
Continuous Team Semantics?
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Abstract. We study logics with team semantics in computable met-
ric spaces. We show how to define approximate versions of the usual
independence/dependence atoms. For restricted classes of formulae, we
show that we can assume w.l.o.g. that teams are closed sets. This then
allows us to import techniques from computable analysis to study the
complexity of formula satisfaction and model checking.
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1 Introduction

Team semantics is a semantical framework for logics of dependence and inde-
pendence. Team semantics was originally invented by Hodges [11] and later sys-
tematically developed and made popular by Väänänen by the introduction of
Dependence Logic [22]. In team semantics formulas are evaluated using sets of
assignments (called teams) rather than single assignments as in first-order logic.
Therefore, it is not surprising that the expressive power of many of the logics
studied in team semantics exceeds the expressive power of first-order logic. The
introduction of Independence Logic (FO(⊥)) in [9] and inclusion (x ⊆ y) and
exclusion atoms (x | y) (and the corresponding logics) [8] demonstrated the
versatility of the framework and have led to several studies on the applications
of team semantics in areas such as database theory, model theory, and quantum
information theory (see, e.g. [10, 13, 6, 16, 12, 1]).

In this article we explore and apply team semantics in a metric context.
The expressive power that team semantics makes available to us in the form of
dependence and independence atoms comes at the prize that in the definitions,
we have to quantify over the powerset of our structure. On the logical level, this
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lets the expressivity exceed first-order logic, and in many cases, reach existential
second-order logic. From an algorithmic perspective, this involves an exponential
blow-up in the relevant search space, and causes a number of hardness results.

In a metric context, we are facing having to deal with sets such as the power-
set of the unit interval. This would seem to destroy the hope of any algorithmic
approach, and very much opens the door to the specter of independence of ZFC.
Fortunately, our first main results show that for certain well-behaved classes
of sentences, it is safe to assume that all teams are closed. The hyperspace of
closed subsets of a (compact separable) metric space is much better understood,
and been made accessible to algorithmic approaches through the development
of computable analysis. We make use of the opportunity, and show that model-
checking and satisfaction are semidecidable for the aforementioned well-behaved
formulae. This is the best possible result in full generality.

In the metric context, it is very natural to consider approximate versions of
the usual dependence and independence atoms (see, e.g., [15, 23, 6] for related
previous work on so-called metric functional dependencies and approximate de-
pendencies in (non-metric) team semantics). As an added bonus, the approx-
imate versions are compatible with our notions of well-behaved formulae, and
thus greatly increase what we can express directly without leaving the realm of
tameness. We conclude our investigation (for now) by considering the translata-
bility between the approximate versions, and contrast these to the established
translability results regarding the exact versions.

2 Definitions

We are working with a fixed structure, which here is a (compact separable3)
metric space (X, d) together with certain predicates, i.e. subsets of Xn for n ∈ ω.
To simplify notation, we will usually not explicitly mention the structure, but
simply take it for granted. We then proceed to define when T |= φ holds, where
T ⊆ Xn is a team, and φ is a positive formula involving both basic predicates
and certain special primitives. These definitions are completely standard, see
[22, 8].

Variables are assumed to correspond to specific dimensions. We write πx for
the projection to the dimensions corresponding to the variables comprising the
tuple x; and π−x for the projection to all dimensions except the one correspond-
ing to the variable x. Note that the order n which the variables appear in x
impacts the meaning of πx, e.g. πxyA and πyxA are related by (a, b) ∈ πxyA iff
(b, a) ∈ πyxA. We allow for the case of variables appearing multiple times in a
tuple, this means the corresponding dimension will be duplicated in the result.
By × we denote the usual cartesian product and, for R over xz and R′ over zy,
the join R on R′ of R and R′ is defined by

