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RIGIDITY OF COMPOSITION OPERATORS ON THE

HARDY SPACE Hp

JUSSI LAITILA, PEKKA J. NIEMINEN, EERO SAKSMAN, AND HANS-OLAV TYLLI

Abstract. Let φ be an analytic map taking the unit disk D into itself. We
establish that the class of composition operators f 7→ Cφ(f) = f◦φ exhibits
a rather strong rigidity of non-compact behaviour on the Hardy space Hp,
for 1 ≤ p < ∞ and p 6= 2. Our main result is the following trichotomy,
which states that exactly one of the following alternatives holds: (i) Cφ is
a compact operator Hp → Hp, (ii) Cφ fixes a (linearly isomorphic) copy
of ℓp in Hp, but Cφ does not fix any copies of ℓ2 in Hp, (iii) Cφ fixes a
copy of ℓ2 in Hp. Moreover, in case (iii) the operator Cφ actually fixes
a copy of Lp(0, 1) in Hp provided p > 1. We reinterpret these results
in terms of norm-closed ideals of the bounded linear operators on Hp,
which contain the compact operators K(Hp). In particular, the class of
composition operators on Hp does not reflect the quite complicated lattice
structure of such ideals.

1. Introduction and preliminaries

Let D = {z ∈ C : |z| < 1} be the unit disk in C. For 0 < p <∞ the analytic

function f : D→ C belongs to the Hardy space Hp if

(1.1) ‖f‖pp = sup
0≤r<1

∫

T

|f(rξ)|pdm(ξ) <∞,

where T = ∂D (identified with [0, 2π]) and dm(eit) = dt
2π . Let φ : D → D be

an analytic self-map of D. It is a well-known consequence of the Littlewood

subordination principle, see e.g. [9, 3.1], that the composition operator

f 7→ Cφ(f) = f ◦ φ

is bounded Hp → Hp for any φ as above. Properties of these composition

operators have been studied very extensively during the last 40 years on various

Banach spaces of analytic functions on D, see [9] and [34] for comprehensive

expositions of the early developments of the area. The compactness of Cφ on

Hp is well understood, and there are several equivalent characterisations in the

literature. To exhibit a specific criterion recall that Shapiro [33] established
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that Cφ is a compact operator Hp → Hp if and only if

(1.2) lim
|w|→1

N(φ,w)

log(1/|w|)
= 0.

Above N(φ,w) is the Nevanlinna counting function of φ defined by N(φ,w) =∑
z∈φ−1(w) log(1/|z|) for w ∈ φ(D) (counting multiplicities). Finer gradations

of compactness were obtained e.g. by Luecking and Zhu [26], who charac-

terised the membership of Cφ in the Schatten p-classes on H2. Moreover, the

approximation numbers of Cφ on H2 were estimated in [19], [20] and [21], as

well as on Hp in [22].

The purpose of this paper is to demonstrate that composition operators on

Hp only allow a small variety of qualitative non-compact behaviour compared

to that of arbitrary bounded operators on Hp. Let E,F and X be Banach

spaces. It will be convenient to say that the bounded linear operator U : E →

F fixes a copy of X in E if there is an infinite-dimensional subspace M ⊂ E,

M linearly isomorphic to X, for which U|M is bounded below on M , that is,

there is c > 0 so that ‖Ux‖ ≥ c · ‖x‖ for all x ∈ M . We use the standard

notation M ≈ X for linearly isomorphic spaces M and X, and refer to [1], [23]

and [39] for general background related to the theory of Banach spaces.

The trichotomy contained in Theorem 1.1 below is the main result of this

paper. Let Eφ = {eiθ : |φ(eiθ)| = 1} be the boundary contact set of the

analytic map φ : D→ D. Here, and in the sequel, we use φ(eiθ) to denote the

a.e. radial limit function of φ on T. It is part of the trichotomy that (1.2)

together with the simple condition

(1.3) m(Eφ) = 0

completely determine the composition operators which fix copies of the sub-

space ℓp or ℓ2 in Hp. Recall that the known compactness results for Cφ on

H2 yield that (1.2) implies (1.3), but the class of symbols φ satisfying (1.3) is

much larger than that of (1.2), see e.g. [34, Chap. 10].

In the statement below we exclude the Hilbert space H2, where the situation

is known and much simpler, since part (ii) does not occur for p = 2 (cf. the

discussion following Theorem 1.2). We use K(E) to denote the class of compact

operators E → E for any Banach space E, and take into account the known

characterisation of the composition operators Cφ ∈ K(Hp).

Theorem 1.1. Let 1 ≤ p < ∞, p 6= 2, and φ be any analytic self-map of D.

Then there are three mutually exclusive alternatives:

(i) Cφ is compact on Hp,

(ii) Cφ fixes a copy of ℓp in Hp, but does not fix any copies of ℓ2 in Hp,

(iii) Cφ fixes a copy of ℓ2 (as well as of ℓp) in Hp. In this case, if 1 < p <∞

and p 6= 2, then Cφ also fixes a copy of Lp(0, 1) in Hp.

Furthermore, regarding the above alternatives
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(i) takes place if and only if Shapiro’s condition (1.2) holds,

(ii) takes place if and only if (1.2) fails to hold but m(Eφ) = 0,

(iii) takes place if and only if m(Eφ) > 0.

In particular, Cφ ∈ K(Hp) if and only if Cφ does not fix any copies of ℓp in

Hp.

Theorem 1.1 is obtained by combining Theorems 1.2, 1.4 and 1.5 stated

below, which also contain more precise information. For this purpose we first

recall some standard linear classes that classify the behaviour of non-compact

operators. Let E, F and X be Banach spaces, and L(E,F ) be the space of

bounded linear operators from E to F . The operator U ∈ L(E,F ) is called

X-singular if U does not fix any copies of X in E. We denote

SX(E,F ) = {U ∈ L(E,F ) : U is X-singular},

and put Sp(E,F ) = Sℓp(E,F ) to simplify our notation in the case of X = ℓp.

