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Abstract 25 

 26 

The advantages of synthetic bone graft substitutes over autogenous bone grafts include abundant graft volume, lack 27 

of complications related to the graft harvesting, and shorter operation and recovery times for the patient. We studied a 28 

new synthetic supercritical CO2 –processed porous composite scaffold of β-tricalcium phosphate and poly(L-lactide-co-29 

caprolactone) copolymer as a bone graft substitute in a rabbit calvarial defect.  30 

Bilateral 12 mm diameter critical size calvarial defects were successfully created in 18 rabbits. The right defect was 31 

filled with a scaffold moistened with bone marrow aspirate, and the other was an empty control. The material was assessed 32 

for applicability during surgery. The follow-up times were 4, 12, and 24 weeks. Radiographic and micro-CT studies and 33 

histopathological analysis were used to evaluate new bone formation, tissue ingrowth, and biocompatibility.  34 

The scaffold was easy to shape and handle during the surgery, and the bone-scaffold contact was tight when visually 35 

evaluated after the implantation. The material showed good biocompatibility and its porosity enabled rapid invasion of 36 

vasculature and full thickness mesenchymal tissue ingrowth already at four weeks. By 24 weeks, full thickness bone 37 

ingrowth within the scaffold and along the dura was generally seen. In contrast, the empty defect had only a thin layer of 38 

new bone at 24 weeks. The radiodensity of the material was similar to the density of the intact bone.  39 

In conclusion, the new porous scaffold material, composed of microgranular β-TCP bound into the polymer matrix, 40 

proved to be a promising osteoconductive bone graft substitute with excellent handling properties. 41 

 42 

  43 



1 Introduction 44 

 45 

Large critical size bone defects cannot heal without the osteoinductive or osteoconductive properties of a bone graft or its 46 

substitute [1]. Today, autologous bone grafts are considered to be the gold standard since they have good osteoinductive, 47 

osteoconductive, and osteogenic properties and induce no rejection in the body of the patient [2-4]. However, autologous 48 

bone grafting also has disadvantages, such as donor site pain, nerve or other soft tissue injuries, blood loss or hematoma 49 

formation, and also limited graft volume [2, 5-8]. In iliac crest bone graft harvesting procedures, the minor complication 50 

rate has varied between 7% and 39% and the major complication rate between 0.8% and 25% [3, 8]. 51 

Synthetic bone graft materials have been developed to minimize the complications related to autogenous bone graft 52 

harvesting. An optimal bone graft substitute should show good biocompatibility, facilitate tissue ingrowth, and stimulate 53 

new bone formation [1, 2]. The biodegradability of the material needs to be on a level where it gives enough structural 54 

support but also allows new bone regeneration to replace the decomposing material [1, 2, 9]. Commercially available 55 

bone grafts are either brittle ceramics, hard bioactive glass particles, or paste-like fillings [10, 11] that offer limited options 56 

in terms of shaping or tailoring the synthetic graft according to operational need.  57 

An option to increase the operational freedom for the surgeon and the resilience of ceramic-based bone graft substitute 58 

materials, is to use composite techniques to bind microgranular ceramic particles into a solid form with a biodegradable 59 

polymer matrix and to further foam the composite material into a structure that mimics bone. An example of such a 60 

structure is a supercritical CO2 -foamed composite of β-tricalcium phosphate and poly(L-lactide-co-caprolactone) 61 

copolymer (β-TCP/PLCL). The ceramic component, β-tricalcium phosphate (β-TCP), shows a similar composition and 62 

calcium phosphorus ratio as the mineral phase of native bone. Interestingly, its ability to promote bone healing was 63 

demonstrated already a hundred years ago [12]. Recently, the osteoconductive properties and biocompatibility of β-TCP 64 

have been shown in experimental and clinical studies [13-15]. β-TCP is mainly degraded in the body by dissolution, but 65 

a small amount of degradation is mediated by osteoclasts [16].  66 

The second component, poly(L-lactide-co-ε-caprolactone), is a copolymer of lactide and ε-caprolactone, and its 67 

biocompatibility has been demonstrated in various studies [17-19]. The biodegradability of the polymer is based on non-68 

enzymatic hydrolysis [19]. The porous and flexible nature of the β-TCP/PLCL scaffold enables an easy addition of bone 69 

marrow aspirate into the scaffold which in turn enhances its osteoinductive and osteogenic properties [11, 20]. Notably, 70 

bone marrow aspiration can be done percutaneously, for example, from the iliac crest, which has a significantly lower 71 

complication rate when compared with bone graft harvesting from the iliac crest [21].  72 