R on R′ = {xzy | xz ∈ R and zy ∈ R′}.
3 These requirements are used for the proofs, but are not strictly needed for our

definitions to make sense.
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T |= P (x1, . . . , xk) if ∀(x1, . . . , xk) ∈ T it holds that P (x1, . . . , xk).
T |= φ ∧ ψ if both T |= φ and T |= ψ.
T |= φ ∨ ψ if there are T1, T2 such that T1 |= φ, T2 |= ψ and T = T1 ∪ T2.
T |= ∀x φ if (X× T ) |= φ.
T |= ∃x φ if there is T ′ such that π−xT

′ = T and T ′ |= φ.
T |= = (x, y) if for any s, s′ ∈ T it holds that if s(x) = s′(x) then s(y) = s′(y).
T |= x ⊥ y if (πxT )× (πyT ) = πxyT .
T |= x ⊥z y if (πxzT ) on (πzyT ) = πxzyT .
T |= x ⊆ y if (πxT ) ⊆ (πyT ).

There is one case of a primitive where we will deviate from its usual definition.
Usually, one would define

T |= x|y if πxT ∩ πyT = ∅. (Classical definition)

However, in a metric context apartness seems to be a far more natural notion
than disjointness – and they obviously coincide in the traditional setting of finite
models. We thus chose:

T |= x|y if d(πxT, πyT ) > 0 (Our modified definition)

We point out that in the semantics for ∃ and ∨, we are quantifying over
teams. The precise scope of this quantification will vary in our investigation. We
consider the case where the quantification ranges over the entire powerset of X,
the case where only closed teams are permitted, and briefly also the case where
only open teams are permitted. These options are compared in Section 3.

2.1 Approximate dependence/independence atoms

We can use the metric available as part of our structure to define approximate
versions of the dependence/independence atoms. As mentioned in the introduc-
tion, this has precedence in database theory, related to data cleaning. In many
cases, there are two independent parameters describing how exactly we approxi-
mate the atoms. Typically, one parameter corresponds to relaxing the atom, the
other to strengthening it. Depending on whether we chose strict or non-strict
inequalities, one gets both open and closed versions of the atoms4. We denote
the closed versions with , the open versions are the non-decorated ones.

T |= =ε
δ (x, y) if for any s, s′ ∈ T it holds that if d(s(x), s′(x)) ≤ δ then d(s(y), s′(y)) <

ε.
T |= =ε

δ(x, y) if for any s, s′ ∈ T it holds that if d(s(x), s′(x)) < δ then d(s(y), s′(y)) ≤
ε.

T |= x ⊥δ,εz y if for all s, s′ ∈ T , if d(s(z), s′(z)) ≤ δ then there is s′′ ∈ T such
that d(s′′(xz), s(xz)) < ε and d(s′′(zy), s′(zy)) < ε.

4 Of course, we could also mix the cases. However, part of the overall theme of this
article is to control topological complexity, so this seems undesirable.
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T |= x⊥δ,εzy if for all s, s′ ∈ T , if d(s(z), s′(z)) < δ then there is s′′ ∈ T such
that d(s′′(xz), s(xz)) ≤ ε and d(s′′(zy), s′(zy)) ≤ ε.

T |= x ⊆ε y if (πxT ) ⊆ B(πyT, ε).

T |= x⊆εy if (πxT ) ⊆ B(πyT, ε).

T |= x|εy if d(πxT, πyT ) > ε.

T |= x|εy if d(πxT, πyT ) ≥ ε.

3 Restricting teams to closed sets

In this section, we show that for restricted formulae the semantics allowing
arbitrary teams and the semantics allowing only closed teams coincide, and then
give some examples how this breaks down for arbitrary formulae.

3.1 Closed formulae

Theorem 1. For positive sentences involving closed basic predicates, ⊥, ⊆,
=ε
δ(·, ·), ⊥δ,ε·, ⊆ε and |ε, the usual team semantics and the teams-are-closed

sets semantics agree.

Proof. This is a special case of Corollary 1 below.

