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Abstract 
FANCL is the catalytically active component of the 

Fanconi anemia (FA) DNA repair pathway that 

maintains genomic stability by recognizing and 

repairing interstand cross links (ICL), and DNA 

damage incurred during replication.  

The FA pathway is comprised of 22 genes, biallelic 

mutations in any one of these genes causes Fanconi 

anemia, a cancer pre-disposition syndrome 

characterized by chromosomal instability and 

hypersensitivity to DNA crosslinking agents, such as 

those used in chemotherapy like mitomycin C 

(MMC) (Niraj, Färkkilä et al., 2019).   

FANCL acts within the 9 protein FA "core complex" 

(FANCA, FANCG, FAAP20 (AG20), FANCC, 

FANCE, FANCF (CEF), FANCB, FANCL, 

FAAP100 (BL100) that forms in response to DNA 

damage.  Together with E2 conjugating enzyme 

Ube2t (FANCT), the E3 RING ligase FANCL 

monoubiquitinates FANCD2 and FANCI (ID2), this 

signals downstream repair processes, and is 

defective in 95% of all FA patients (Inc, 2014). 
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Identity 

Other names: PHF9, FAAP43, POG 

HGNC (Hugo): FANCL 

Location 

FANCL is located on 2p16.1 which is the short arm 

(p) of chromosome 2 at position 16.1 between base 

pairs 58,159,243 to 58,241,681. 

DNA/RNA 
FANCL has 2 described isoforms produced by 

alternative splicing. Isoform one (Q9NW38-1). Is 

known as the canonical isoform, while isoform 2 

(Q9NW38-2) differs from the canonical sequence at 

178-178: T--> TPQVNS. 

Figure 1:  Genomic context of FANCL on chromosome 2 (Adapted from NCBI). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/287763307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FANCL (FA complementation group L) van Twest S, Deans A 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(5) 190 
 

 
Figure 2:  Exons in FANCL gene. Colour coded to indicate ELF, DRWD, and RING finger domains. Adapted from 

Chandrasekharappa et al. 2013. 

Protein 

Description 

The FANCL gene encodes FANCL protein 

comprised of 375 amino acids with a molecular mass 

of 42905 Da. FANCL is comprised of 3 domains, an 

N-terminal E2-like fold (ELF), a novel double-RWD 

(DRWD) and C-terminal RING domain (Hodson, 

Purkiss et al., 2014). 

Expression 

From total RNA sequencing, FANCL was found to 

be expressed in adrenal gland (RPKM 2.1), prostate 

(RPKM 2.34), thymus (RPKM 2.1), and thyroid 

(RPKM 2.2) (Bioproject PRJNA280600 (PMID 

25970244).  

In another RNA sequencing project on 27 different 

tissues from 95 human individuals, FANCL was 

highly expressed in adrenal gland (RPKM 16.8),  

 

endometrium (RPKM 10.6), lymph nodes (RPKM 

8.5), ovary (RPKM 9.2), prostate (RPKM 8.5), and 

testis (RPKM 12) (Bioproject PRJEB4337, PMID 

24309898). 

Function 

FANCL the catalytically active part of the 9 protein 

Fanconi anemia (FA) core complex comprised of 

FANCB, FAAP100, FANCA, FANCG, FAAP20, 

FANCC, FANCE and FANCF that forms in 

response to DNA damage incurred during DNA 

replication in S-phase, or to detection of interstand 

cross links (ICL) (Ceccaldi, Sarangi et al., 2016). 

FANCL is an E3 ubiquitin ligase that specifically 

monoubiquitinates FANCD2 (at lysine 561) and 

FANCI (at lysine 523) (ID2; Note the FANCD2-

FANCI heterodimer "ID2" must not to be confused 

with the gene ID2) in the presence ofUBE2T 

(FANCT) to signal downstream DNA repair 

proteins. 

 

Figure 3:  A) Schematic of D2 monoubiquitination by E3 RING ligase FANCL and E2 conjugating enzyme. B) Ribbon diagram of 
FANCL with ELF domain (brown), DRWD domain (green), and RING domain (green).  C) Surface representation of protein 
binding domains on FANCL. The binding patch for ubiquitin (orange) is within the ELF domain, while the substrate binding 

domain (red) is in the DRWD domain, and the Ube2t binding domain (light purple) is in the RING domain. Figure from Specificity 
and disease in the ubiquitin system by Viduth K. Chaugule and Helen Walden in Biochemical Society Transactions Feb 2016, 44 

(1) 212-227; DOI: 10.1042/BST20150209. 
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Figure 4:  Schematic of Fanconi Anemia DNA damage response pathway. In response to interstrand cross links (ICL), or DNA 
damage from DNA replication, FANCM recruits the 9 protein core complex to DNA damage sites to monoubiquitinate FANC D2 

and I. The core complex is comprised of 3 sub-complexes AG20 (FANC A, G, FAAP20), BL100 (FANC B, L, FAAP100), and 
CEF (FANC C,E,F).  Dashed lines indicate groupings of sub-complexes, while triple lines indicate putative direct protein 

interactions. Within the core complex, FANCL has a RING E3 domain with ubiquitin ligase activity, but mutation in any one of the 
FA genes leads to defective DNA repair. Ubiquitinated ID2 is activated, and localized to chromatin in nuclear foci to interact with 
downstream DNA repair proteins (FANCD1, FANCD1, FANCN)  to repair DNA via homologous recombination. Once DNA repair 

is completed, USP1 deubiquitinates ID2 so that DNA damage response can be reinitiated. Figure adapted from 
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fancb 

 

FANCL is comprised of 3 distinct functional 

domains: the RING domain interacts with the E2 

conjugating enzyme UBE2T (FANCT), the central 

DRWD domain interacts with FANCD2, and the N-

terminal E2-like fold domain (ELF) domain interacts 

with ubiquitin (Hodson et al., 2014, Miles, Frost et 

al., 2015).  

