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Abstract
We present Kohdista, which is an index-based algorithm for finding pairwise alignments between
single molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment
problem as automaton path matching, and the application of modern index-based data structures.
In particular, we combine the use of the Generalized Compressed Suffix Array (GCSA) index with
the wavelet tree in order to build Kohdista. We validate Kohdista on simulated E. coli data,
showing the approach successfully finds alignments between Rmaps simulated from overlapping
genomic regions. Lastly, we demonstrate Kohdista is the only method that is capable of finding
a significant number of high quality pairwise Rmap alignments for large eukaryote organisms in
reasonable time. Kohdista is available at https://github.com/mmuggli/KOHDISTA/.
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1 Introduction

There is a current resurgence in generating diverse types of data, to be used alone or in
concert with short read data, in order to overcome the limitations of short read data. Data
from an optical mapping system [3, 4] is one such example and has itself become more
practical with falling costs of high-throughput methods. For example, the current BioNano
Genomics Irys System requires one week and $1,000 USD to produce the Rmap data for
an average size eukaryote genome, whereas, it required $100,000 and six months in 20092.
These technological advances and the demonstrated utility of optical mapping in genome
assembly [16, 21, 22, 2, 5] have driven several recent tool development efforts [20, 10, 13].
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12:2 A Succinct Solution to Rmap Alignment

Genome-wide optical maps are ordered high-resolution restriction maps that give the
position of occurrence of restriction cut sites corresponding to one or more restriction enzymes.
These genome-wide optical maps are assembled using an overlap-layout-consensus approach
using raw optical map data, which are referred to as Rmaps. Hence, Rmaps are akin to reads
in genome sequencing. To date, however, there is no efficient, non-proprietary method for
finding pairwise alignments between Rmaps, which is the first step in assembling genome-wide
maps.

Several existing methods are superficially applicable to Rmap pairwise alignments but all
programs either struggle to scale to even moderate size genomes or require significant further
adaptation to the problem. Several methods exhaustively evaluate all pairs of Rmaps using
dynamic programming. One of these is the method of Valouev et al. [19], which is capable of
solving the problem exactly but requires over 100,000 CPU hours to compute the alignments
for rice [18]. The others are SOMA [15] and MalignerDP [13] which are designed only for
semi-global alignments instead of overlap alignments, which are required for assembly.

Other methods reduce the number of map pairs to be individually considered by initially
finding seed matches and then extending them through more intensive work. These include
OMBlast [10], OPTIMA [20], and MalignerIX [13]. These, along with MalignerDP, were
designed for a related alignment problem of aligning consensus data but cannot consistently
find high quality Rmap pairwise alignments in reasonable time as we show later. This is
unsurprising since these methods were designed for either already assembled optical maps or
in silico digested sequence data for one of their inputs, both having a lower error rate than
Rmap data.

Our contributions. In this paper, we present a fast, error-tolerant method for performing
pairwise Rmap alignment that makes use of a novel FM-index based data structure. Although
the FM-index can naturally be applied to short read alignment [11, 9], it is nontrivial to
apply it to Rmap alignment. The difficulty arises from: (1) the abundance of missing or false
cut sites, (2) the fragment sizes require inexact fragment-fragment matches (e.g. 1,547 bp and
1,503 bp represent the same fragment), (3) the Rmap sequence alphabet consists of all unique
fragment sizes and is so extremely large (e.g., over 16,000 symbols for the goat genome). The
second two challenges render inefficient the standard FM-index backward search algorithm,
which excels at exact matching over small alphabets. The first (and most-notable) challenge
requires a more complex index-based data structure be used to create an aligner that is robust
for insertion and deletion of cut sites. To overcome the mismatch cut site challenge while
still accommodating the other two, we develop Kohdista, an index-based Rmap alignment
program that is capable of finding all pairwise alignments in large eukaryote organisms.

We first abstract the problem to that of approximate-path matching in a directed acyclic
graph (DAG). The Kohdista method then indexes a set of Rmaps represented as a DAG,
using a modified form of the generalized compressed suffix array (GCSA), which is a variant
of the FM-index developed by Siren et al. [17]. The principle insight of our work is that while
GCSA is able to efficiently match all similar paths concurrently, it was designed for indexing
variations observed in a collection of sequences. In contrast, our work indexes variations
that are instead speculative, based on the Rmap error profile. Lastly, we demonstrate that
challenges posed by the inexact fragment sizes and alphabet size can be overcome, specifically
in the context of the GCSA, via careful use of a wavelet tree [7, 14].

We verify our approach on simulated E. coli Rmap data by showing that Kohdista
achieves similar sensitivity and specificity to Valouev et al., and with more permissive
alignment acceptance criteria 90% of Rmap pairs simulated from overlapping genomic regions.
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We also show the utility of our approach on larger eukaryote genomes by demonstrating that
existing published methods require more than 151 hours of CPU time to find all pairwise
alignments in the plum Rmap data; whereas, Kohdista requires 31 hours. Thus, we present
the first fully-indexed method capable of finding all match patterns in the pairwise Rmap
alignment problem.

