livered, alongside web pages, as specialized scripts that execute in browser, with
significant speed gains when compared to traditional Javascript engines. This
make the browser a very suitable platform to deliver web applications with heavy
image processing tasks, that execute at native speeds. However, measuring such
performance in modern browsers is a demanding challenge. In this paper, a set
of recommended practices to use and to benchmark Opencv.js are presented and
obtained figures on several testbeds are discussed. Measurements involved a
desktop PC, a selection of smartphones with mainstream processors, and a Rasp-
berry Pi single-board computer, which resulted in several findings that confirm
the maturity of mobile an embedded browser for image-processing with Javas-
cript at client side, running at native speeds.

Keywords: devices, Javascript, web assembly, OpenCV, performance

1 Introduction

Nowadays, modern browsers are complex software facilities, that not only render
web pages, but also feature intricate internals in order to execute scripts, support
multithreading, use hardware acceleration, perform sophisticated compilation, accept
several media formats and offer compatibility with latest internet standards. The last
addition is the ability to run scripts at near-native speed, or even exceed native speed,
with web assembly, a compact binary representation that is heavily optimized [1].

Opencv.js is the Javascript version of the well-known OpenCV written in C/C++. In
order to achieve the fastest possible performance in browsers, is built upon the new
LLVM [2] approach, which takes OpenCV source code and emits intermediate LLVM
representation called bitcode. A second compiler, Emscripten [3], takes bitcode and
generates a code that can be executed directly in browsers, in two possible formats:
asm.js and web assembly Wasm. Asm.js is a subset of Javascript, a highly optimizable

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/287771343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

code in runtime because it uses ahead-of-time compilation techniques, achieving near-
to-native execution speed. In addition, asm.js can be further optimized by means of
Bynarien [4] compiler, that emits Wasm, a size-efficient and portable binary format
aimed to achieve native execution speeds. Web assembly should not be perceived as a
separate technology from Javascript, but as an extension of script execution engine in
the browser.

In this work, we present some methods, findings and cautions that must be observed
in such measurement tasks, specially in browsers with memory and processor
limitations, like the ones used in embedded or mobile systems. This paper is structured
as follows: section 2 present techniques to measure events in browsers, section 3 present
some Javascript techniques used to deal with opencv.js large script, section 4 present
obtained results, and in section 5 we present our conclusions.

2 Measurement techniques in browsers

Regarding event measurement, modern browsers have two domains: the pre-render
domain, when scripts are still not completely loaded, and scripting domain, when
Javascript execution engine has access to all DOM objects and exposed script methods.

2.1 Measuring events in pre-render time.

Elapsed time consumed with downloadable resources can be monitored using
window.performance object, but this forces to add some Javascript custom code. In
pre-render times, a browser built-in facility is preferable to be used. In Chromium-based
browsers, this is called Performance Event Recorder. This allow to register any event
raised by browser, which is logged into memory, including every frame of video stream.
When events of interests are finished, recording is stopped and a JSON document is
created by the browser. Since browser can record a very significant number of events
per second, page operation is noticeably slower when in debug mode. This tool is often
referred as a profiler and obtained JSON document is called a profile. Since it can reach
hundreds of mebibytes, is almost impossible its usage in mobile and embedded devices.

To load big size script files, such as opencv.js, there are two methods, synchronous
and asynchronous. Synchronous method is a blocking one, since script suspends
execution until the whole script is loaded. However, this can lead to a poor user
experience, especially with files that big. To improve user experience, it is
recommended to use an asynchronous method, which is non-blocking. As with all
async operations, a callback must be specified to notify the user the script finished
loading, as follows

<script async src="../js/opencv.js"
onload="OpencvOK();" type="text/javascript">

</script>

The callback OpencvOK() must be present in same page to flag a correct loading. In
fast browsers, script location relative to page document is not relevant. However, in our
tests, best results were obtained, for Raspberry Pi (Raspbian) browsers, if script markup
is located at the bottom of page.

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 52

Since this is a pre-render time, the Performance Event Recorder (PER) must be used.
In Network pane of PER windows, opencv.js is easily noticeable, an example is seen
in Fig. 1, using Brave browser (Chromium-based) for Windows.

Fig. 1 - Opencv.js loading time

Immediately after loading, opencv.js script is evaluated. Script compiling is also
carried at the same time, as seen in Fig. 2, evidencing the ahead-of-time compilation
technique, a distinctive feature of asp.js and Wasm. However, since opencv.js is
delivered in wasm mode, that is, already in compiled format, browser compilation times
are negligible.