Lemma 1. For an arbitrary team T , we find that

1. T |= P (x) implies T |= P (x), where P is a basic closed predicate

2. T |= x ⊥ y implies T |= x ⊥ y
3. T |= x ⊆ y implies T |= x ⊆ y
4. T |= =ε

δ(x, y) implies T |= =ε
δ(x, y)

5. T |= x⊥δ,εzy implies T |= x⊥δ,εzy
6. T |= x⊆εy implies T |= x⊆εy
7. T |= x|εy implies T |= x|εy

Proof. For 1-3, we only need that closure and projection commute. For 4,5 we
note that since the premise of the implication in the definition has a strict
inequality and the conclusion a non-strict one, taking the closure of the team
has no impact. For 6,7 we are using the distance to the team, which is invariant
under taking the closure.

Corollary 1. Let φ be a positive formula involving basic closed predicates, ⊥,
⊆, =ε

δ(·, ·), ⊥δ,ε·, ⊆ε and |ε. For an arbitrary team T , we find that T |= φ implies
that T |= φ.

Proof. Induction over the structure of φ. Lemma 1 provides the base case. The
only non-trivial steps are ∃ and ∨, where we use that projection commutes with
closure for the former, and that T = T1 ∪ T2 implies T = T 1 ∪ T 2 for the latter.
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3.2 Open formulae

Theorem 2. For positive sentences involving basic open predicates and |, the
following all agree:

1. the semantics allowing arbitrary sets as teams
2. the semantics demanding teams to be open sets
3. the semantics demanding teams to be closed sets

Proof. By Lemma 2, truth in (1) implies truth in (2). By Lemma 3, truth in (2)
implies truth in (3). That truth in (3) implies truth in (1) is trivial.

Lemma 2. Let φ be a positive formula involving basic open predicates and |, let
T |= φ and let x ∈ T . Then there is some ε > 0 such that T ∪B(x, ε) |= φ, with
only open teams being used as witnesses.

Proof. We proceed by induction over the structure of φ. Universal and existential
quantifier are trivial. For conjunctions, we use that the relevant formulae are
downwards-closed, and take the minimum ε from both sides. For disjunctions,
we note that from x ∈ T = T1 ∪ T2 we find x ∈ T1 or x ∈ T2, proceed to use
the induction hypothesis on the relevant side, and then use that T ∪ B(x, ε) =
(Ti ∪B(x, ε)) ∪ T3−i.

The base cases for the induction are the basic open predicates and |, in both
cases the claim follows from the definition.

Lemma 3. Let φ be a positive formula involving basic open predicates and |, let
T |= φ for open T , let n ∈ N. Define Tn = {x ∈ T | d(x, TC) ≥ 2−n}. Then
Tn |= φ, with only closed teams used as witnesses.

Proof. Straight-forward from downwards-closure.

Downwards-closure of | makes the proofs of Lemmas 2, 3 very simple, but this
proof does not extent to the open approximate atoms that are not downwards-
closed. We conjecture that downwards-closure is not actually needed for the
statements to hold, but leave this for future work at this stage.

3.3 Counterexamples

We proceed to give some counterexamples showing that if we allow using both
open and closed basic predicates in a formula, then the semantics for arbitrary
teams and the semantics where we allow only closed teams differ. Using closed
teams only lets us express some topological properties of the carrier metric space,
and reveals some similarities to constructive mathematics.

Example 1. The formula

∀x∀y (x = y) ∨ (x 6= y)

is a tautology for arbitrary teams, but expresses that the space is discrete for
closed teams. Note that this is in line with how the formula works in constructive
mathematics.
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Example 2. The formula

∃x∀y (x = y) ∨ (x 6= y)

is a tautology for arbitrary teams, but expresses that the space contains some
isolated point for closed teams. Note that this is in line with how the formula
works in constructive mathematics.

Example 3. The formula

∀x∃y∃z ((x = y ∨ x = z) ∧ y|z)

holds over X = [0, 1] if arbitrary teams are allowed, but not if teams have to
be closed sets. The reason is that the y and the z values have to be disjoint
non-empty sets covering X. For closed teams, this formula expresses that the
space is disconnected.