2 Background

Throughout we consider a string (or sequence) S = S[1..n] = S[1]S[2] . . . S[n] of |S| = n

symbols drawn from the alphabet [1..σ]. For i = 1, . . . , n we write S[i..n] to denote the suffix
of S of length n− i+ 1, that is S[i..n] = S[i]S[i+ 1] . . . S[n], and S[1..i] to denote the prefix
of S of length i. S[i..j] is the substring S[i]S[i+ 1] . . . S[j] of S that starts at position i and
ends at j. Given a sequence S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and
integers i,j, rankc(S, i) is the number of times that c appears in S[1, i], and selectc(S, j) is
the position of the j-th occurrence of c in S.

Overview of Optical Mapping. From a computer science viewpoint, restriction mapping (by
optical or other means) can be seen as a process that takes in two sequences: a genome A[1, n]
and a restriction enzyme’s recognition sequence B[1, b], and produces an array (sequence) of
integers C, the genome restriction map, which we define as follows. First define the array of
integers C[1,m] where C[i] = j if and only if A[j..j + b] = B is the ith occurrence of B in A.
Then R[i] = (C[i]−C[i− 1]), with R[1] = C[1]− 1. In words, R contains the distance between
occurrences of B in A. For example, if we let B be act and A = atacttactggactactaaact
then we would have C = 3, 7, 12, 15, 20 and R = 2, 4, 5, 3, 5. In reality, R is a consensus
sequence formed from millions of erroneous Rmap sequences. The optical mapping system
produces millions of Rmaps for a single genome. It is performed on many cells of an organism
and for each cell there are thousands of Rmaps (each at least 250 Kbp in length in publicly
available data). The Rmaps are then assembled to produce a genome-wide optical map.
Like the final R sequence, each Rmap is an array of lengths — or fragment sizes — between
occurrences of B in A.

There are three types of errors that an Rmap (and hence with lower magnitude and
frequency, also the consensus map) can contain: (1) missing and false cuts, which are caused
by an enzyme not cleaving at a specific site, or by random breaks in the DNA molecule,
respectively; (2) missing fragments that are caused by desorption, where small (< 1 Kbp
) fragments are lost and so not detected by the imaging system; and (3) inaccuracy in the
fragment size due to varying fluorescent dye adhesion to the DNA and other limitations of
the imaging process. Continuing again with the example above where R = 2, 4, 5, 3, 5 is the
error-free Rmap: an example of an Rmap with the first type of error could be R′ = 6, 5, 3, 5
(the first cut site is missing so the fragment sizes 2, and 4 are summed to become 6 in R′); an
example of a Rmap with the second type of error would be R′′ = 2, 4, 3, 5 (the third fragment
is missing); and lastly, the third type of error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the
size of the third fragment is inaccurately given).

Frequency of Errors. In the optical mapping system, there is a 20% probability that a cut
site is missed and a 0.15% probability of a false break per Kbp, i.e., error type (1) occurs in
a fragment. Popular restiction enzymes in optical mapping experiments recognize a 6 bp
sequence giving an expected cutting density of 1 per 4096 bp. At this cutting density, false
breaks are less common than missing restriction sites (approx. 0.25∗ .2 = .05 for missing sites
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12:4 A Succinct Solution to Rmap Alignment

vs. 0.0015 for false sites per bp). The inaccuracy of the fragment sizes, i.e, error type (3),
follows a normal distribution with mean and variance assumed to be 0 bp and `σ2 (σ = .58
kbp), respectively [19].

Suffix Arrays, BWT and Backward Search. The suffix array [12] SAX (we drop subscripts
when they are clear from the context) of a sequence X is an array SA[1..n] which contains a
permutation of the integers [1..n] such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in lexicographic order. For a sequence
Y, the Y-interval in the suffix array SAX is the interval SA[s..e] that contains all suffixes
having Y as a prefix. The Y-interval is a representation of the occurrences of Y in X. For a
character c and a sequence Y, the computation of cY-interval from Y-interval is called a left
extension.

The Burrows-Wheeler Transform BWT[1..n] is a permutation of X such that BWT[i] =
X[SA[i]− 1] if SA[i] > 1 and $ otherwise [1]. We also define LF[i] = j iff SA[j] = SA[i]− 1,
except when SA[i] = 1, in which case LF[i] = I, where SA[I] = n. Ferragina and Manzini [6]
linked BWT and SA in the following way. Let C[c], for symbol c, be the number of symbols
in X lexicographically smaller than c. The function rank(X, c, i), for sequence X, symbol c,
and integer i, returns the number of occurrences of c in X[1..i]. It is well known that LF[i] =
C[BWT[i]] + rank(BWT,BWT[i], i). Furthermore, we can compute the left extension using C
and rank. If SA[s..e] is the Y-interval, then SA[C[c] + rank(BWT, c, s),C[c] + rank(BWT, c, e)]
is the cY-interval. This is called backward search [6], and a data structure supporting it is
called an FM-index.