Recall further that U ∈ L(E,F ) is strictly singular, denoted by U ∈ S(E,F ),

if U is not bounded below on any infinite-dimensional linear subspaces M ⊂ E.

It is clear that K(E,F ) ⊂ S(E,F ) ⊂ Sp(E,F ) for any Banach spaces E and

F , and it is known that the classes S(E,F ) and Sp(E,F ) define norm-closed

operator ideals in the sense of Pietsch [29] for any 1 ≤ p ≤ ∞ (cf. [38, p. 289]

for the case of Sp).

Part of Theorem 1.1 is contained in the following dichotomy, which we also

relate to the known characterisation of the compact composition operators on

Hp.

Theorem 1.2. Let 1 ≤ p < ∞ and let φ : D→ D be any analytic map. Then

either Cφ ∈ K(Hp), or else Cφ /∈ Sp(H
p). Equivalently, Cφ fixes a copy of ℓp

in Hp if and only if (1.2) does not hold.

The above theorem holds for p = 2 because of the general fact due to Calkin

that K(H2) = S(H2) = S2(H
2) for the Hilbert space H2, see e.g. [29, 5.1-5.2].

For 1 < p <∞ and p 6= 2 one has that

(1.4) S(Hp) = S2(H
p) ∩ Sp(H

p).

This follows from the characterisation of S(Lp) by Weis [38] combined with the

well-known fact that Hp ≈ Lp ≡ Lp(0, 1), see e.g. [24, 2.c.17]. By contrast,

for p 6= 2 all the inclusions

(1.5) K(Hp)  S(Hp), S(Hp)  S2(H
p), S(Hp)  Sp(H

p)

are strict. This is easily deduced from the facts that Hp ≈ Lp contains com-

plemented subspaces isomorphic to ℓp and ℓ2, whereas any U ∈ L(ℓp, ℓq) is

strictly singular for p 6= q, see e.g. [23, 2.c.3]. Thus Theorem 1.2 states that

for p 6= 2 the compactness of composition operators Cφ ∈ L(Hp) is a fairly
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rigid property as compared to (1.4) and (1.5) for arbitrary operators. It is also

convenient to rephrase this as follows:

Corollary 1.3. For 1 ≤ p <∞ the following conditions are equivalent for any

analytic map φ : D→ D:

(i) φ satisfies (1.2),

(ii) Cφ ∈ K(Hp),

(iii) Cφ ∈ S(Hp),

(iv) Cφ ∈ Sp(H
p).

The first result (excluding the case H2) in the direction of Theorem 1.2 and

Corollary 1.3 is due to Sarason [31], who showed that Cφ is weakly compact

H1 → H1 if and only if it is compact. Jarchow [15, p. 95] pointed out that as

a consequence Cφ ∈ K(H1) if and only if Cφ is weakly conditionally compact

on H1, that is, Cφ ∈ S1(H
1) in view of Rosenthal’s ℓ1-theorem, see e.g. [23,

2.e.5]. Hence the case p = 1 in Theorem 1.2 and Corollary 1.3 was known

earlier. We refer to Subsection 4.1 for a list of further references to analogous

rigidity results for composition operators on several (classical) Banach spaces

E of analytic functions on the unit disk D.

The lattice structure of the operator norm-closed ideals of L(Hp) ≈ L(Lp)

containing the compact operators is quite complicated for 1 < p < ∞ and

p 6= 2, see e.g. [29, 5.3.9] and [32]. For instance, Sp(H
p) and S2(H

p) are

mutually incomparable classes, since Hp ≈ Lp contains complemented copies

of ℓ2 and ℓp. However, note that Corollary 1.3 implies that if Cφ ∈ L(Hp)

fixes a copy of ℓ2 in Hp, then Cφ must also fix a copy of ℓp in Hp. These

facts raise the problem whether it is possible to explicitly determine the ℓ2-

singular composition operators on Hp. In turns out in Theorem 1.4 below that

condition (1.3) characterises this class, thus providing a finer classification of

the non-compact Cφ ∈ L(Hp) for 1 ≤ p < ∞ and p 6= 2. We stress that

Theorem 1.4 (as well as the subsequent Theorem 1.5) does not hold for H2.

Theorem 1.4. Let 1 ≤ p < ∞, p 6= 2, and φ : D → D be an analytic map.

Then Cφ fixes a copy of ℓ2 in Hp if and only if m(Eφ) > 0. Equivalently,

Cφ ∈ S2(H
p) if and only if (1.3) holds.

Cima and Matheson [7] have shown that (1.3) characterises the completely

continuous composition operators Cφ ∈ L(H1). As a significant strengthening

of Theorem 1.4 we are further able to show that for p > 1 (and p 6= 2) condition

(1.3) actually describes the operators Cφ which belong to the class SLp(Hp).

Here SLp(Hp) is the maximal non-trivial ideal of L(Hp), see [10, p. 103]. To

state the relevant result let hp be the harmonic Hardy space consisting of the

harmonic functions f : D→ C normed by (1.1).

Theorem 1.5. Let 1 < p < ∞, p 6= 2, and φ : D → D be an analytic map.

Then the following conditions are equivalent:
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(i) φ satisfies m(Eφ) = 0,

(ii) Cφ ∈ SLp(Hp), that is, Cφ does not fix any copies of Lp in Hp,

(iii) Cφ ∈ SLp(hp),

(iv) Cφ ∈ S2(H
p).

The paper is organised as follows. The proof of Theorem 1.2 is given in

Section 2. The argument is based on explicit perturbation estimates, where

the starting point is a known test function reformulation of the compactness

criterion (1.2). The proofs of Theorems 1.4 and 1.5 are contained in Section

3. Although these results are connected we have stated them separately, since

the argument for the ℓ2-singularity in Hp also holds for p = 1. By contrast

the proof of Theorem 1.5 relies on properties of hp = Lp(T,m) for 1 < p <

∞, and it depends on the non-trivial fact due to Dosev et al. [10] that the

class SLp(Lp) ≈ SLp(hp) is additive. Section 4 contains a number of further

comments and open problems. As an application of Section 3 we characterise

the ℓ2-singular compositions Cφ ∈ L(VMOA). As an additional motivation

we also indicate a connection between a weaker version of Corollary 1.3 and a

general extrapolation result [14] for operators on Lp-spaces.