The main aim of the present study was to evaluate the tissue ingrowth, new bone formation, biocompatibility, and 73 

biodegradability of a new β-TCP/PLCL material in a 12 mm critical size calvarial defect in rabbits. In addition, we 74 

evaluated the applicability of the material during surgery.  75 

 76 

2 Materials and Methods 77 

 78 

2.1 β-TCP/PLCL composite scaffold 79 

 80 

Bioabsorbable porous composite scaffolds were manufactured by melt-mixing polylactide-co-ε-caprolactone 70L/30CL 81 

(PLCL; Purasorb PLC 7015, Corbion Purac Biomaterials, Gorinchem, The Netherlands) and β-tricalcium phosphate (β-82 

TCP; Plasma Biotal Ltd., Buxton, United Kingdom) with the mixing ratio of 50 wt-% of β-TCP in the composite. The 83 



composite rods were foamed by supercritical carbon dioxide into porous composite blocks with the porosity of 65% and 84 

an average pore size of 380 µm ± 150 µm measured by µ-CT (MicroXCT-400, Zeiss) with a resolution of 5 µm. After 85 

foaming, the blocks were cut into 2.4 mm (± 0.5 mm) thick plates and gamma-irradiated for sterility with a minimum 86 

dose of 25 kGy.  87 

 88 

2.2 Surgical procedures 89 

 90 

The study and surgical protocols were approved by the Finnish Animal Experiment Board (ESAVI/5398/04.10.07/2014). 91 

Furthermore, the study complied with Finnish legislation on animal experimentation and the European Union Directive 92 

2010/63/EU. All efforts were taken to minimize the suffering and distress of the rabbits during the study. 93 

A total of twenty female New Zealand White Rabbits aged from 18 to 32 weeks were operated. The rabbits were 94 

sedated with subcutaneous injection of medetomidine 0.3 mg/kg (Domitor® 1 mg/mL, OrionPharma) and ketamine 35 95 

mg/kg (Ketador vet® 100 mg/mL, Richter Pharma). All the rabbits received 0.9% sodium chloride with 5% glucose 10 96 

mL/kg/h intravenously during the procedure. Preoperatively, 15 mg/kg trimethoprime-sulfa (Duoprim® 200/40 mg/mL, 97 

Intervet International), 4 mg/kg carprophen (Norocarp® 50 mg/mL, Norbrook Laboratories), and 0.03 mg/kg 98 

buprenorphine (Bupaq® 0.3 mg/mL, Richter Pharma) were given intravenously. Anesthesia was maintained with 1.5% 99 

isoflurane (IsoFlo® vet 100%, Abbott Laboratories) via endotracheal tube or mask. If needed, intravenous boluses of 100 

ketamine 10 mg/kg or propofol (Vetofol® 10 mg/mL, Norbrook Laboratories) 2 mg to 5 mg/rabbit were given to effect. 101 

The top of the head and the lateral side of the stifle joint were clipped and prepared for aseptic surgery. Strict aseptic 102 

surgical protocols were followed during the procedure. 103 

A midline sagittal skin incision was made from behind the ears to the level of the first cervical vertebrae. The 104 

periosteum was incised from the midline and elevated to reveal the bone surface of the parietal bones. A custom-made 12 105 

mm diameter trephine was used to mark the round defects on both parietal bones. Bicortical craniotomy was made by 106 

using a 2.5 mm and 4 mm diameter burr with continuous saline irrigation [Electric Pen Drive (EPD), DePuy Synthes].  107 