Within the core complex, FANCL interacts as a 

subcomplex with FANCB and FAAP100 (Huang, 

Leung et al., 2014, van Twest, Murphy et al., 2017); 

both proteins stabilize FANCL (Rajendra, 

Oestergaard et al., 2014), and enhance it's activity 5-

fold in vitro assays (Ling, Ishiai et al., 2007).   

Along with FANCA, FANCG, FANCF, FANCL 

was found to interact directly with hairy enhancer of 

split 1 ( HES1), which is a part of the NOTCH1 

developmental pathway involved hematopoietic 

stem cell (HSC) self-renewal (Tremblay, Huang et 

al., 2008).   

Depletion of HES1 from cells resulted in FA-like 

phenotype with disrupted interaction between 

individual core complex proteins, increased cell 

sensitivity to DNA crosslinking agents, and reduced 

MMC-induced ID2 monoubiquitination (Tremblay 

et al., 2008).   

Finally HES1 did not interact FA-mutated core 

complex proteins. HSC defects and eventual bone 

marrow failure in FA patients may be linked to 

inability of HES1 to interact with a defective core 

complex (Tremblay et al., 2008, Tremblay, Huang et 

al., 2018). 

Mutations 
Germinal 

FANCL-associated Fanconi anemia is inherited in an 

autosomal recessive manner, and accounts for 0.2% 

of all FA cases (Wu, Liu et al., 2017). To date, there 

are only 9 documented cases of FANCL-associated 

FA (Ali, Kirby et al., 2009, Ameziane, Sie et al., 

2012, Chandrasekharappa, Lach et al., 2013, Meetei, 

de Winter et al., 2003, Vetro, Iascone et al., 2015, 

Wu et al., 2017).  

Of the 5 cases with phenotypic and genotypic data, 

four were severe, and one was mild. Two severe 

cases frame shift deletions in exon 4 and 6 that 

truncated FANC, resulted in postnatal mortality and 

presented with VACTERL association (vertebral 

defects, anal atresia, cardiac defects, 

tracheoesophageal fistula, renal malformations, and 

limb defects) (Vetro et al., 2015). Another case with 

homozygous frameshift insertion of exon 9 had a 

severe phenotype with esophageal atresia (Ameziane 

et al., 2012). Finally, a novel homozygous mutation 

c.822_823insCTTTCAGG (p.Asp275LeufsX13) 

had a typical FA presentation with progression to 

bone marrow failture and death at age 9 from acute 

myelomonocytic leukemia (AML-M4) (Wu et al., 



FANCL (FA complementation group L) van Twest S, Deans A 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(5) 192 
 

2017).  The patient with mild FANCL-associated FA 

had bi-allelic mutation (Ali et al., 2009). One allele 

had an in-frame 3-bp deletion c.1007_1009delTAT 

(p.Ile336_Cys337delinsSer) in exon 12 within the 

PHD/RING-finger domain that resulted in loss of 

one amino acid, isoleucine-336, and conversion of 

cysteine-337 to serine null mutation (produces non-

function protein). The other mutated allele had a 4-

bp duplication (c.1095_1098dupAATT 

(p.Thr367AsnfsX13) that resulted in a frameshift 

just outside the RING-finger domain in exon 14. 4-

bp duplication mutation is a hypomorphic mutation 

(produces partially functional protein) (Ali et al., 

2009).  

Sequencing screen of 27 FA cases with unidentified 

mutations uncovered 3 FANCL FA associated 

mutations: c.375-2033C>G (skips exons 4,6,7), 

c.375-2033 C>G (multiple splicing aberrations), 

c.1092G>A (skips exon 13), but didn't have 

corresponding phenotypic data 

(Chandrasekharappa et al., 2013). There is no 

phenotypic data for the first FANCL-associated FA 

patient that had exon 11 deletion and insertion of 

177-nt sequence (Meetei et al., 2003). 

Implicated in 

Fanconi Anemia 

Disease 

Biallelic mutations in FANCL, or any of the other 21 

FA pathway proteins is implicated in Fanconi 

Anemia (FA), a rare genetic condition that results in 

progressive bone marrow failure (pancytopenia), 

congenital malformations in 75% of patients (short 

stature, urogenital defects, café au lait spots, skeletal 

malformations), and cancer pre-disposition 

(primarily acute myeloid leukaemia, and certain 

solid tumours) (Alter, 2014).   

Mutations that result in loss-of-function of both 

FANCL alleles may correlate with more severe 

phenotypes (Vetro et al., 2015). Hydrocephalus-

VACTERL (vertebral, anal, cardiac, tracheo-

esophageal fistula, renal, and limb anomalies) 

syndrome has been reported in two FANCL-linked 

FA patients that died shortly after birth (Vetro et al., 

2015).  

Prognosis:  The prognosis for FA is poor as there is 

no cure, and the average lifespan is 20-30 years. If 

no congenital abnormalities are apparent at birth, 

patients are often diagnosed with FA when they 

present with aplastic anemia ages 8-10 (>700 fold 

risk) (Alter, 2014). Bone marrow transplants are 

often conducted to correct the haematological issues 

associated with FA, however due to faulty DNA 

repair FA patients retain high cancer risk particularly 

leukaemia, and head and neck squamous cell 

carcinomas (approximately 500 fold risk) 

(Shimamura  Alter, 2010).  

Diagnosis:  Diagnostics for FA is done with a 

chromosomal breakage test; when treated with 

interstand crosslinking agents such as mitomycin C 

(MMC) or diepoxybutane (DEB) FA cells exhibit 

high number chromosomal breakages, and 

abnormalities as compared to normal cells. 
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