A starting point for this paper was a question by Jonathan Partington about

the strict singularity of composition operators on Hp for p 6= 2. We are in-

debted to Manuel González, Francisco Hernández and Dimitry Yakubovich for

timely questions towards Theorems 1.4 and 1.5.

2. Proof of Theorem 1.2

For a ∈ D and fixed 0 < p <∞ let

ga(z) =
(1− |a|2)1/p

(1− az)2/p
, z ∈ D.

Here ‖ga‖p = 1, since for p = 2 the corresponding function is the normalised

reproducing kernel in H2 associated to a ∈ D. The proof of Theorem 1.2 is

based on the following criterion: Cφ ∈ K(Hp) if and only if

(2.1) lim sup
|a|→1

‖Cφ(ga)‖p = 0.

This is a restatement using the test functions (ga) ⊂ Hp of a well-known

characterisation of the compact operators Cφ ∈ L(Hp) in terms of vanishing

Carleson pull-back measures, see [9, Thm. 3.12.(2)] (such a characterisation

was first obtained by MacCluer [27] in the case of Hp(BN ) for N > 1, where

BN is the open euclidean ball in CN ). Alternatively, (2.1) is stated explicitly

for p = 2 in e.g. [33, 5.4], whereas the compactness of Cφ : Hp → Hp is

independent of p ∈ (0,∞) e.g. by [9, Thm. 3.12.(2)]. After these preparations

we proceed to the proof itself.
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Proof of Theorem 1.2. Suppose that Cφ /∈ K(Hp), where 1 ≤ p < ∞. We will

show by an explicit perturbation argument that Cφ fixes a linearly isomorphic

copy of ℓp in Hp.

Since condition (2.1) fails there is d > 0 and a sequence (an) ⊂ D so that

|an| → 1 as n→ ∞ and

(2.2) ‖Cφ(gan)‖p ≥ d > 0

for all n ∈ N. We may further assume without loss of generality that an → 1 as

n→ ∞. Namely, we may pass to a convergent subsequence in D and compose

φ with a suitable rotation of D that defines a linear isomorphism of Hp.

Our starting point is the phenomenon that (gan) admits subsequences which

are small perturbations of a disjointly supported sequence in Lp(T,m), and

hence span an isomorphic copy of ℓp. The crux of the argument is that this

can be achieved simultaneously for further subsequences of (Cφ(gan)), and the

following claim actually contains the basic step of the argument:

Claim 2.1. There is a subsequence of (an), still denoted by (an) for simplicity,

for which there are constants c1, c2 > 0 so that

(2.3) c1 · ‖(bj)‖ℓp ≤

∥∥∥∥
∞∑

j=1

bjCφ(gaj )

∥∥∥∥
p

≤ c2 · ‖(bj)‖ℓp for all (bj) ∈ ℓp.

Assuming Claim 2.1 momentarily, the proof of Theorem 1.2 is completed by

using this claim a second time (formally in the case where φ(z) = z for z ∈ D)

to extract a further subsequence of (gan), still denoted by (gan), so that

(2.4) d1 · ‖(bj)‖ℓp ≤

∥∥∥∥
∞∑

j=1

bjgaj

∥∥∥∥
p

≤ d2 · ‖(bj)‖ℓp for all (bj) ∈ ℓ
p,

for suitable constants d1, d2 > 0. Then by combining (2.3) and (2.4) we get
∥∥∥∥

∞∑

j=1

bjCφ(gaj )

∥∥∥∥
p

≥ c1‖(bj)‖p

≥ c1d2
−1

∥∥∥∥
∞∑

j=1

bjgaj

∥∥∥∥
p

,

so that the restriction of Cφ defines a linear isomorphism M → Cφ(M), where

M = span{gaj : j ∈ N} ≈ ℓp.

Let A = {ξ ∈ T : the radial limit φ(ξ) exists} and

Eε = {ξ ∈ A : |φ(ξ)− 1| < ε}

for ε > 0. Recall that T \ A has measure zero. The proof of Claim 2.1 is an

argument of gliding hump type based on the following auxiliary observation.

Lemma 2.2. Let φ and (gan) be as above, where an → 1 as n→ ∞. Then
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(L1)
∫
T\Eε

|Cφ(gan)|
pdm→ 0 as n→ ∞ for each fixed ε > 0,

(L2)
∫
Eε

|Cφ(gan)|
pdm→ 0 as ε→ 0 for each fixed n ∈ N.

Proof. Observe first that
∫

Eε

|Cφ(g)|
pdm→ 0

as ε→ 0 for any g ∈ Hp, since ∩ε>0Eε = {ξ ∈ A : φ(ξ) = 1} has measure 0 as

φ is non-constant. Moreover, if ε > 0 is fixed and ξ ∈ A \Eε, then there is nε
such that

|1− anφ(ξ)| = |1− φ(ξ) + φ(ξ)(1 − an)| ≥ |1− φ(ξ)| − |1− an| > ε/2

for all n ≥ nε. It follows that

|Cφ(gan)(ξ)|
p =

1− |an|
2

|1− anφ(ξ)|2
≤

4(1− |an|
2)

ε2
,

so that (L1) holds as n→ ∞. �

To continue the argument of Claim 2.1 recall that
∫
T
|Cφ(gan)|

pdm ≥ dp > 0

by condition (2.2). We may then use Lemma 2.2 inductively to find indices

j1 < j2 < . . . and a decreasing sequence εj > εj+1 → 0 so that

(i)
( ∫

Eεn
|Cφ(gajk )|

pdm
)1/p

< 4−nδd for all k = 1, . . . , n− 1,

(ii)
( ∫

T\Eεn
|Cφ(gajn )|

pdm
)1/p

< 4−nδd,

(iii)
( ∫

Eεn
|Cφ(gajn )|

pdm
)1/p

> d/2

for all n ∈ N. Here δ > 0 is a small enough constant (to be chosen later). In

fact, suppose that we have already found aj1 , . . . , ajn−1 and ε1 > . . . > εn−1

satisfying (i) - (iii). Then property (L2) from Lemma 2.2 yields εn < εn−1

such that ( ∫

Eεn

|Cφ(gajk )|
pdm

)1/p
< 4−nδd

for each k = 1, . . . , n − 1. After this use property (L1) from Lemma 2.2

together with (2.2) to find an index jn > jn−1 so that conditions (ii) and (iii)

are satisfied for the set Eεn .