Example 4. The formula

∀x∃y (x 6= y)∧ = (x, y)

holds over every model with at least two elements, if arbitrary teams are allowed.
If teams are restricted to closed sets, it asserts the negation of the fixed-point-
property for X.

4 Background on computability on metric spaces and for
closed sets

We wish to study the algorithmic properties of questions such as satisfiability and
model checking for our continuous team semantics. The algorithmic aspects of
logics with team semantics have been studied extensively over finite structures
(see the survey [7]). This requires notions of effectivity and computability for
separable metric spaces, for hyperspaces of closed subsets of metric spaces, and
finally for the entire collection of compact separable metric spaces. The field of
computable analysis provides all of these notions. The standard reference is [24],
but we follow [18]. Another short introduction to the area is [3].

As we lack the space for a rigorous development of the area, we will restrict
our undertaking to a cursory description of the needed notions and special cases.
The foundational concept in computable analysis is a represented space, which
is just a set X together with a partial surjection δ :⊆ NN → X. Here δ tells
us how the elements of interest are coded. We can then lift the usual notion of
computation on NN to any represented space by letting our machine model act
on names for elements.

A class of represented spaces of particular interest for us are the computable
metric spaces: We take a separable metric space with a designated dense sequence
(an)n∈N such that s < d(an, am) < t is recursively enumerable in n,m ∈ N,
s, t ∈ Q. Then a point x is coded by giving a sequence p of indices such that
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d(ap(n), x) < 2−n. A computable metric space X is computably compact, if the set
of finite sequences (n0, r0), . . . , (n`, r`) such that X ⊆

⋃
i≤`B(ani

, 2−ri) is recur-
sively enumerable. Computable metric spaces always have two further properties
we will use; they are computably Hausdorff and computably overt.

We use several hyperspace constructions, i.e. constructions of certain spaces
of subsets of a given represented space. We have the space O(X) of open subsets,
the space A(X) of closed subsets and the space V(X) of compact subsets.

The open subsets are characterized by x ∈ U being semidecidable (recogniz-
able) in x ∈ X and U ∈ O(X). For a computable metric space X, this can con-
cretely be achieved by coding U ∈ O(X) as 〈p, q〉 with U =

⋃
{n|p(n) 6=0}B(ap(n)+1, 2

−q(n)).
The closed subsets are the formal complements of the open sets, i.e. the codes
for A ∈ A(X) are just the codes for (X \A) ∈ O(X).

The overt subsets V(X) are assumed to be closed extensionally, but have
different codes and subsequently very different associated computable operations
fromA(X). The overt subsets are characterized by U∩A 6= ∅ being semidecidable
(recognizable) in U ∈ O(X) and A ∈ V(X). In a computable metric space they
can be coded as a list of all basic open balls intersecting them.

Since A(X) and V(X) pointwise have the same elements, we can also con-
struct A∧V(X), where a set is coded by the combination of its A(X)-code and its
V(X)-code. Over a computably compact computable metric space X, the space
A∧V(X) corresponds to the space of closed subsets equipped with the Hausdorff
metric. In this case, the space is characterized by making d : X×(A∧V(X))→ R
computable.

4.1 Overtness and compactness

The relevance of the notions of compactness and overtness for spaces in general,
and for our purposes in particular, is exhibit by the following lemmas tying it in
to the preservation of the complexity of formula under quantification.

Lemma 4. The following are equivalent for a represented space X:

1. X is computably overt.
2. ∃ : O(X×Y)→ O(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)
3. ∀ : A(X×Y)→ A(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)

Proof. The equivalence of 1 and 2 is a special case of [18, Proposition 40]. The
equivalence of 2 and 3 is by duality.

Lemma 5. The following are equivalent for a represented space X:

1. X is computably compact.
2. ∀ : O(X×Y)→ O(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)
3. ∃ : A(X×Y)→ A(Y) is computable for all represented spaces Y (respectively

some space containing a computable point)
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Proof. The equivalence of 1 and 2 is a special case of [18, Proposition 42]. The
equivalence of 2 and 3 is by duality.