During the operation, scaffold plates were press-cut into 12 mm diameter discs with a trephine from prefabricated 108 

oversized plates. Bone marrow aspirate was collected with a 2 cc syringe and 21 G needle from a 3.2 mm diameter 109 

monocortical drill hole in the lateral femoral condyle and used for moistening the scaffold. Moistening was performed by 110 

squeezing the scaffold in a sterile elastic pouch filled with aspirate so that the porous structure would be fully moistened. 111 

The bone marrow aspirate was used to promote osteogenic and osteoinductive properties. The right defect was filled with 112 

scaffold by bending it along the shape of the skull. The left one served as an empty control. The surgical field was then 113 

flushed with saline before closure. The periosteum and the skin were closed in layers with 4-0 poliglecaprone 25 114 

(Monocryl®, Ethicon). 115 

Postoperatively, a subcutaneous injection of atipametzole (Antisedan® 5 mg/mL, OrionPharma) was given. For 116 

control of postoperative pain, the rabbits received a subcutaneous injection of buprenorphine 0.03 mg/kg two to three 117 

times a day for three days and carprophen 4 mg/kg once a day for two days. The rabbits also received a subcutaneous 118 

injection of metoclopramide 0.2 mg/kg (Primperan® 5 mg/mL, Sanofi) to increase the intestinal motility twice a day for 119 

one day. Hay and water were freely available. After two weeks of restricted cage rest, the rabbits were removed to a large 120 

group housing area. 121 

Two rabbits were lost at the early stage of the experiment and were excluded from the follow-up studies. One rabbit 122 

had a cardiac arrest at the end of the surgical procedure, and the other one was lost three days after the operation. In post 123 



mortem necropsy, an injury in the left hemisphere of the cerebral cortex was found.  124 

 125 

2.3 Applicability of the scaffold 126 

 127 

The applicability of the scaffold was subjectively evaluated by the surgeons during the surgical procedures. The focus 128 

was on intraoperative shaping of the scaffold, possible crumbling of the scaffold during handling, the ability to fully 129 

moisten the scaffold with the bone marrow aspirate harvested from the femoral condyle, the ability to fill the defect, and 130 

visual evaluation of the bone-scaffold interface. The bone-scaffold interface was evaluated to ascertain whether the 131 

contact between the scaffold and bone was tight or not.  132 

  133 

2.4 Specimen collection  134 

 135 

The 18 rabbits were randomly divided in groups of six animals and euthanized 4, 12, and 24 weeks after the surgery. 136 

Euthanasia was performed with subcutaneous injection of 0.3 mg/kg medetomidine and 35 mg/kg ketamine followed by 137 

intracardiac injection of pentobarbital 300 mg/rabbit (Mebunat vet 60 mg/mL, Orion Pharma). The parietal bone blocks 138 

including the defects and the intact bone around them were harvested with an EPD diamond coated circular burr.  139 

  140 

2.5 Radiographic examination 141 

 142 

After the surgical procedure, a dorsoventral radiograph (Practix 400, Philips, 46 kV and 4.0 mAs) of the skull was taken. 143 

The radiographs were used to evaluate the location of the defects and the radiographic opacity of the scaffold.  144 

After euthanasia, the harvested bone blocks were radiographed. A dorsoventral projection (46 kV, 4.0 mAs) of the 145 

skull was taken. The new bone formation in the empty defect was subjectively evaluated as no new bone formation, a 146 

small amount of new bone formation, or obvious new bone formation. Possible fractures, cyst formation, an excessive 147 

amount of callus or signs of osteomyelitis were recorded.  148 

 149 

2.6 Micro-CT imaging 150 

 151 

A micro-CT study (MicroXCT-400, Zeiss, Pleasanton, CA, USA) was performed on all of the harvested bone blocks 152 

before histologic preparation. A tube voltage of 110 kV and a tube current of 91 µA were selected. From each sample, 153 

1600 projections were taken with a 19.97 x 19.97 x 19.97 µm voxel size. Exposure time was 4 seconds. Projections were 154 

reconstructed with the manufacturer’s XMReconstructor software. Image processing and analysis were done with Avizo 155 