In the interest of notational simplicity we relabel ajn as an for n ∈ N.

The idea of the argument is that the sequence (Cφ(gan)) essentially resemble

disjointly supported peaks in Lp(T,m) close to the point 1. We will next

verify the left-hand inequality in (2.3) by a direct perturbation argument. Let

b = (bj) ∈ ℓp be arbitrary. Our starting point will be the identity

(2.5)

∥∥∥∥
∞∑

j=1

bjCφ(gaj )

∥∥∥∥
p

p

=

∞∑

n=0

∫

Eεn\Eεn+1

∣∣∣∣
∞∑

j=1

bjCφ(gaj )

∣∣∣∣pdm,

where we set Eε0 = T.



8 JUSSI LAITILA, PEKKA J. NIEMINEN, EERO SAKSMAN, AND HANS-OLAV TYLLI

Observe first that for each n ∈ N we get that
(∫

Eεn\Eεn+1

|Cφ(gan)|
pdm

)1/p

=

(∫

Eεn

|Cφ(gan)|
pdm−

∫

Eεn+1

|Cφ(gan)|
pdm

)1/p

>

(
(
d

2
)p − (4−n−1δd)p

)1/p

≥
d

2
− 4−n−1δd

in view of (i) and (iii), where the last estimate holds because 0 < 1/p ≤ 1.

Moreover, note that
(∫

Eεn\Eεn+1

|Cφ(gaj )|
pdm

)1/p

< 2−n−jδd

for all j 6= n. In fact,
( ∫

Eεn\Eεn+1
|Cφ(gaj )|

pdm
)1/p

is dominated by 4−nδd

for j < n and by 4−jδd for j > n in view of (i) and (ii).

Thus we get from the triangle inequality in Lp, together with the preceding

estimates, that for all n ∈ N one has

( ∫

Eεn\Eεn+1

|

∞∑

j=1

bjCφ(gaj )|
pdm

)1/p

≥ |bn|

(∫

Eεn\Eεn+1

|Cφ(gan)|
pdm

)1/p

−
∑

j 6=n

|bj |

(∫

Eεn\Eεn+1

|Cφ(gaj )|
pdm

)1/p

≥ |bn|(
d

2
− 4−n−1dδ)− 2−nδd‖b‖p ≥

d

2
|bn| − 2−n+1δd‖b‖p.

By summing over n we get from the disjointness and the triangle inequality in

ℓp that
∥∥∥∥

∞∑

j=1

bjCφ(gaj )

∥∥∥∥
p

≥
( ∞∑

n=1

∣∣∣∣
d

2
|bn| − 2−n+1δd‖b‖p

∣∣∣∣
p)1/p

≥
d

2

( ∞∑

n=1

|bn|
p
)1/p

− δd‖b‖p

( ∞∑

n=1

2−(n−1)p
)1/p

≥ d
(1
2
− δ · (1− 2−p)1/p

)
‖b‖p ≥

d

4
‖b‖p,

where the last estimate holds once we choose δ > 0 small enough, so that

δ · (1− 2−p)1/p < 1/4.

The proof of the right-hand inequality in (2.3) is a straightforward variant

of the preceding estimates. This inequality does not affect the choice of δ > 0,

and hence the details will be omitted here. �

Remarks 2.3. The definitions of the classes K(Hp), S(Hp) and Sp(H
p) also

make sense in the range 0 < p < 1, where Hp are only quasi-Banach spaces.

The composition operators Cφ are continuous on Hp for 0 < p < 1, and
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Theorem 1.2 as well as Corollary 1.3 remain true here. The argument is similar

to the above, but the quasi-norms ‖ · ‖p in Hp as well as in ℓp are only p-

norms, that is, ‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp for f, g ∈ Hp. This will affect a few

constants when applying the triangle inequalities as in the proof of Theorem

1.2. However, we leave the precise details for 0 < p < 1 to the interested

reader, since a full analogue of Theorem 1.1 appears out of reach. In fact, Hp

and Lp are not isomorphic for 0 < p < 1 (see e.g. [17, p. 35]), the structure of

their respective subspaces differs (see e.g. [17, chapter 3.2]), and no version of

(1.4) appears known.

Remarks 2.4. It is possible to ensure in the proof of Theorem 1.2 that the

subspaces M = span{gaj : j ∈ N} and Cφ(M) are both complemented in Hp

(this also follows from the general result in [38] for 1 < p < ∞). For this one

uses the fact that the closed linear span of a disjointly supported sequence is

complemented in Lp(T,m), a classical perturbation argument (cf. [23, 1.a.9]),

as well as the complementation of Hp ⊂ Lp(T,m) for 1 < p < ∞. Note also

that for p = 1 the argument of Theorem 1.2 provides an alternative route to

the weak compactness characterisation of Sarason [31] cited in Section 1. In

fact, if Cφ /∈ K(H1), then Cφ fixes a copy of the non-reflexive space ℓ1 by

Theorem 1.2, whence Cφ is not a weakly compact operator H1 → H1.

3. Proof of Theorems 1.4 and 1.5

The proof of Theorem 1.4 is contained in the following three results. We first

look separately at the case p = 2. Recall our notation Eφ = {eiθ : |φ(eiθ)| = 1}

for analytic maps φ : D→ D.

Lemma 3.1. Suppose that condition (1.3) fails, that is, m(Eφ) > 0. Then

there exist integers 0 ≤ n1 < n2 < · · · and a constant K > 0 such that

K−1 · ‖c‖ℓ2 ≤

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
2

≤ K · ‖c‖ℓ2

for all c = (ck) ∈ ℓ2.