4.2 Computable operations on the closed and overt sets

We proceed to recall or establish the basic properties of the space A ∧ V(X)
which we shall use in the following.

Theorem 3 (Park, Park, Park, Seon and Ziegler [17]). For a computably
compact computable metric space X, the space A∧V(X) is a computably compact
computable metric space again.

Corollary 2. For a computably compact computable metric space X, the space
A ∧ V(X) is computably overt.

Corollary 3. For a computably compact computable metric space X, the space
A ∧ V(X) is computably compact.

Lemma 6. The following maps are computable for computably compact Y, and
countably-based X,Y:

1. πx : A ∧ V(X×Y)→ A∧ V(X)
2. × : A ∧ V(X)×A ∧ V(Y)→ A∧ V(X×Y)

Proof. 1. We can show separately that πx : A(X × Y) → A(X) and πx :
V(X × Y) → V(X) are computable. The former is [18, Proposition 8 (8)]
(using computable compactness of Y), the latter is [18, Proposition 21 (6)].

2. Again, this can be shown separately for A and V. The former is [18, Propo-
sition 6 (8)]. For the latter, we use the fact that X,Y being countably-based
implies that O(X×Y) effectively is the product topology, i.e. that there is a
computable multi-valued operation Decompose : O(X×Y) ⇒ C(N,O(X)×
O(Y)) such that (Ui, Vi)i∈N ∈ Decompose(O) iff O =

⋃
n∈N Un × Vn. Now

if (Ui, Vi)i∈N ∈ Decompose(O) we find that O intersects A×B ⊆ X×Y iff
∃n ∈ N Un ∩A 6= ∅ ∧ Vn ∩B 6= ∅. By currying, this is all we need.

Lemma 7. In a computably compact computable metric space X, the map (A, ε) 7→
B(A, ε) : A(X)× R+ → A(X) is computable.

Proof. We have y /∈ B(A, ε) iff B(y, ε) ∩ A = ∅. The latter is an open property
by computable compactness.

Lemma 8. The following are closed predicates on A ∧ V(X)×A ∧ V(X):

1. ⊆
2. =

Proof. Note that A ⊆ B iff A ∩ BC = ∅, and that by definition of A and V,
A ∩BC 6= ∅ is already an open predicate on V(X)×A(X). For 2., just observe
that A = B iff A ⊆ B ∧B ⊆ A.

Lemma 9. ∪ : A ∧ V(X)×A ∧ V(X)→ A∧ V(X) is computable.

Proof. This is the combination of [18, Proposition 6(3)] and [18, Proposition
21(3)].
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4.3 Compact metric structures

We shall now discuss the connection of the theory of computable metric subspace
and the induced hyperspaces to the notion of a structure as used to interpret
logical formulas. First, we note that we have the represented space Pol of Polish
spaces and the represented space KPol of compact separable metric spaces. A
similar hyperspace of countably-based spaces was introduced and studied in [20].
In the space Pol, we code a separable space X by presupposing N as a dense set,
and then providing all distances dX(n,m). This uniquely determines a Polish
space by considering the completion. The space KPol is not merely the subspace
of Pol restricted to compact spaces, but here we additionally code all finite
covers B(n0, 2

−k0) ∪ . . . ∪B(n`, 2
−k`) into the name of the space. We point out

that all arguments given above5 regarding the properties of computably compact
computable metric spaces hold uniformly in a compact metric space given as an
element of KPol.

To introduce the notion of a structure, we first need the notion of a signature.
A signature consists of function and relation symbols, each with some finite
arity. Once a signature is fixed, we define a structure to be an underlying set A,
together with a function fi : Ani → A for each function symbol of arity ni, and
a subset Ri ⊆ Ani for each relation symbol of arity ni. Note that, contrary to
convention, we do not make equality available for free. Instead, we can only use
equality in our formula if it is provided as a relation by the signature/structure.
We lift this to compact metric spaces as follows:

Definition 1. A compact metric closed (respectively open) structure (over a
given signature) consists of a compact separable metric space X as carrier, a
continuous function fi : Xni → X for each function symbol of arity ni in the
signature, and a closed (respectively open) subset Ri ⊆ Xni for each relation
symbol of arity ni in the signature.