Software (Thermo Fisher Scientific, Waltham, MA, USA).  156 

 157 

2.6.1 Total amount of radiodense material 158 

 159 

The total amount of radiodense material from the scaffold filled defect and the empty defect was assessed from the micro-160 

CT images. A 12 mm in diameter and 4 mm in height cylinder shaped area was manually placed on the center of the defect 161 

and used as a volume of interest for the assessment.  162 

 163 



2.6.2 Distribution of radiodense material 164 

 165 

Radiodense material distribution over the defects was evaluated with a novel method (Fig. 1). To create the distribution 166 

map, a 3D-image of the skull was flattened to the 2D-image where one pixel represented a column of voxels in a 3D-167 

picture. Each rabbit had its own individual radiodensity scale where 0 was air and 1 was mean radiodensity of the intact 168 

calvarian bone around the defect. Each pixel in the 2D-picture had the same radiodensity as the highest value in the 3D-169 

picture voxel column. Eleven measurement lines per defect were measured from the 2D-picture. The length of the 170 

measurement line was 14 mm. There were 100 measurement points in each measurement line. Those measurement point 171 

areas covered an area of 100 x 1000 µm, and the radiodensity of that area was the mean radiodensity of the all pixels in 172 

that area. A total of 1100 measurements per defect were measured. There were 40 µm cap between the measured areas in 173 

the measurement lines. Otherwise, the measured areas were in contact with each other. MathLab (The MathWorks, Inc., 174 

Natick, MA, USA) was used to create a graph of the mean radiodensities in each follow-up group (Fig. 2). 175 

2.7 Histological analysis 176 

 177 

The harvested bone blocks were fixed in 10% buffered formalin, dehydrated in ascending alcohol series, and embedded 178 

in methyl methacrylate (MMA). Then, 5 µm thin slices were sectioned from the midline of the defect using a hard tissue 179 

microtome (Leica, SM2500) and stained employing Weigert Van Gieson (WVG) and Masson-Goldner Thrichrome (MT) 180 

methods.  181 

The evaluation of the biocompatibility of the scaffold included the subjective grading of implant decomposition, 182 

osteogenesis, and histiocytic reaction on the surface of the implant using a four-tier scale (+/- = minimal, + = mild, ++ = 183 

moderate and +++ = marked). A descriptive histopathological analysis of the empty defects was then performed.  184 

 185 

2.8 Statistical analyses 186 

 187 

A Kolmogorov-Smirnov test was used to test the normal distribution of the data. Mann-Whitney test was used to compare 188 

groups at different follow-up times. Bonferroni correction was used. Wilcoxon Signed Rank test was used to compare 189 

scaffold groups with the empty defect groups. The tests were two-tailed. A p-value under 0.05 was considered as 190 

statistically significant. IMB SPSS (version 23, Armonk, NY, USA) was used for the statistical analyses. 191 

 192 

3 Results  193 

 194 

3.1 Applicability of the scaffold 195 

 196 

At room temperature, the scaffold material was relatively rigid and easy to cut with a trephine. During handling, however, 197 

the material temperature increased close to body temperature, and thereby its elasticity was increased. The increased 198 

elasticity of the material enabled easy impregnation of bone marrow aspirate. Furthermore, due to the elasticity of the 199 

scaffold, it was easily squeezed and bent into the defect. Therefore, the convex shape of the lateral side of the skull did 200 

not complicate the implantation or influence bone scaffold contact. In all scaffold filled defects, the bone-scaffold contact 201 

in the interface was tight when visually evaluated after the implantation. No visible particle loosening from the scaffold 202 

occurred during the press-cut, during the moistening of the scaffold in a squeezing bag, or during the implantation. 203 