Proof. The upper estimate follows from the boundedness of Cφ on H2 and the

orthonormality of the sequence (zn) in H2.

To establish the lower estimate, note that zn → 0 weakly and therefore also

φn = Cφ(z
n) → 0 weakly in H2 as n→ ∞. Hence we may set n1 = 0 and then

proceed inductively to pick increasing indices nk such that the inner-products

satisfy |(φnj , φnk)| ≤ 2−2km(Eφ) for all 1 ≤ j < k and each k ∈ N. Let

c = (ck) ∈ ℓ2 be arbitrary and note that

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
2

2

=

∞∑

k=1

|ck|
2‖φnk‖22 + 2Re

∞∑

k=1

k−1∑

j=1

cj c̄k(φ
nj , φnk).
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Obviously ‖φnk‖22 ≥
∫
Eφ

|φnk |2dm = m(Eφ) for each k. Moreover, we get that

∣∣∣∣
∞∑

k=1

k−1∑

j=1

cj c̄k(φ
nj , φnk)

∣∣∣∣ ≤ ‖c‖2ℓ2

∞∑

k=1

k−1∑

j=1

2−2km(Eφ)

≤ 1
2‖c‖

2
ℓ2m(Eφ)

∞∑

k=1

k−1∑

j=1

2−k2−j = 1
6‖c‖

2
ℓ2m(Eφ).

By combining these estimates we obtain the desired lower bound
∥∥∥∥

∞∑

k=1

ckφ
nk

∥∥∥∥
2

2

≥ ‖c‖2ℓ2m(Eφ)−
1
2‖c‖

2
ℓ2m(Eφ) = (12m(Eφ))‖c‖

2
ℓ2 .

�

In order to treat general p ∈ [1,∞) recall that the analytic map f : D→ C

belongs to BMOA if

|f |∗ = sup
a∈D

‖f ◦ σa − f(a)‖2 <∞,

where σa(z) =
a−z
1−az is the Möbius-automorphism of D interchanging 0 and a

for a ∈ D. The Banach space BMOA is normed by ‖f‖BMOA = |f(0)| + |f |∗.

Moreover, VMOA is the closed subspace of BMOA, where f ∈ VMOA if

lim
|a|→1

‖f ◦ σa − f(a)‖2 = 0.

We refer to e.g. [12] and [13] for background on BMOA. It follows readily from

Littlewood’s subordination theorem that Cφ is bounded BMOA → BMOA for

any analytic map φ : D→ D, see e.g. [5, p. 2184].

The following proposition establishes one implication of Theorem 1.4.

Proposition 3.2. Let 1 ≤ p < ∞ and suppose that m(Eφ) > 0. Then there

exist increasing integers 0 ≤ n1 < n2 < · · · such that the subspace

M = span{znk : k ≥ 1} ⊂ Hp

is isomorphic to ℓ2 and the restriction Cφ|M is bounded below on M . Hence

Cφ /∈ S2(H
p).

Proof. We start by choosing the increasing integers (nk) as in Lemma 3.1. By

passing to a subsequence we may also assume that (znk) is a lacunary sequence,

that is, infk(nk+1/nk) > 1. Paley’s theorem (see e.g. [11, p. 104]) implies

that for 1 ≤ p < ∞ the sequence (znk) is equivalent in Hp to the unit vector

basis basis of ℓ2, that is,

(3.1)

∥∥∥∥
∞∑

k=1

ckz
nk

∥∥∥∥
p

∼ ‖c‖ℓ2
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for all c = (ck) ∈ ℓ2. (Here, and in the sequel, we use ∼ as a short-hand

notation for the equivalence of the respective norms.)

Case p ≥ 2. By Hölder’s inequality and Lemma 3.1 we have that
∥∥∥∥Cφ

( ∞∑

k=1

ckz
nk

)∥∥∥∥
p

=

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
p

≥

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
2

∼ ‖c‖ℓ2 .

According to (3.1) and the boundedness of Cφ this proves the claim for p ≥ 2.

Case 1 ≤ p < 2. We start by invoking a version of Paley’s theorem for

BMOA (see e.g. [13, Sec. 9]), which together with the boundedness of Cφ on

BMOA ensures that
∥∥∥∥

∞∑

k=1

ckφ
nk

∥∥∥∥
BMOA

≤ ‖Cφ‖ ·

∥∥∥∥
∞∑

k=1

ckz
nk

∥∥∥∥
BMOA

≤ K · ‖Cφ‖ · ‖c‖ℓ2

for all c = (ck) ∈ ℓ2 and a uniform constant K > 0. In view of Fefferman’s

H1-BMOA duality pairing (see e.g. [13, Sec. 7]) we may further estimate

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
BMOA

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
1

≥

∣∣∣∣
( ∞∑

k=1

ckφ
nk ,

∞∑

k=1

ckφ
nk
)∣∣∣∣

=

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
2

2

∼ ‖c‖2ℓ2 ,

where we again use Lemma 3.1 at the final step. By applying Hölder’s inequal-

ity and combining the preceding estimates we obtain that
∥∥∥∥

∞∑

k=1

ckφ
nk

∥∥∥∥
p

≥

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
1

≥ K ′‖c‖ℓ2

for some uniform constant K ′ > 0. In particular, Cφ /∈ S2(H
p) in view of

(3.1), which completes the verification of the proposition for 1 ≤ p < 2. �

The converse implication in Theorem 1.4 is contained in the following

Proposition 3.3. Let 1 ≤ p <∞, p 6= 2, and suppose that m(Eφ) = 0. If (fn)

is any normalized sequence in Hp which is equivalent to the unit vector basis

of ℓ2, then Cφ is not bounded below on span{fn : n ∈ N} ⊂ Hp. In particular,

Cφ ∈ S2(H
p).