We write ACMS (respectively OCMS) for the represented space of com-
pact metric closed (respectively open) structures, where the carrier is given as
X ∈ KPol, the functions as fi ∈ C(Xni ,X) and the relations as Ri ∈ A(Xni)
(respectively as Ri ∈ O(Xni)).

5 Topological complexity

We proceed to study the topological complexity of the atoms, of formula satis-
faction and of model checking. Since we have a topology on the space of closed
and overt sets we are using for teams, and on the spaces of structures, these are
all well-defined notions.

5 In fact, example of statements that are computable for each computable metric
space, yet are not computable uniformly in the metric space are very rare in the
literature. See [19, Proposition 14] for such a rare example.
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5.1 Topological complexity of dependence atoms

Proposition 1. The following are closed predicates in the team:

1. T |= P (x), where P is a basic closed predicate
2. T |= x ⊥ y
3. T |= x ⊆ y
4. T |= =ε

δ(x, y)

5. T |= x⊥δ,εzy
6. T |= x⊆εy
7. T |= x|εy

Proof. By Lemmas 6, 8, 1-3 follow immediately from the definitions. For 4-5,
we have a universal quantification over the team, and then a closed property,
which makes for a closed property by Lemma 5. For 6, note this is obtained by
combining Lemmas 6, 7 and 8. Finally, 7. just follows from the continuity of the
Hausdorff distance on A ∧ V(X).

Proposition 2. The following are open predicates in the team:

1. T |= P (x), where P is a basic open predicate
2. T |= x|y
3. T |==ε

δ (x, y)

4. T |= x ⊥δ,εz y
5. T |= x ⊆ε y
6. T |= x|εy

Proof. For 1., note that this means πxT ⊆ P . By Lemma 6, we can compute
πxT as a closed set, which we also have as a compact set due to the fact that we
are working in a compact space. By definition of compact sets, this makes the
predicate open. Claim 2. follows immediately from the definition by Lemmas 6,
8. Items 3., 4., 5. and 6. are analogous to their closed counterparts in Proposition
1.

Proposition 3. The following are Π0
2 -complete predicates in the team:

1. T |= =(x, y)
2. T |= x ⊥z y

Proof. We obtain a lower bound for T |= =(x, y) from Lemma 10, and an upper

bound for T |= x ⊥z y by noting that ∀ε∃∃δT |= xδ ⊥δ,εz y is equivalent to
T |= x ⊥z y. These are then linked by noting that =(x, y) ≡ y ⊥x y.

Lemma 10. T |= =(x, y) is Π0
2 -hard over {0, 1}N.

Proof. Given some p ∈ {0, 1}N, we compute some Tp ∈ A ∧ V({0, 1}N × {0, 1}N)
such that Tp |= =(x, y) iff p contains infinitely many 1s. We point out that
a set A ∈ A ∧ V({0, 1}N) can be represented as a sequence (Wk)k∈N where
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Wk ⊆ {0, 1}2
k

satisfy that ∀w ∈ Wk∃u ∈ {0, 1}2
k

wu ∈ Wk+1 and q ∈ A ⇔
∀k q≤2k ∈Wk.

We define our sequence inductively, and take into account the standard bijec-
tion {0, 1}N × {0, 1}N ∼= {0, 1}N. We start with W1 = {00, 01, 10, 11}. Whenever
p(k) = 1, then we let Wk+1 = {〈wu, uu〉 | 〈w, u〉 ∈ Wk}. Whenever p(k) = 0,

then Wk+1 = {wu | w ∈Wk ∧ u ∈ {0, 1}2
k}.