   204 

3.2 Radiographic examination 205 

 206 

During the postoperative radiographic examination, the scaffold could not be distinguished from the skull bones in any 207 

of the radiographs. The empty defect was visible in 3 out of 18 (17%) rabbits due to a summation of other calvarial 208 

structures. 209 

In post-mortem radiographs from the parietal bone blocks, the density of the scaffold-filled defects was comparable 210 

with the density of the intact skull next to the defect. The only visible change in the scaffold side was that the structure of 211 

the scaffold turned from homogenous to more heterogenous and grainy during the follow-up period. Excessive callus 212 

formation, signs of osteomyelitis, or bone cyst formation were not seen in any scaffold-filled defects during the whole 213 

study period.  214 

In post mortem radiographs from the bone blocks, the radiodensity of the empty defect increased with time. At 4 215 

weeks, 2 out of 6 defects showed no new bone formation, two had a small amount of new bone formation, and two had 216 

obvious new bone formation. At 12 weeks, 2 out of 6 defects showed a small amount of new bone formation, and four 217 

had obvious new bone formation. At 24 weeks, all six defects showed obvious new bone formation. Despite the new bone 218 

formation, the empty defects in all groups were apparent, and the radiodensity was lower than the density of the scaffold-219 

filled defects or the intact skull next to the defects. 220 

 221 

3.3 MicroCT imaging 222 

 223 

Typical micro-CT images of bone growth from the scaffold-filled and empty defects are shown in Figure 3. 224 

 225 

3.3.1 Total amount of radiodense material 226 

 227 

The total amount of radiodense material in the 12 mm calvarian defects analyzed by micro-CT from the volumes of 228 

interest are presented in Table 1. The defects filled with β-TCP/PLCL composite scaffold had a similar level of 229 

radiodensity at 4 and 12 weeks (31.6% and 30.1%, respectively). However, the total amount of radiodense material 230 

decreased significantly (p = 0.03) by 22.4% between weeks 12 and 24.   231 

In the empty defects, the radiodense material filled 7.5% of the volume of interest at 4 weeks increasing up to 11.0% 232 

and 11.4% at 12 and 24 weeks, respectively. The changes in the amounts of radiodense material were not, however, 233 

statistically significant between any of the groups. 234 

The total amount of radiodense material was significantly (p = 0.028) higher throughout the follow-up times in the 235 

scaffold-filled defects compared with the empty defects.  236 

 237 

3.3.2 Distribution of radiodense material 238 

 239 

The distribution graph of radiodense material in the scaffold-filled and empty defects presented in Figure 2 shows that 240 

the mean radiodensity of the scaffold-filled defects was maintained close to the radiodensity of an intact skull throughout 241 

the defect in all groups. Slightly lower radiodensities were seen at 24 weeks.  242 

In the empty defects, the mean radiodensity was lower than that of the intact skull. The radiodensity inside the defects 243 



near the edge increased at 12 and 24 weeks, and at 24 weeks also in the middle of the defects.  244 

 245 

3.4 Histologic evaluation 246 

 247 

Already at 4 weeks, tissue reaction to the scaffold consisted of a network of tissue trabeculae advancing from the bone 248 

walls of the defect into the porous material. The trabeculae were composed of an abundant vascular network, 249 

mesenchymal cells with a moderate number of multinucleated giant foreign body cells and macrophages, and even 250 

included some small woven bone nidi surrounded by osteoid. In addition, loose cell strands and erythrocytes admixed 251 

with the scaffold (Fig. 4a).  252 

At 12 and 24 weeks, the trabeculae exhibited a mesenchymal core, occasionally showing osteoblast differentiation 253 

and variable vascularization as well as small to moderate-sized woven bone spicules and nidi surrounded by osteoid. The 254 

trabeculae were flanked by moderate to marked histiocytic reaction with ample macrophages and multinucleated giant 255 

foreign body cells (Table 3; Fig. 4a). At 12, and especially at 24 weeks, osteogenesis proceeded variably along the dural 256 

and superficial periosteum further to the trabeculae. 257 

Based on histology, the scaffolds showed moderate to marked decomposition already at 4 weeks, further advancing 258 

from 12 to 24 weeks. At 12 weeks, the scaffold material was actively degraded, and the scaffold area appeared to be 259 

reduced to approximately 50%. At 24 weeks, macrophages and multinucleated giant cells continued to be abundant and 260 

the scaffold area reduced, pointing to progressing histological decomposition (Table 3; Fig. 4a). 261 