To support rank queries in backward search, a data structure called a wavelet tree (see [7])
can be used. It occupies n log σ+o(n log σ) bits of space and supports rank queries in O(log σ)
time. Wavelet trees also support a variety of more complex queries on the underlying string
efficiently (see, e.g. [7]). One such query we will use in this paper is to return the set X of
distinct symbols occurring in S[i, j], which takes O(|X| log σ) time.

3 The Pairwise Rmap Alignment Problem

Given a genome A[1, n] and a restriction enzyme’s recognition sequence B[1, b], the optical
mapping system produces Rmaps, which are arrays of lengths—or fragment sizes—between
occurrences of B in A. The background section provides details on the optical mapping
process. Producing Rmap data is an error prone process. Thus, three types of errors can
occur: (1) missing and false cuts that delimit fragments; (2) missing fragments; and (3)
inaccuracy in the fragment sizes. For example, let R = 2, 4, 5, 3, 5 be an error-free Rmap,
then an example of an Rmap with the first type of error could be R′ = 6, 5, 3, 5 (the first cut
site is missing so the fragment sizes 2, and 4 are summed to become 6 in R′); an example of
a Rmap with the second type of error would be R′′ = 2, 4, 3, 5 (the third fragment is missing);
and lastly, the third type of error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the size of the
third fragment is inaccurately given)

The pairwise Rmap alignment problem aims to align one Rmap (the query) Rq against the
set of all other Rmaps in the dataset (the target). We denote the target database as R1 . . .Rn,
where each Ri is a sequence of mi fragment sizes, i.e, Ri = [fi1, .., fimi

]. An alignment
between two Rmaps is a relation between them comprising groups of zero or more consecutive
fragment sizes in one Rmap associated with groups of zero or more consecutive fragments in
the other. For example, given Ri = [4, 5, 10, 9, 3] and Rj = [10, 9, 11] one possible alignment
is {[4, 5], [10]}, {[10], [9]}, {[9], [11]}, {[3], []}. A group may contain more than one fragment
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(e.g. [4, 5]) when the restriction site delimiting the fragments is absent in the corresponding
group of the other Rmap (e.g [10]). This can occur if there is a false restriction site in one
Rmap, or there is a missing restriction site in the other. Since we cannot tell from only two
Rmaps which of these scenarios occurred, for the purpose of our remaining discussion it will
be sufficient to consider only the scenario of missed (undigested) restriction sites.

4 Methods

We now describe the algorithm behind Kohdista. Three main insights enable our index-
based aligner for Rmap data: 1) abstraction of the alignment problem to a finite automaton;
2) use of the GCSA for storing and querying the automaton; and 3) modification of backward
search to use a wavelet tree in specific ways to account for the Rmap error profile.

4.1 Finite Automaton

Continuing with the example in the background section, we want to align R′ = 6, 5, 3, 5 to
R′′′ = 2, 4, 7, 3, 5 and vice versa. To accomplish this we cast the Rmap alignment problem to
that of matching paths in a finite automaton. A finite automaton is a directed, labeled graph
that defines a language, or a specific set of sequences composed of vertex labels. A sequence
is recognized by an automaton if it contains a matching path: a consecutive sequence of
vertex labels equal to the sequence. We represent the target Rmaps as an automaton and
the query as a path in this context.

The automaton for our target Rmaps can be constructed as follows. First concatenate
the R1 . . .Rn together into a single sequence with each Rmap separated by a special symbol
which will not match any query symbol. Let R∗ denote this concatenated sequence. Hence,
R∗ = [f11, .., f1m1 , . . . , fn1, .., fnmn ]. Then, construct an initial finite automaton A = (V,E)
for R∗ by creating a set of vertices vi

1..v
i
m, one vertex labeled with each fragment length and

edges connecting them.Also, introduce to A a starting vertex v1 labeled with # and a final
vertex vf labeled with the character $. All other vertices in A are labeled with integral values.
This initial set of vertices and edges is called the backbone. The backbone by itself is only
sufficient for finding alignments with no missing cut sites in the query. The backbone of an
automaton constructed for a set containing R′ and R′′ would be #, 6, 5, 3, 5, 999, 2, 4, 3, 5$,
using 999 as an unmatchable value. Next, extra vertices (“skip vertices”) and extra edges are
added to A to allow for the automaton to accept all valid queries. Figure 1a(a) illustrates
the construction of A for a single Rmap with fragment sizes 2, 3, 4, 5, 6.

4.1.1 Skip Vertices and Skip Edges

We introduce extra vertices labeled with compound fragments to allow missing cut sites (first
type of error) to be taken into account in querying the target Rmaps. We refer to these as
skip vertices as they provide alternative path segments which skip past two or more backbone
vertices. Thus, we add a skip vertex to A for every o+ 1 length run of consecutive vertices in
the backbone where 1 < o < order and order is the maximum number of consecutive missed
cut sites to be accommodated. First order skip vertices are each labeled with the sum of two
consecutive backbone vertices. Second order skip vertices are each labeled with the sum of
three consecutive backbone vertices. The vertex labeled with 7 connecting 2 and 5 in 1a(a)
is an example of a skip vertex. Likewise, 5, 9, 11 are other skip vertices.