To argue that this construction works as intended, let us first consider the
case where p has only finitely many 1s. Let K be sufficiently large that p(j) = 0
for all j ≥ K. Pick some 〈w, u〉 ∈ WK . Now the construction ensures that
w{0, 1}N × u{0, 1}N ⊆ Tp, hence Tp 6|= =(x, y).

Conversely, assume for the sake of a contradiction that p contains infinitely
many 1s, yet Tp 6|= =(x, y). Pick witnesses a, b1, b2 for the latter, i.e. satisfying
that (a, b1) ∈ Tp and (a, b2) ∈ Tp, yet b1 6= b2. Pick K such that p(K) =
1 and (b1)≤2K 6= (b2)≤2K . We must have that 〈a≤2K+1 , (b1)≤2K+1〉 ∈ WK+1

and 〈a≤2K+1 , (b2)≤2K+1〉 ∈ WK+1, but these cannot both be of form 〈wu, uu〉,
contradiction.

5.2 Complexity of formula satisfaction

Theorem 4. Let φ be a positive formula involving closed basic predicates, ⊥,
⊆, =ε

δ(·, ·), ⊥δ,ε·, ⊆ε and |ε. Then T |= φ defines a closed predicate in the team
(uniformly in φ).

Proof. By induction on the structure of φ. The base cases are provided by Propo-
sition 1.

Dealing with ∧ is trivial.
Let φ = φ1 ∨ φ2. By induction hypothesis, Ti |= φi is a closed predicate in

Ti. Then T = T1 ∪ T2 ∧ T1 |= φ1 ∧ T2 |= φ2 is a closed predicate in (T, T1, T2),
since ∪ is computable on A∧ V(X) by Lemma 9 and A∧ V(X) is Hausdorff by
Lemma 8. By Corollary 3, Lemma 5 applies and lets us conclude that quantifying
existentially over T1 and T2 still leaves us with a closed predicate.

For φ = ∀x ψ, we note that T 7→ X × T is computable, and that T |= φ is
preimage of the closed predicate T ′ |= ψ under that map.

For φ = ∃x ψ, we invoke Lemma 5 by means of Corollary 3.

Since we have not yet established whether the semantics for arbitrary teams
and closed teams still agree when also the approximate open predicates are
permitted, for now we study the complexity of satisfaction only in the case
where satisfaction is unambiguous:

Theorem 5. Let φ be a positive formula involving basic open predicates and
|. Then T |= φ defines a open predicate in the team (uniformly in φ). As a
consequence, if T |= φ, then we can effectively find some n ∈ N such that any T ′

with d(T, T ′) satisfies T ′ |= φ.

Proof. By induction on the structure of φ. The base cases are provided by Propo-
sition 2.
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Dealing with ∧ is trivial.
Let φ = φ1∨φ2. By induction hypothesis, Ti |= φi is an open predicate in Ti.

Given T0, T1 with Ti |= φi, we can find some n ∈ N such that if d(Ti, T
′
i ), then

T ′i |= φi. The map Ti 7→ OTi := {x ∈ Xk | d(x, Ti) < 2−n} :⊆ A ∧ V(Xk) →
O(Xk) is computable. We can extend this to a computable total map (i.e. define
it also for Ti 6|= φ by setting OTi = ∅ in that case. Now T1 |= φ1 ∧ T2 |=
φ2 ∧ T ⊆ OT1 ∪ OT2 is an open predicate in (T, T1, T2). Clearly, whenever the
Ti are suitable witnesses for T |= φ, this predicate is satisfied. Conversely, if the
predicate is satisfied, consider T ′i = {x ∈ T | d(x, Ti) ≤ d(x, T2−i)} and note
that d(Ti, T

′
i ) < 2−n, hence T ′i |= φ. Thus, our modified predicate is equivalent

to the existence of witnesses for T |= φ. Corollary 2 lets us invoke Lemma 4 to
remove the existential quantifier over Ti.

For φ = ∀x ψ, we note that T 7→ X × T is computable, and that T |= φ is
preimage of the open predicate T ′ |= ψ under that map.