Fig. 2. Script compilation time

2.2 Measuring Javascript events

Obtaining a proper measurement of events during script execution is a tough
challenge. To solve this, a High-Resolution Time API [5] was introduced in 2018,
authored by W3C. This provides a time origin, and current time in sub-millisecond
resolution, such that it is not subject to system clock skew or adjustments. Sub-
millisecond resolution is needed in several scenarios, such as calculation of frame rate
in script-based animation or cueing an audio segment to a specific point, in order to
synchronize audio. A new object with corresponding method was introduced,
performance.now(), that returns a float datatype. This object is tied to a
monotonically increasing clock, which is not subject to system clock modifications or
clock skew. This ensures proper sign in time subtractions: a newer event minus an older
one will always yield a positive value, which is not ensured using Date.now(). For
instance, to obtain elapsed time of cv.cvtColor() method execution, prior and last
values of performance.now() must be recorded before and after method execution.

3 Recommended practices for opencv.js script

Large scripts are, in general, quick loaded in modern PCs. Loading performance,
however, largely depends on network speed when dealing with regular websites and
depends on disk transfer rate if script file is locally stored. Due to intrinsic asynchronous
nature of current HTTP operations in modern web applications, the latter is quite

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 53

noticeably in slow browsers, running in small devices. For instance, evaluating a script
can take several seconds in Chromium browsers on Raspberry PI devices, the platform
of choice for IoT projects due to its open source nature. On this device, an execution,
of another script, can start before the ending of main script evaluation, yielding an
unexpected behavior, worsen by absence of visible error messages: the page simply
does not work as expected by several seconds.

To ensure that main script is called only when is available in browser internal DOM
tree, following practices are recommended.

The script that deals with opencv.js functions must be defined as an async method
(not to be confused with async clause in <script> tags). For instance, suppose that the
page loads opencv.js in sync mode, in order to avoid desynchronization problems in
slow browsers. This is not enough to prevent null pointers or unexpected behavior when
executing main custom script. Suppose that main script is called index(), the entry
point of Javascript execution in page. The method must be declared as async as follows

async function index(){}

Any async method must await any time-consuming operation. For instance, the
following code waits for the webcam to be ready:

 const stream = await navigator.mediaDevices.
 getUserMedia(constraints);

To ensure that main index() method is not executed until opencv.js script has been
properly pre-processed, cv object exposes onRuntimeInitialized event, that is handled
by an inline callback or anonymous function, which in turns calls the async main
method index(). Namely, the first executable line of the page should be as follows,
making the whole script asynchronous, which ensures proper timing in slow devices.

cv['onRuntimeInitialized'] = () => { index(); }

4 Browser performance with opencv.js

To measure opencv.js operating speed, the following benchmark was arranged, us-
ing Javascript and opencv.js. Image was captured using USB webcam. HTML5 video
and canvas objects were resized to 640x480 pixels. Once the video stream started, each
frame was processed with an RGB-to-grayscale conversion by calling corresponding
opencv.js function. Only first 100 captured frames were processed. At each frame, its
corresponding elapsed time (partial time) was measured using Performance API. Av-
erage, minimum and maximum times were computed, and partial times were accumu-
lated to get total time for whole set. Once the loop is exited, script can build a text file,
delimited with blanks, which can be downloaded for analyzing and graphing purposes.

In order to take in account specific characteristics for each platform, a desktop PC,
a Raspberry Pi and three smartphones were used. PC was equipped with an Intel i7
processor 7700HQ, running Windows 10 Pro, with five mainstream browsers: Brave,
Chrome and Microsoft Edge Developer as Chromium-derived browsers, and Mozilla
Firefox and Microsoft Edge as other browses. Three different smartphone models were

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 54

selected to reflect differences among processor families: A Nokia 6.1 with Qualcomm
Snapdragon 636 (2018 midrange processor), a LG V20 with Qualcomm Snapdragon
821 (2016 high-end processor), and a Samsung Galaxy with Qualcomm 845 (2018
high-end processor) were used as clients. Table 1 shows devices, operating systems and
browsers used for benchmarks. For web server, a Raspberry Pi model 3B+ was used,
which hosted web application that generates the pages that performed measurements.