Proof. Assume to the contrary that

(3.2)

∥∥∥∥
∞∑

n=1

cnCφ(fn)

∥∥∥∥
p

∼

∥∥∥∥
∞∑

n=1

cnfn

∥∥∥∥
p

∼ ‖c‖2ℓ2

for all sequences c = (cn) ∈ ℓ2. In particular, ‖Cφ(fn)‖p ≥ d > 0 for all n

and some constant d. We write Ek = {eiθ : |φ(eiθ)| ≥ 1 − 1
k} for k ≥ 1. Since
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limk→∞m(Ek) = m(Eφ) = 0, we get that

lim
k→∞

∫

Ek

|Cφ(fn)|
p dm = 0 for all n.

On the other hand, fn → 0 weakly in Hp and hence fn → 0 uniformly on

compact subsets of D as n→ ∞. This implies that

lim
n→∞

∫

T\Ek

|Cφ(fn)|
p dm = 0 for all k.

By using the above properties and proceeding recursively in a similar fashion

to the argument for Theorem 1.2 in section 2 we find increasing sequences of

integers 0 ≤ n1 < n2 < · · · and 1 = k1 < k2 < · · · , such that
∥∥∥∥

∞∑

j=1

cjCφ(fnj
)

∥∥∥∥
p

p

=

∞∑

l=1

∫

Ekl
\Ekl+1

∣∣∣∣
∞∑

j=1

cjCφ(fnj
)

∣∣∣∣
p

dm ∼ ‖c‖pℓp

holds for all c = (cj) ∈ ℓp with uniform constants. However, for p 6= 2 such

estimates obviously contradict (3.2). Thus Cφ ∈ S2(H
p), and this completes

the proof of the Proposition (and hence also of Theorem 1.4). �

We remind that Theorem 1.4 does not hold for p = 2. The result easily

yields very explicit examples of operators Cφ ∈ S2(H
p) \ Sp(H

p).

Example 3.4. Let φ(z) = 1
2 (1 + z) for z ∈ D. Theorem 1.4 implies that Cφ

does not fix any copies of ℓ2 in Hp. On the other hand, it is well known that

Cφ /∈ K(Hp), see e.g. [34, Sec. 2.5], so that Cφ does fix copies of ℓp in Hp by

Theorem 1.2.

We next prepare for the proof of Theorem 1.5. This involves the harmonic

Hardy space hp, that is, the space of complex-valued harmonic functions f :

D → C normed by (1.1). Recall that for 1 < p < ∞ there is a well-known

isometric identification hp = Lp(T,m) as a complex Banach space. Here f ∈ hp

corresponds to its a.e. radial limit function f ∈ Lp(T,m), whereas conversely

g ∈ Lp(T,m) determines the harmonic extension P [g] ∈ hp through the Poisson

integral. Moreover, hp = Hp ⊕ Hp
0 , where Hp

0 = {f ∈ Hp : f(0) = 0} and

Hp
0 = {f : f ∈ Hp

0}.

Let φ : D → D be any analytic map. The Littlewood subordination the-

orem for subharmonic functions (see e.g. [9, Thm. 2.22]) implies that the

composition operator f 7→ f ◦ φ is also bounded hp → hp for 1 ≤ p < ∞.

It will be convenient in the argument to use the notation C̃φ(f) = f ◦ φ for

f ∈ hp to distinguish the composition operator on hp from its relative on Hp.

In particular, if in addition φ(0) = 0, then we may decompose

(3.3) C̃φ =

(
Cφ 0

0 Cφ

)
, C̃φ(f, g) = (f ◦ φ, g ◦ φ),
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as a matrix direct sum with respect to the decomposition hp = Hp⊕Hp
0 . Here

φ(0) = 0 ensures that g ◦ φ ∈ Hp
0 for any g ∈ Hp

0 .

Proof of Theorem 1.5. We may assume during the proof that φ(0) = 0. In fact,

otherwise consider ψ = σφ(0) ◦ φ, where σφ(0) : D → D is the automorphism

interchanging 0 and φ(0). Then ψ(0) = 0 and C̃ψ = C̃φ ◦ C̃σφ(0) , where C̃σφ(0)
is a linear isomorphism hp → hp (as well as Hp → Hp), which does not affect

any of the claims of the theorem.

The proof of the implication (iii) ⇒ (i) is contained in the following claim.

Claim 3.5. Let 1 < p <∞ and suppose that m(Eφ) > 0. Then C̃φ /∈ SLp(hp),

that is, there is a subspace M ⊂ hp, M ≈ Lp, such that C̃φ|M is bounded

below.

To prove the claim define the Borel measure ν on T by ν(A) = m((φ)−1(A)).

Then ν is absolutely continuous: if A ⊂ T is a Borel set and uA = P [χA] is

the harmonic extension (i.e. the Poisson integral) of χA, we have that

ν(A) =

∫

(φ∗)−1(A)
dm ≤

∫

T

uA ◦ φdm = uA(φ(0)) = uA(0) = m(A).

Since ν(T) = m(Eφ) > 0, it follows that the density dν/dm ≥ δ for some δ > 0

on a Borel set F ⊂ T of positive Lebesgue measure.

We may now choose M = Lp(F,m). Indeed, given any f ∈ Lp(F,m), we

have

‖C̃φf‖
p
Lp ≥

∫

Eφ

|f ◦ φ|p dm =

∫

T

|f |p dν ≥ δ

∫

F
|f |p dm = δ‖f‖pLp(F,m),

which establishes Claim 3.5, since Lp(F,m) ≈ Lp.

The implication (ii) ⇒ (iii) follows from (3.3) and the non-trivial result that

the class SLp(Lp) ≈ SLp(hp) is additive, see [10, p. 103 and 105]. In fact, if

Cφ ∈ SLp(Hp), then

C̃φ =

(
Cφ 0

0 0

)
+

(
0 0

0 Cφ

)

is the sum of two operators from SLp(hp), and hence Lp-singular by additivity.