The empty defects seemed to regenerate by intramembranous ossification, osteogenesis mainly proceeding along the 262 

dural periosteum (Fig. 4b). At 4 weeks, small mineralized bone islands, osteoid and highly vascularized connective tissue 263 

spanned over the defect. At 12 and 24 weeks, mineralized bone with a thin osteoid rim covered approximately 30% to 264 

60% of the length of the defect but remained substantially thinner than intact calvarial bone. Notably, muscle and adipose 265 

tissue bulged into the defect from the skull surface (Fig. 4b).  266 

 267 

4 Discussion  268 

 269 

In our study, the new β-TCP/PLCL scaffold showed osteoconductive properties as previously demonstrated on pure 270 

β-TCP granules in calvarial defects of several different species [22-24]. Osteoconductive materials are recommended to 271 

be used in conjunction with bone marrow aspirate or with a bone graft, creating material with osteoconductive, 272 

osteoinductive, and osteogenic properties [11, 20]. Bone marrow aspirate was used in this study to improve the properties 273 

of the osteoconductive material. Mineralized bone and osteoid were not only seen along the scaffold but also inside the 274 

scaffold increasingly at all follow-up times. This ability to promote three-dimensional tissue regeneration can most likely 275 

be explained by the high porosity of the scaffold (65%), and an average pore size (380 µm) that mimics that of cancellous 276 

bone [25]. Previously, Tsuruga et al. [26] showed that an average pore size larger than 300 µm results in higher 277 

osteogenesis than smaller pore sizes. In our study, the high porosity and optimal pore size enabled effective vascularization 278 

and mesenchymal tissue ingrowth throughout the scaffold already at 4 weeks. The vascularization and thus high 279 

oxygenation is needed for tissue ingrowth and new bone formation [27]. A considerable amount of mesenchymal tissue 280 

inside the scaffold was also seen at all follow-up times. This is also a relevant finding since the mesenchymal tissue has 281 

been shown to have the ability to differentiate into bone tissue [16]. 282 

During surgery, the moldable β-TCP/PLCL scaffold filled the whole bony defect and seemed to give structural support. 283 



This was confirmed in histology since the surrounding muscles and adipose tissues did not invade into the defect. This is 284 

an important finding because soft tissues bulging into the defect significantly hinder the bone regeneration process [28]. 285 

This was also apparent in the empty defects in this study, where bulging of soft tissues occupied the space and only a thin 286 

layer of new bone followed the dural periosteum. This finding is in accordance with previous studies where in calvarial 287 

defects new bone formation along the dura is reported to be the principal regeneration type [28, 29]. Notably, the scaffold-288 

filled defects also exhibited pronounced dural osteogenesis in addition to bone ingrowth into the porosity of the scaffold, 289 

and new bone formation appeared to slow down from 12 to 24 weeks. It is thus possible that the degradation of the 290 

material was not fast enough from 4 to 24 weeks to enable enough space for accelerated new bone formation inside the 291 

scaffold. Accordingly, new bone formation in scaffolds has been shown to be slower than in β-TCP granule-filled defects 292 

because the material decreases the space available for new bone formation [24, 29, 30]. On the other hand, fast degradation 293 

of a filling material may lead to premature loss of structural support, and therefore may not lead to desirable or faster new 294 

bone formation. Further studies are needed to see the effect of material degradation on bone formation with longer follow-295 

up times.  296 

In our study, the rapid invasion of vasculature, mesenchymal tissue, and bone implied that the biocompatibility of the 297 

material was good with no signs of adverse reactions, such as purulent inflammation, necrosis or fibrosis around the 298 

scaffold material. Typical foreign body reaction with histiocytes, macrophages, and multinucleated giant cells was 299 

observed at all time points, especially at 12 and 24 weeks. This reaction is associated with the degradation process of the 300 

scaffold and is seen with other materials, such as hydroxyapatite and β-TCP [15, 31-33]. 301 