WABI 2018
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(a) An example automaton for an Rmap with fragment size sequence
2, 3, 4, 5, 6. The top half of vertices contains the label, which models
a fragment size in Kbp. The common prefixes of all suffixes spellable
from a vertex is written in the bottom half. Note that there is no
ordering of vertices such that all their corresponding suffixes are
in lexicographic order; the leftmost vertex labelled with “5” spells
suffixes beginning “5,4,...” as well as the suffix “5,9,6,$” while the
rightmost 5 spells the suffix “5,6,$”. (b) shows the prefix sorted
automaton corresponding to the one in (a). The leftmost vertex 5
has been duplicated and the outgoing edges of the previous version
have been divided between the new replacement instances. This
also divides the suffixes spellable from the prior version. Now the
three 5 vertices can be ordered based on their common prefixes as
[“5,4,...”,“5,6,$”, “5,9,6, $”].

BWT M F
$ 6

11
1 1

0
2 # 1

0
1

3 2 1
0

1

4 3
5

1
0

1
0

5,4 # 1 1
5,6,$ 4

7
1 1

0
5,9,6,$ # 1 1
6,$ 5

9
1 1

0
7 2 1

0
1

9,6,$ 3
5

1 1
0

11,$ 4
7

1 1
0

# $ 1
0
0

1

(b) Table listing the three arrays
storing the automaton in memory:
BWT, M, and F. Each row in the
table delimits elements associated
with a particular vertex.

Figure 1 Example automata and corresponding memory representation.

Finally, we add skip edges which provide paths around vertices with small labels in the
backbone. These allow a query with a missing fragment to still match.3 Hence, the addition
of skip edges allow for desorption (the second type of error) to be taken into account in
querying the target Rmaps.

4.2 Generalized Compressed Suffix Array
We index the automaton with the GCSA [17] for efficient storage and path querying. The
GCSA is a generalization of the FM-index for automata and we will explain the GCSA by
drawing on the definition of the (more widely known) FM-index. As stated in the background
section, the FM-index is based on the deep relationship between the SA and the BWT data
structures of the input string X. The BWT of an input string is formed by sorting all
characters of the string by the lexicographic order of the suffix immediately following each
character. The main properties the FM-index exploits in order to perform queries efficiently
are a) BWT[i] = X[SA[i]− 1]; and b) given that SA[i] = j, and C[c] gives the position of the
first suffix in SA prefixed with character c, then using small auxiliary data structures we can

3 Different smallness thresholds for query and target bias toward this scenario, avoiding backtracking in
the search.
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quickly determine k = C[BWT[i]] + rank(BWT,BWT[i], i), such that SA[k] = j − 1. The first
of these properties is simply the definition of the BWT. The second is, because the symbols
of X occur in the same order in both the single character prefixes in the suffix array and
in the BWT, given a set of sorted suffixes, prepending the same character onto each suffix
does not change their order. Thus, if we consider all the suffixes in a range of SA which
are preceded by the same symbol c, that subset will appear in the same relative order in
(another part of) SA: as a contiguous subinterval of the interval that contains all the suffixes
beginning with c. Thus by knowing where a symbol’s run begins in the SA and the rank of
an instance of that symbol, we can identify the SA position beginning with that instance
from its position in BWT. A rank data structure over the BWT thus constitutes a sufficient
compressed index of the suffix array needed for traversal.

To generalize the FM-index to automata (from strings), we need to efficiently store the
vertices and edges in a manner such that the FM-index properties still hold, allowing the
GCSA to support queries efficiently. An FM-index’s compressed suffix array for a string S
encodes a relationship between each suffix S and its left extension. Hence, this suffix array
can be generalized to edges in a graph that represent a relationship between vertices. The
compressed suffix array for a string is a special case where the vertices are labeled with the
string’s symbols in a non-branching path.

4.2.1 Prefix-sorted Automata

Just as backward search for strings is linked to suffix sorting, backward searching in the
BWT of the automaton requires us to be able to sort the vertices (and a special set of the
paths) of the automaton in a particular way. In [17] this property is called prefix-sortedness.
Let A = (V,E) be a finite automaton, let v|V | denote its terminal vertex, and let v ∈ V be a
vertex. We say v is prefix-sorted by prefix p(v) if the labels of all paths from v to v|V | share
a common prefix p(v), and no path from any other vertex u 6= v to v|V | has p(v) as a prefix
of its label. Automaton A is prefix-sorted if all vertices are prefix-sorted. See Figure 1a for
an example of a non-prefix sorted automaton and a prefix sorted automaton. A non-prefix
sorted automaton can be made prefix sorted through a process of duplicating vertices and
their incoming edges but dividing their outgoing edges between the new instances (see [17]).