Based on time per each frame, a chart with average convergence in time was plotted,
which exhibited a sort of stabilization curve, asymptotical to a final, steady value. This
allowed to define two phases: a transient phase, when page is loaded and stream begins
to be processed, and a steady-state phase, when average elapsed times falls into the
band of 5%. This standard establishes that, when an output measure, variable in time,
falls within a band defined by an upper bound of 105% and a lower bound of 95%, with
respect to the final value, and stays within those limits in a permanent way, it is said
that the system has entered in steady state.

Fig. 3 shows PC evolution of average elapsed time per frame. In this graph, findings
are: Chrome browser was slowest (2.6 ms) but exhibited the fastest convergency: after
only 2 frames Chrome entered steady state. Firefox measurements are always rounded
to 1 ms, due to lack of support for Performance API, which difficult a proper compari-
son. Chromium-base browsers performed similarly in final figures (around 1.4 ms) and
exhibited long transient states (more than 90 frames). MS Edge browser was the all-
around top performer, with 0.714 ms per frame, and a transient time of about 40 frames.
Chrome and Edge exhibited a very stable performance frame after frame, while Chro-
mium-based and Firefox browsers were more sensitive at external events in the host
system, showing more deviation in a frame-by-frame basis.

Fig. 4 PC opencv.js average time per frame evolution

Fig. 5 shows opencv.js performance with smartphone browsers. Web pages were
the same than in PC benchmarks (Raspberry Pi web application). In smartphones,
browsers were stock Chrome, Brave and Mozilla Firefox. Some findings are as follows.
Mobile browsers do not exhibit a consistent behavior, fastest systems do no guarantee
fastest execution, e.g., LG V20 running Firefox, started 3 times slower than the same
browser running in Nokia 6.1, which is a midrange phone. This could be due to over-
head caused by custom UI layer in V20, that is absent in “pure” Android devices like
the Nokia. In addition, operating system optimization seems to be a key component,
since Nokia featured an Android v.9.0 (One), whereas the much powerful V20 ran an

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 55

older v.8.1. With Firefox, even the RPI system exhibited acceptable transient times (31
frames), whereas LG V20 transient time was almost 100 frames. The fastest system
was Samsung S9+, where all browsers yielded almost same figures. On Nokia 6.1, all
browsers exhibited excellent transient times, less than 20 frames. The fast-overall
browser for all mobile systems, despite processor speed, was Brave Browser.

Fig. 5 smartphone and embedded opencv.js average performance evolution

5 Conclusions

In this paper, good practices to program Javascript with opencv.js computer vision
library were presented, in order to get a common code for desktop, mobile an embedded
browser. Benchmark techniques and cautions to measure opencv.js basic operations
were also presented, with a discussion of obtained results. Modern browsers have come
to a mature age, yielding fast operation, solid and repeatable performance, low transient
times and dependable operation. Raspberry PI board, despite its limited computing re-
sources, can manage significant processing load with opencv.js, that allows even to
process real-time video tasks. Brave browser, a chromium-based version, exhibited best
figures for overall performance in a variety of mobile and desktop platforms, and it can
fulfill every image processing task with opencv.js. In conclusion, web pages with
opencv.js arise as the programming platform of the future, given the ease of program-
ming, wide availability and compatibility with internet standards.

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 56

References

[1] A. Haas, A. Rossberg, D. L. Schuff and B. L. Titzer, "Bringing the Web up
to Speed with WebAssembly," in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017), Barcelona, Spain, 2018.

[2] C. Lattner and V. Adve, "LLVM: A compilation framework for lifelong
program analysis & transformation," in International Symposium on Code
Generation and Optimization. CGO 2004., San Jose, CA. USA., 2004.

[3] Emscripten Contributors, "Emscripten compiler," [Online]. Available:
https://emscripten.org/docs/tools_reference/emcc.html. [Accessed 30 04 2019].

[4] Github, "Webassembly/Binaryen," Open source software, [Online].
Available: https://github.com/WebAssembly/binaryen. [Accessed 30 04 2019].

[5] W3C, "High Resolution Time Level 2," 01 03 2018. [Online]. Available:
https://www.w3.org/TR/hr-time-2/. [Accessed 30 04 2019].

[6] A. Zakai, "Emscripten: an LLVM-to-JavaScript compiler," in Companion to
the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR. USA., 2011.

SAIV, Simposio Argentino de Imágenes y Visión

48JAIIO - SAIV - ISSN: 2683-8990 - Página 57