The drawback with existing synthetic ceramic or bioactive glass scaffolds is their brittle and hard nature [10, 34]. 302 

Thus, the intraoperative molding or shaping of these materials is usually difficult [34] and pure ceramics may create 303 

excessive stress on the surrounding tissues during implantation and may even cause fissures to the bone cortex [35]. The 304 

cohesion between the tissues and pure ceramics is also lower than the cohesion of autografts, which might cause particles 305 

to spread around the surgical field during implantation [35, 36]. Grafting near the joints might cause loose particles to 306 

migrate between joint surfaces, and thus create third-body wear [37]. In our study, the new β-TCP/PLCL scaffold was 307 

easily moldable and adaptable to the anatomical convex contour of the skull, even though the ceramic concentration of 308 

the scaffold was 50 weight-%. Because of its elasticity, the scaffold could be compressed during implantation, and it could 309 

also be fitted tightly into the defect. There was no visible ceramic particle loosening from the scaffold at any stage of the 310 

procedure, i.e., during moistening of the scaffold with the marrow aspirate in a squeezing pouch or during implantation.  311 

As shown in a canine calvarial model, pure β-TCB has higher radiodensity than intact bone, and thus the implant area 312 

can be easily distinguished from the bone tissue [23]. In this study, the mixture of micro-granule β-TCB and PLCL-313 

polymer produced a composite material with a very similar radiodensity to intact calvarial bone in the radiographs. In 314 

fact, the radiodensities of the bone and the scaffold materials were so similar that it was not possible to differentiate them 315 

from each other in the micro-CT study. The textural change of the scaffold from homogenous to grainier and heterogenous 316 

during the follow-up period was probably due to scaffold degradation and tissue ingrowth. The total amount of radiodense 317 

material and the mean radiodensity analyzed by micro-CT, was affected by the non-dissolved β-TCP microgranules in the 318 

scaffold-filled defects, and therefore the analysis result is a combination of new bone and the ceramic phase of the scaffold. 319 

Sanda et al. [38] reported a similar amount of radiodense material in both 4- and 8-week groups in rabbits with an 8 mm 320 

diameter calvarial defect filled with pure β-TCB granules. In their study, histomorphometric analysis confirmed that there 321 

was no mass loss of TCP during the 8 weeks. In our study, the decrease of radiodense material in the scaffold-filled defect 322 

started between 12 and 24 weeks. This finding is in accordance with the histological evaluation.  323 



A 15 mm diameter defect has been classically defined as a critical size defect in a rabbit calvarial [39]. The new bone 324 

formation will plateau after 12 weeks in a 15 mm calvarial defect [24, 40, 41]. In this study, a significant increase in new 325 

bone formation after 4 weeks was not observed and the total amount of radiodense material in the empty defects plateaued 326 

to approximately 11%. Correspondingly, histopathology confirmed that new bone formation proceeded only as a thin 327 

layer or islands accompanying the dura. Nowadays, an alternative definition for critical size defect is a defect that will 328 

not spontaneously heal during the time of the experiment [28], and therefore smaller defects have also been used in various 329 

calvarial defect studies [42-44]. The findings of this study support this definition, and therefore a 12 mm calvarial defect 330 

can be considered as a critical size defect in this study.  331 

  332 

5 Conclusion 333 

 334 

This study presented the potentiality of a new supercritical CO2-foamed poly(L-lactide-co-caprolactone) copolymer β-335 

tricalcium phosphate composite scaffold in three-dimensional tissue regeneration in a critical sized rabbit calvarial defect 336 

model. β-TCP was successfully utilized in the scaffold to provide an osteoconductive surface for bone ingrowth, and the 337 

interconnected pore structure enabled abundant vascularization and full thickness tissue ingrowth throughout the material. 338 

The resilient composite structure could be cut to shape and compressed into the bone defect. As a result, the composite 339 

scaffold was easier to use and more versatile than most of the available products used for bone regeneration. 340 
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 452 

 453 
Table 1. The total amount of radiodense material in the defects measured using micro-CT. The volume of interest was a 

12 mm in diameter and 4 mm in height cylinder-shaped area centered in the middle of the defect. SD = standard deviation. 