Clearly the prefixes p(v) allow us to sort the vertices of a prefix-sorted automaton into
lexicographical order. Moreover, if we consider the list of outgoing edges (u, v), sorted by
pairs (p(u), p(v)), they are also sorted by the sequences `(u)p(v), where `(u) denotes the
label of vertex u. This (dual sortedness) property allows backward searching to work over
the list of vertex labels (sorted by p(v)) in the same way that is does for the symbols of a
string ordered by their following suffixes in normal backward search for strings.

Each vertex has a set of one or more preceding vertices and therefore, a set of predecessor
labels in the automaton. These predecessor label sets are concatenated to form the BWT.
The sets are concatenated in the order defined by the above mentioned lexicographic ordering
of the vertices. Each element in BWT then denotes an edge in the automaton. Another array
of bits, F, marks a ‘1’ for the first element of BWT corresponding to a vertex and a ‘0’ for
all subsequent elements in that set. Thus, the predecessor labels, and hence the associated
edges, for a vertex with rank r are BWT[select(r)..select(r+ 1)]. Another array, M, stores the
out degree of each vertex and allows the set of vertex ranks associated with a BWT interval
to be found using rank() queries.

WABI 2018



12:8 A Succinct Solution to Rmap Alignment

4.3 Exact Matching: GCSA Backward Search
Exact matching with the GCSA is similar to the standard FM-index backward search
algorithm. As outlined in the background section, FM-index backward search proceeds
by finding a succession of lexicographic ranges that progressively match longer and longer
suffixes of the query string, starting from the rightmost symbol of the query. The search
maintains two items — a lexicographic range and an index into the query string — and the
property that the path prefix associated with the lexicographic range is equal to the suffix of
the query marked by the query index. Initially, the query index is at the rightmost symbol
and the range is [1..n] since every path prefix matches the empty suffix. The search continues
using GCSA’s backward search step function, which takes as parameters the next symbol (to
the left) in the query (i.e. fragment size in Rq) and the current range, and returns a new
range. The query index is advanced leftward after each backward search step. In theory,
since the current range corresponds to a consecutive range in the BWT, the backward search
could use select() queries on a bit vector F to determine all the edges adjacent to a given
vertex and then two FM-index LF() queries are applied to the limits of the current range
to obtain the new one. GCSA’s implementation uses one succinct bit vector per alphabet
symbol to encode which symbols precede a given vertex instead of F. Finally, this new range,
which corresponds to a set of edges, is mapped back to a set of vertices using rank() on the
M bit vector.

4.4 Inexact Matching: GCSA Backward Search Using a Wavelet Tree
We modified GCSA backward search in the following ways: (1) we used a wavelet tree to
allow efficient retrieval of substitution candidates; (2) we modified the search process to
combine consecutive query fragments into compound fragments so as to match fragments in
R∗ missing the interposing restriction site; and (3) we introduced backtracking, in order to
both try size substitution candidates as well as various combinations of compound fragments.
These modifications are further detailed below.

First, in order to accommodate possible errors in fragment size, we determine a set, D,
of candidate fragment sizes that are similar to the next fragment of Rq to be matched in
the query. These candidates are determined by enumerating the distinct symbols in the
currently active backward-search range of the BWT4 using the wavelet tree algorithm of
Gagie et al. [7]. This method was proposed by Muggli et al. [14] for use with an FM-index
but was not directly applicable to the originally proposed implementation of GCSA. This is
because some of GCSA’s theoretical constructs (i.e. F ) were substituted in implementation
for efficiency reasons. In order to apply the aforementioned wavelet tree method, we thus
resurrect the previously theoretical only bit array F (which we encode succinctly) as well
as symbol array BWT (which we encoded with a wavelet tree) into Kohdista using the
SDSL-Lite library by Gog et al. [8].

To accommodate possible restriction sites that are present in the query Rmap but
absent in target Rmaps, we generate compound fragments (i.e. new symbols) by summing
pairs and triples of consecutive query fragment size and then querying the wavelet tree for
substitutions of these compound fragments. This summing of multiple consecutive fragments
is complementary to the skip vertices in the target automaton and accommodates missed
restriction sites in the target, just as the skip vertices accommodate missed sites in the query.

4 Recall that this active range, when applied to a lexicographic range, represents the suffixes whose
prefixes are the matched portion of the query, while the same range of the BWT contains possible
extension symbols.
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Lastly, since there may be multiple match candidates in the BWT interval of R∗ for a
compound fragment generated from Rq and multiple compound fragments generated at a
given position in Rq, we employ the common practice of adding backtracking to backward
search (as is done, for example in the works of Li et al. and Langmead et al.). This is so that
each candidate size returned to the search algorithm from the wavelet tree is evaluated; i.e.,
for a given compound fragment size f generated from Rq, every possible candidate fragment
size, f ′, that can be found in R∗ in the range f − t . . . f + t and in the interval s . . . e (of the
BWT of R∗) for some tolerance t is used as a substitute in the backward search.