Finally, the proof of the implication (i) ⇒ (ii) is already contained in that

of Proposition 3.3. In fact, if there is a subspace M ⊂ Hp, M ≈ Lp, so that

Cφ is an isomorphism M → Cφ(M), then Cφ also fixes the isomorphic copies

of ℓ2 contained in M . It was shown in Proposition 3.3 that the latter property

is incompatible with (1.3). �

We note that Claim 3.5 also holds for p = 1. However, there is no immediate

analogue of Theorem 1.5 for H1. In fact, SL1(H1) = L(H1), since L1 does not

embed isomorphically into H1, see e.g. [23, 1.d.1].

In conclusion, recall that there are infinitely many norm-closed ideals I of

L(Hp) satisfying S2(H
p) ⊂ I ⊂ SLp(Hp) for 1 < p < ∞ and p 6= 2, see [29,
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5.3.9]. By contrast, Theorems 1.4 and 1.5 imply that there is no corresponding

gradation for composition operators on Hp. In some cases the trichotomy of

Theorem 1.1 can be sharpened by combining with known results about the

subspaces of Hp ≈ Lp. For instance, for 2 < p < ∞ it follows from a result of

Johnson and Odell [16, Thm. 1] that if Cφ|M is bounded below on an infinite-

dimensional subspace M ⊂ Hp that contains no isomorphic copies of ℓ2, then

M embeds isomorphically into ℓp, whence Cφ /∈ Sp(H
p).

4. Concluding remarks and questions

In this section we list some further examples of Banach spaces of analytic

functions, where composition operators have related rigidity properties, and

draw attention to open problems. We also sketch another approach towards

Theorem 1.2 which motivated this paper, though its conclusion is much weaker.

4.1. Further rigidity properties. The weaker rigidity property

(4.1) Cφ ∈ S(E) if and only if Cφ ∈ K(E)

holds for many other Banach spaces E of analytic functions on D apart from

the Hardy spaces. The following list briefly recalls some cases. Typically these

results were not stated in terms of strict singularity, and as a rule they do not

yield as precise information as our results for Hp.

• The following dichotomy in [4, Thm. 1] is an explicit precursor of Theorem

1.2: either Cφ ∈ K(H∞
v ) or Cφ /∈ S∞(H∞

v ). Here H∞
v is the weighted H∞-

space for a strictly positive weight function v on D. It is also possible to deduce

versions of (4.1) for H∞ (the case v ≡ 1) from even earlier results. In fact, it

follows from any of the references [37], [3] or [8] that Cφ ∈ L(H∞) is weakly

compact if and only if Cφ ∈ K(H∞). Moreover, Bourgain [6] established that

W(H∞,X) = S∞(H∞,X) for any Banach space X, where W denotes the

class of weakly compact operators. Here K(H∞)  S(H∞), since this holds

for the complemented subspace ℓ∞ of H∞.

• The dichotomy in Theorem 1.2 holds for arbitrary bounded operators

on the Bergman space Ap. In fact, Ap ≈ ℓp for 1 ≤ p < ∞ by a result

of Lindenstrauss and Pełcynski, see [39, Thm. III.A.11], whereas S(ℓp) =

Sp(ℓ
p) = K(ℓp) by a result of Gohberg, Markus and Feldman, see [29, 5.1-5.2].

• It is known that the Bloch space B is isomorphic to ℓ∞, while Cφ ∈ W(B)

if and only if Cφ ∈ K(B), see e.g. [25, Cor. 5]. Moreover, any U /∈ W(ℓ∞,X)

fixes a copy of ℓ∞ for any Banach space X, see [23, 2.f.4]. Consequently either

Cφ ∈ K(B) or Cφ /∈ S∞(B).

• It follows from [18, section 3] that Cφ ∈ K(BMOA) if and only of Cφ ∈

Sc0(BMOA). In fact, the argument shows that if Cφ /∈ K(BMOA), then

there is M ⊂ VMOA, M ≈ c0, so that Cφ|M is bounded below. Here again
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K(BMOA)  Sc0(BMOA), since BMOA contains complemented subspaces

isomorphic to ℓ2 in view of Paley’s theorem (see e.g. [13, Thm. 9.2]).

Actually the results of section 3 combined with [18] lead to a better under-

standing of the ℓ2-singular composition operators on VMOA and BMOA.

Proposition 4.1. (i) If φ : D→ D is an analytic map, and Cφ ∈ S2(BMOA),

then (1.3) holds (that is, m(Eφ) = 0).

(ii) If φ ∈ VMOA, then Cφ ∈ S2(VMOA) if (and only if) (1.3) holds.

Proof. (i) The argument is essentially contained in that of Proposition 3.2. In

fact, suppose that m(Eφ) > 0, where Eφ = {eiθ : |φ(eiθ)| = 1}. Then the proof

of the case 1 ≤ p < 2 of Proposition 3.2 gives a lacunary sequence (nk) and

constants K1,K2 > 0 so that in the H1-BMOA duality pairing
∥∥∥∥

∞∑

k=1

ckφ
nk

∥∥∥∥
BMOA

∥∥∥∥
∞∑

k=1

ckφ
nk

∥∥∥∥
1

≥ K1 · ‖c‖
2
ℓ2 ,

as well as ‖
∑∞

k=1 ckφ
nk‖1 ≤ K2 · ‖c‖ℓ2 for all c = (ck) ∈ ℓ2. Since Cφ is

bounded on BMOA it follows as before from Paley’s theorem in BMOA that

Cφ is bounded below on span{znk : k ∈ N} ≈ ℓ2 in BMOA.

(ii) Recall that Cφ : VMOA → VMOA if φ ∈ VMOA, see e.g. [5, Prop.

2.3]. Assume that m(Eφ) = 0 and suppose to the contrary that there is a

normalised sequence (fk) ⊂ VMOA equivalent to the unit vector basis of ℓ2,

for which

(4.2)

∥∥∥∥
∞∑

k=1

ckCφ(fk)

∥∥∥∥
BMOA

∼ ‖c‖ℓ2

for all c = (ck) ∈ ℓ2. In particular, ‖fk ◦ φ‖BMOA ≥ d > 0 for all k, while (fk)

is weak-null sequence in VMOA, so that fk → 0 uniformly on compact subsets

of D as k → ∞. Moreover, by the John-Nirenberg inequality there is a uniform

constant c > 0 so that

‖fk ◦ φ‖4 ≤ c‖fk ◦ φ‖BMOA, k ∈ N.