 Scaffold-filled defect Empty defect 

 N Mean (SD) p- values N Mean (SD) p- values 

4 weeks 6 31.6% (2.83) 1.011 (4 vs 12) 

0.12 (4 vs 24)        

6 7.5% (3.23) 0.165 (4 vs 12) 

0.165 (4 vs 24) 

12 weeks 6 30.1% (2.24) 0.03 (12 vs 24)     6 11.0% (1.30) 2.247 (12 vs 24) 

24 weeks 6 22.4% (5.19)  6 11.4% (1.58)  

 454 
 455 
 456 
 457 

Table 2. Osteogenesis, histiocytic reaction on scaffold surface and scaffold decomposition were graded using a scale from 

+/- to +++. Number of animals per group was 6. 

 +/-, slight +, mild ++, moderate +++, marked 

Osteogenesis  

4 weeks 4/6 2/6   

12 weeks 2/6 3/6 1/6  

24 weeks 1/6 4/6  1/6   

Histiocytic reaction  

4 weeks  3/6  3/6   

12 weeks    6/6 

24 weeks   2/6 4/6 

Implant decomposition  

4 weeks   6/6  

12 weeks   2/6  4/6 

24 weeks    6/6 

 458 

  459 



 460 

Fig. 1 461 

Method for the radiodensity of the defect. A 2D-figure was created based on the highest radiodensity of a voxel column 462 

in a 3D-picture. There were 11 measurement lines going along the defect. In each measurement line, there were 100 463 

measurement areas. Each measurement area was given the value of a mean radiodensity of the 250 pixels in the area. 464 
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 467 

Fig. 2  468 

Mean radiodensities of the defects at 4, 12, and 24 weeks (n = 6). In this analysis, 1 (yellow) is the radiodensity of the 469 

intact skull, and 0 (blue) is the radiodensity of the air. The scaffold-filled area has visually similar radiodensities at the 470 

follow-up times. At 24 weeks, a small decrease in the radiodensity of the scaffold-filled defect (defect turning from yellow 471 

to orange) is seen. In the empty defect, the mean radiodensity is lower than the density of an intact skull. Radiodensity 472 

increase inside the defect around the edges at 12 and 24 weeks and also in the middle of the defect at 24 weeks. 473 



 474 

Fig. 3  475 

Micro-CT image from different animals at 4, 12, and 24 weeks. In the empty defect there are small islands of bone inside 476 

the defect. Pictures from the top and bottom side and also in the middle of the defect show typical bone regeneration at 477 

different times in the scaffold-filled defects. Bone has been manually colored to yellow in the sliced picture. The new 478 

bone formation is advancing along the dura and periosteum, but advanced new bone formation inside of the scaffold was 479 

seen when the follow-up time increased. The scaffold-bone interface looked tight in all groups. 480 



 481 

Fig. 4  482 

 483 

A: Histology of the bone regeneration, ingrowth into the scaffold and typical tissue reactions at 4, 12, and 24 weeks. At 4 484 

weeks, the scaffold is invaded by mesenchymal cell strands (arrows), ample vasculature/erythrocytes (open arrow heads), 485 

and some multinucleated giant cells (red arrow heads). Lacy to opalescent scaffold material (open arrows) is poorly 486 

discernible. At 12 and 24 weeks, invading tissue trabeculae show mesenchymal core and variable vascularization as well 487 

as mineralized bone islands (green) surrounded by osteoid (closed arrow heads). The trabeculae are flanked by moderate 488 

to marked histiocytic reaction with large multinucleated giant cells. B: Histology of the empty defects at 4, 12, and 24 489 

weeks. The empty defects regenerate by intramembranous ossification, osteogenesis mainly proceeding along the dural 490 

periosteum (asterisk) showing mineralized bone islands, osteoid/ossifying mesenchyme (closed arrow heads) in 491 

vascularized connective tissue. Muscle and adipose tissue (red asterisks) bulge into the defect. MT stain, objective 492 

magnification 5x. 493 
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