5 Results and Discussion

We evaluated Kohdista against the other available optical map alignment software. Our
experiments measured runtime, peak memory, and alignment quality on simulated E. coli
Rmaps and experimentally generated plum Rmaps. All experiments were performed on Intel
Xeon computers with ≥ 16 GB RAM running 64-bit Linux.

5.1 Performance on Simulated E.coli Rmap Data

To verify the correctness of our method, we simulated a read set from a 4.6 Mbp E. coli
reference genome as follows: we started with 1,400 copies of the genome, and then generated
40 random loci within each. These loci form the ends of molecules that would undergo
digestion. Molecules smaller than 250 Kbp were discarded leaving 272 molecules with a
combined length equating to 35x coverage depth. The cleavage sites for the XhoI enzyme were
then identified within each of these simulated molecules. We removed 20% of these at random
from each simulated molecule to model partial digestion. Finally, normally distributed noise
was added to each fragment with a standard deviation of .58 kb per 1 kb of the fragment.
Simulated molecule pairs having 16 common conserved digestion sites become the “ground
truth”5 data for testing our method with the others. Although a molecule would align
to itself, these are not included in the ground truth set. This method of simulation was
based on the E. coli statistics given by Valouev et al. [18] and resulting in a molecule length
distribution as observed in publicly available Rmap data from OpGen, Inc.

Most of the tools were designed for less noisy data but in theory could address all the
data error types required. For tools with tunable parameters, we tried aligning the E. coli
Rmaps with combinations of parameters for each method related to its alignment score
thresholds and error model parameters. We used parameterization giving results similar to
those for the default parameters of Valouev et al.’s method to the extent such parameters
did not significantly increasing each tool’s runtime. These same parameterization were used
in the next section on plum data.

Even with tuning, we were unable to obtain pairwise alignments on E. coli for two
methods. We found OPTIMA only produced self alignments with its recommended overlap
protocol and report its resource use in Table 1. For MalignerIX, even when we relaxed the
parameters to account for the greater sizing error and mismatch cut site frequency, it was
also only able to find self alignments. This is expected as by design it only allows missing
sites in one sequence in order to run faster. Thus no further testing was performed with

5 Due to repeats in the restriction map, and apparent repeats at the resolution attainable through optical
measurement, some alignments beyond these are expected.
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Table 1 Performance on simulated E. coli dataset. Kohdista (lax) demonstrates that our
indexing and search method is capable of finding the majority of ground truth alignments when the
search is pruned to the more relaxed thresholds of χ2 < .02, Binom. < .5.

Method Time Memory Align-
ments

Recall Precision

Kohdista 20 s. 19.0 MB 907 702 / 4,305 (16%) 702 / 907 (77%)
Kohdista (lax) 373 s. 18.3 MB 8,545 3,925 / 4,305 (91%) 3,925 / 8,545 (46%)
Valouev et al. 148 s. 4.0 MB 742 699 / 4,305 (16%) 699 / 742 (94%)
MalignerDP 47 s. 6.0 MB 1,959 1,296 / 4,305 (30%) 1,296 / 1959 (66%)
OMBlast 116 s. 2,078 MB 1,008 806 / 4,305 (19%) 806 / 1008 (80%)
RefAligner 31 s. 81.2 MB 992 958 / 4,305 (22%) 948 / 992 (97%)
MalignerIX 4 s. 6.0 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)
OPTIMA 455 s. 10,756.5 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)

Table 2 Performance on Plum.

Method Time Memory Alignments

Kohdista 31 hours 7.4 GB 16,109,151
Valouev et al. 678 hours 60 MB 6,387
MalignerDP 214 hours 784 MB 568,744
OMBlast 151 hours 12.3 GB 424,730
RefAligner 90 hours 374 MB 10,039

MalignerIX or OPTIMA. We did not test SOMA [15] as earlier investigation indicate it
would not scale to larger genomes [14]. We omit TWIN [14] as it needs all cut sites to match.

Results on E. coli are presented in Table 1. Kohdista uses χ2 and binomial CDF
thresholds to prune the backtracking search when deciding whether to extend alignments to
progressively longer alignments. More permissive match criteria, using higher thresholds,
allows more Rmaps to be reached in the search and thus to be considered aligned, but it also
results in less aggressive pruning in the search, thus lengthening runtime. As an example,
note that when Kohdista was configured with a much relaxed CDF threshold of .5 and a
binomial CDF threshold of .7, it found 3,925 of the 4,305 (91%) ground truth alignments, but
slowed down considerably. This illustrates the index and algorithm’s capability in handling
all error types.

5.2 Performance on Plum Rmap Data
The Beijing Forestry University and other institutes assembled the first plum (Prunus mume)
genome using short reads and optical mapping data from OpGen Inc. We test the various
available alignment methods on the 139,281 plum Rmaps from June 2011 available in the
GigaScience repository. These Rmaps were created with the BamHI enzyme and have a
coverage depth of 135x of the 280 Mbp genome. For the plum dataset, we ran all the methods
which approach the statistical performance of the Valouev et al. method when measured
on E. coli. Thus, we omitted MalignerIX and OPTIMA because they had 0% recall and
precision on E. coli. Our results on this plum dataset are summarized in Table 2.