Let Ek = {eiθ : |φ(eiθ)| ≥ 1− 1
k} for k ∈ N. From the above estimates and

Hölder’s inequality we get that

‖fn ◦ φ‖
2
2 =

∫

Ek

|fn ◦ φ|
2dm+

∫

T\Ek

|fn ◦ φ|
2dm

≤
( ∫

Ek

|fn ◦ φ|
4dm

)1/2√
m(Ek) +

∫

T\Ek

|fn ◦ φ|
2dm.

Since
∫
T\Ek

|fn ◦ φ|
2dm → 0 for each k as n→ ∞, we obtain that

lim sup
n→∞

‖fn ◦ φ‖
2
2 ≤ C

√
m(Ek)
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for some constant C > 0 independent of k ∈ N. By letting k → ∞ and using

that m(Eφ) = 0 we deduce that limn→∞ ‖fn ◦ φ‖2 = 0.

By [18, Prop. 6] there is a subsequence (fnk
◦ φ) such that

‖
∞∑

k=1

ckfnk
◦ φ‖BMOA ∼ ‖c‖ℓ∞

holds for all c = (ck) ∈ c0. Obviously this contradicts (4.2). �

4.2. An alternative approach. We next indicate a different approach to-

wards a weaker version of Theorem 1.2, which highlights a connection to the

following general interpolation-extrapolation theorem for strictly singular oper-

ators on Lp-spaces due to Hernandez et.al. [14, Thm. 3.8]: Let 1 ≤ p < q ≤ ∞,

and assume that the linear operator T is bounded Lp → Lp and Lq → Lq.

Moreover, suppose further that there is r ∈ (p, q) for which T ∈ S(Lr). Then

T ∈ K(Ls) for all p < s < q.

To apply the above result suppose that Cφ ∈ S(Hp), where 1 < p < ∞.

Recall from Section 3 that the related operator f 7→ C̃φ(f) = f ◦φ is bounded

on the harmonic Hardy space hp for 1 < p < ∞, and that (3.3) holds with

respect to hp = Hp ⊕ Hp
0 provided φ(0) = 0. It follows from (3.3) that

C̃φ ∈ S(hp), since S(hp) is a linear subspace. Fix q and r such that 1 < q <

p < r < ∞. Since C̃φ is bounded ht → ht for any t ∈ (1,∞) and C̃φ ∈ S(hp),

the above extrapolation result applied to ht = Lt(T,m) yields that C̃φ ∈ K(hs)

for any q < s < r. In particular, Cφ ∈ K(Hs) for any q < s < r by restricting

to Hs ⊂ hs. Hence we have deduced by different means the following weak

version of Theorem 1.2: if Cφ ∈ S(Hp), then Cφ ∈ K(Hp) for 1 < p <∞.

Above we do not address the technical issue that [14] only explicitly deals

with real Lp-spaces, whereas the above application requires complex scalars.

(We are indebted to Francisco Hernández for indicating that there is indeed

also a complex version.) We leave the above alternative here as an incomplete

digression, because it is not possible to obtain the full strength of Theorem 1.2

in this way (cf. the following example).

Example 4.2. We point out for completeness that the extrapolation result [14,

Thm. 3.8] for S(Lp) = Sp(L
p) ∩ S2(L

p) does not have an analogue for the

classes Sp(L
p) or S2(L

p).

In fact, let (rn) be the sequence of Rademacher functions on [0, 1] and f 7→

Pf =
∑∞

n=1〈f, rn〉rn the canonical projection Lp → M for 1 < p < ∞, where

M = span{rn : n ∈ N}. Since M ≈ ℓ2 by the Khinchine inequalities, see e.g.

[23, 2.b.3], it follows that P ∈ Sp(L
p) by the total incomparability of ℓp and

ℓ2 for p 6= 2.
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Furthermore, the results of section 3 (in particular, see Example 3.4 and

(3.3)) imply that for p 6= 2 there are composition operators C̃φ ∈ S2(h
p) which

fail to be compact.

4.3. Open problems. Our results suggest several natural questions.

Problems 4.3. (1) Are there results corresponding to our main theorems for

Cφ ∈ L(Hp,Hq) in the case p 6= q? Note that the conditions for boundedness

and compactness of Cφ : Hp → Hq are different in the respective cases p < q

and q < p, and they can be found in [30], [15] and [36]. For instance, for q < p

one has that Cφ ∈ K(Hp,Hq) if and only if (1.3) holds. On the other hand,

the class S(Lp, Lq) also behaves differently from (1.4) and (1.5) for p 6= q. For

instance, if p, q > 2 and p 6= q, then S(Lp, Lq) = S2(L
p, Lq) but Sp(L

p, Lq) =

L(Lp, Lq). These equalities follow from the Kadec-Pełcynski dichotomy [1,

6.4.8] and the total incomparability of ℓp and ℓq.

(2) Is there an analogue of Theorem 1.5 for p = 1?

(3) Is the converse of Proposition 4.1.(i) also true?

(4) Is there a Banach space E of scalar-valued analytic functions on D and

an analytic map φ : D → D, for which Cφ ∈ S(E) \ K(E)? In this direction

Lefevre et. al. [19] found a non-reflexive Hardy-Orlicz space Hψ so that

Cφ ∈ W(Hψ) \ K(Hψ), where φ is a lens map.

The approach sketched in Subsection 4.2 suggests that weaker rigidity prop-

erties such as (4.1) are likely to hold for many other concrete classes of operators

on Hp. Subsequently Miihkinen [28] has used similar techniques as in section

2 to show that the dichotomy of Theorem 1.2 remains valid for the class of

analytic Volterra operators Tg on Hp, where

f 7→ (Tg(f))(z) =

∫ z

0
f(τ)g′(τ)dτ, z ∈ D.

We refer e.g. to the surveys [2] or [35] for the conditions on the fixed analytic

map g : D→ C which characterise the boundedness or compactness of Tg.
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