Kohdista was the fastest and obtained more alignments than the competing methods.
When configured with a χ2 CDF threshold of .02, it took 31 hours of CPU time to test all
Rmaps for pairwise alignments in the plum Rmap data. This represents a 21x speed-up over
the 678 hours taken by the exhaustive Valouev et al. method. The other non-proprietary
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Figure 2 All alignments found on plum were realigned using Valouev et al.’s dynamic programming
method. Their method finds the optimal alignment using a function balancing size agreement and cut
site agreement known as an s-score. (a) The s-score distribution for random pairs. (b) The Valouev
et al. software considers any pair with an s-score > 25 to be aligned. (c) Kohdista alignments tend
to have significantly higher s-scores than random. (d) MalignerDP alignments tend to have slightly
higher s-scores than random. (e) OMBlast alignments tend to have higher s-scores than random. (f)
BioNano’s commercial RefAligner method alignments tends to have a significantly higher s-scores
than random.

methods, MalignerDP and OMBlast, took 214 hours and 151 hours, respectively. These
results represent a 6.9x and 4.8x speed-up over MalignerDP and OMBlast. All methods used
less than 13 GB of RAM and thus, were considered practical from a memory perspective.

To measure the quality of the alignments, we scored each pairwise alignment using the
scoring scheme of Valouev et al. and present histograms of these alignment scores in Figure 2.
For comparison, we also scored and present the histogram for random pairs of Rmaps.
The Valouev et al. method produces very few but high-scoring alignments and although it
could theoretically be altered to produce a larger number of alignments, the running time
makes this prospect impractical (678 hours). Although Kohdista and RefAligner produce
high-quality alignments, RefAligner produced very few alignments (10,039) and required
almost 5x more time to do so. OMBlast and Maligner required significantly more time and
produced significantly lower quality alignments.
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6 Conclusion

In this paper, we demonstrate how finding pairwise alignments in Rmap data can be modelled
as approximate-path matching in a directed acyclic graph, and combining the GCSA with
the wavelet tree results in an index-based data structure for solving this problem. We
implement this method and present results comparing Kohdista with competing methods.
By demonstrating results on both simulated E. coli Rmap data and real plum Rmaps, we
show that Kohdista is capable of detecting high scoring alignments in efficient time. In
particular, Kohdista detected the largest number of alignments in 31 hours. RefAligner, a
proprietary method, produced very few high scoring alignments (10,039) and requires almost
5x more time to do so. OMBlast and Maligner required significantly more time and produced
significantly lower quality alignments. The Valouev et al. method produced high scoring
alignments but required more than 21x time to do.
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A Practical Indexing Considerations

A.1 Pruning the Search
Alignments are found by incrementally extending candidate partial alignments (paths in the
automaton) to longer partial alignments by choosing one of several compatible extension
matches (adjacent vertices to the end of a path in the automaton). To perform this search
efficiently, we prune the search by computing the χ2 and binomial CDF statistics of the
partial matches and use thresholds to ensure reasonable size agreement of the matched
compound fragments, and the frequency of putative missing cut sites. These values alter the
precision and recall as well as runtime. The statistical performance tradeoff of Kohdista
and competing methods is shown in Figure 3.

A.1.1 Size Agreement
We use the Chi-square CDF statistic to assess size agreement. This assumes the fragment
size errors are independent, normally distributed events. For each pair of matched compound
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fragments in a partial alignment, we take the mean between of the two as the assumed
true length and compute the expected standard deviation using this mean. Each compound
fragment deviates from the assumed true value by half the distance between them. These two
deviation values contribute two degrees of freedom to the Chi-square calculation. Thus each
deviation is normalized by dividing by the expected standard deviation, these are squared,
and summed across all compound fragments to generate the χ2 statistic. We use the standard
χ2 CDF function to compute the area under the curve of the probability mass function up
to this χ2 statistic, which gives the probability two Rmap segments from common genomic
origin would have a χ2 statistic no more extreme than observed. This probability is compared
to Kohdista’s chi-squared-cdf-thresh and if smaller, the candidate compound fragment is
assumed to be a reasonable match and the search continues.

A.1.2 Cut Site Error Frequency

We use the Binomial CDF statistic to assess the probability of the number of cut site errors
in a partial alignment. This assumes missing cut site errors are independent, Bernoulli
processes events. We account for all the putatively conserved cut sites on the boundaries
and those delimiting compound fragments in both partially aligned Rmaps plus twice the
number of missed sites as the number of Bernoulli trials. We use the standard binomial
CDF function to compute the sum of the probability density function up to the number of
non-conserved cut sites in a candidate match. Like the size agreement calculation above,
this gives the probability two Rmaps of common genomic origin would have the number of
non-conserved sites seen or fewer in the candidate partial alignment under consideration.
This is compared to the binom-cdf-thresh to decide whether to consider extensions to the
given candidate partial alignment. Thus, given a set of Rmaps and input parameters ρL

and ρU , we produce the set of all Rmap alignments that have a chi-square CDF statistic
less than ρU and a binomial CDF statistic less than ρL. Both of these are subject to the
additional constraint of a maximum consecutive missed restriction site run between aligned
sites of δ and a minimum aligned site set cardinality of 16.

A.1.2.1 Pruning Queries

One side effect of summing consecutive fragments in both the search algorithm and the target
data structure is that several successive search steps with agreeing fragment sizes will also
have agreeing sums of those successive fragments. In this scenario, proceeding deeper in the
search space will result in wasted effort. To reduce this risk, we maintain a table of scores
obtained when reaching a particular lexicographic range and query cursor pair. We only
proceed with the search past this point when either the point has never been reached before,
or has only been reached before with inferior scores.

A.1.2.2 Wavelet Tree Cutoff

The wavelet tree allows efficiently finding the set of vertex labels that are predecessors of the
vertices in the current match interval intersected with the set of vertex labels that would
be compatible with the next compound fragment to be matched in the query. However,
when the match interval is sufficiently small (< 750) it is faster to scan the vertices in BWT
directly.
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A.1.2.3 Quantization

The alphabet of fragment sizes can be large considering all the measured fragments from
multiple copies of the genome. This can cause an extremely large branching factor for the
initial symbol and first few extensions in the search. To improve the efficiency of the search,
the fragment sizes are initially quantized, thus reducing the size of the effective alphabet
and the number of substitution candidates under consideration at each point in the search.
Quantization also increases the number of identical path segments across the indexed graph
which allows a greater amount of candidate matches to be evaluated in parallel because they
all fall into the same BWT interval during the search. This does, however, introduce some
quantization error into the fragment sizes, but the bin size is chosen to keep this small in
comparison to the sizing error.

A.1.2.4 Example Traversal

A partial search for a query Rmap [3 kb, 7 kb, 6 kb] in Figure 1a and Table 1b given an
error model with a constant 1 kb sizing error would proceed with steps: 1. Start with the
semi-open interval matching the empty string [0..12). 2. A wavelet tree query on BWT would
indicate the set of symbols {5, 6, 7} is the intersection of two sets: 1.) The set of symbols
that would all be valid left extensions of the (currently empty) match string and 2.) The set
of size appropriate symbols that match our next query symbol (i.e. 6 kb, working from the
right end of our query) in light of the expected sizing error (i.e. 6kb +/- 1 kb). 3. We would
then do a GCSA backward search step on the first value in the set (5) which would yield
the new interval [4..7). This new interval denotes only nodes where each node’s common
prefix is compatible with the spelling of our current backward traversal path through the
automaton (i.e. our short path of just [5] does not contradict any path spellable from any of
the three nodes denoted in the match interval). 4. A wavelet tree query on the BWT for this
interval for values 7 kb +/- 1 kb would return the set of symbols 7. 5. Another backward
search step would yield the new interval [8..9). At this point our traversal path would be [7,
5] (denoted as a left extension of a forward path that we are building by traversing the graph
backward). The common prefix of each node (only one node here) in our match interval (i.e.
[7 kb]) is compatible with the path [7, 5]. This process would continue until backward search
returns no match interval or our scoring model indicates our repeatedly left extended path
has grown too divergent from our query. At this point backtracking would occur to find
other matches (e.g. at some point we would backward search using the value 6 kb instead of
the 5 kb obtained in step 2.)

A.1.2.5 Parameters Used

We tried OPTIMA with both “p-value” and “score” scoring and the allMaps option and
report the higher sensitivity “score” setting. We followed the OPTIMA-Overlap protocol of
splitting Rmaps into k-mers, each containing 12 fragments as suggested in [20]. For OMBlast,
we adjusted parameters maxclusteritem, match, fpp, fnp, meas, minclusterscore, and minconf.
For MalignerDP, we adjusted parameters max-misses, miss-penalty, sd-rate, min-sd, and max-
miss-rate and additionally filtered the results by alignment score. Though unpublished, for
comparison we also include the proprietary RefAligner software from BioNano. For RefAligner
we adjusted parameters FP, FN, sd, sf, A, and S. For Kohdista, we adjusted parameters
chi-squared-cdf-thresh and binom-cdf-thresh. For Valouev, we adjusted score_thresh and
t_score_thresh variables in the source. In Table 1 we report statistical and computational
performance for each method.
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OMBlast was configured with parameters meas=3000, minconf=0.09, minmatch=15 and
the rest left at defaults. RefAligner was run with parameters FP=0.15, sd=0.6, sf=0.2, sr=0.0,
se=0.0, A=15, S=22 and the rest left at deafults. MalignerDP was configured with parameters
ref-max-misses=2, query-miss-penalty=3, query-max-miss-rate=0.5, min-sd=1500, and the
rest left at defaults.

The software of Valouev et al. was run with default parameters except we reduced the
maximum compound fragment length (their δ parameter) from 6 fragments to 3. We observed
the software of Valouev et al. rarely included alignments containing more than two missed
restriction sites in a compound fragment.
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