Let φ = ∃x ψ. Similar to the argument above, the map T ′ 7→ OT ′ : A ∧
V(Xk+1) → O(Xk) is computable; mapping T ′ with T ′ |= ψ to OT ′ = {y ∈
Xk | d(x, π−xT

′) < 2−n}, where n is chosen such that if d(T ′, T ′′) < 2−n, then
T ′′ |= ψ; and mapping T ′ 6|= ψ to OT ′ = ∅. Now T ′ |= ψ ∧ T ⊆ OT ′ is an open
predicate in (T, T ′), and as above, equivalent to the existence of a witness for
T |= φ. Corollary 2 lets us invoke Lemma 4 to remove the existential quantifier
over T ′.

5.3 The complexity of model checking

As the proofs of Theorem 4 and Theorem 5 are fully uniform, we can ob-
tain a classification of the model checking problem. We shall write L+(⊥,⊆
,=ε

δ(·, ·),⊥δ,ε·,⊆ε, |ε) for the set of positive sentences involving basic predicates,

⊥, ⊆, =ε
δ(·, ·), ⊥δ,ε·, ⊆ε and |ε. Likewise, we write L+(|) for the set of pos-

itive sentences involving basic predicates and |. These sets are coded in the
obvious way, including the real-valued parameters. Note that formulae from
L+(⊥,⊆,=ε

δ(·, ·),⊥δ,ε·,⊆ε, |ε) can use all potential choices for ε and δ, but that
no quantification over these parameters is available. We recall our convention
that equality is not automatically available, but would need to be provided by
interpreting some binary relation symbol accordingly. We then find:

Corollary 4. It is semidecidable whether a formula L+(⊥,⊆,=ε
δ(·, ·),⊥δ,ε·,⊆ε, |ε)

does not hold in a structure S ∈ ACMS.

Proof. From Theorem 4. Note that a sentence φ is satisfied in a structure with
carrier X iff {1} |= φ for the trivial non-empty team {1} ⊆ X0.

Corollary 5. It is semidecidable whether a formula φ ∈ L+(|) holds in a struc-
ture S ∈ OCMS.

Proof. From Theorem 5. Note that a sentence φ is satisfied in a structure with
carrier X iff {1} |= φ for the trivial non-empty team {1} ⊆ X0.



Continuous Team Semantics 13

A priori, having even decidability may seem desirable. This, however, is com-
pletely out of the question:

Proposition 4. It is undecidable whether ∀x R(x) holds in a structure S ∈
AMCS or S ∈ OMCS, even if we restrict to the case where the carrier space is
the one-point space 1.

Proof. In the restricted case, the question becomes whether R is interpreted
as the universal predicate or as the empty predicate. This is undecidable for
R ∈ O(1) or R ∈ A(1).

6 Translations between approximate atoms

In classical dependence logic the expressive power of logics appended with var-
ious combinations of dependence/independence atoms has been studied. The
comparisons rely on translations of the atoms. In an approximate setting we
don’t get exact translations, but can ’sandwich’ atoms between parameterised
variants of a formula using some other atoms.

In the translations we use as underlying logic first order logic without equal-
ity, and replace equality by either open or closed metric predicates.

We give three ’translations’ between dependency atoms. We only show the
open versions here, but the closed counterparts are proved similarly.

Proposition 5. 1. If ε > δ ≥ 0, then =ε
δ (x, y) ⇒ y ⊥δ,εx y.

2. For any δ ≥ 0, ε > 0, y ⊥δ,ε/2x y ⇒ =ε
δ (x, y).

Proof. For the first, assume T |= =ε
δ (x, y) and let s, s′ ∈ T be such that

d(s(x), s′(x)) ≤ δ. Then d(s(y), s′(y)) < ε, so s satisfies the independence witness
requirement d(s(xy), s(xy)) < ε and d(s(xy), s′(xy)) < ε.

For the second claim, assume T |= y ⊥δ,ε/2x y and let s, s′ ∈ T be such that
d(s(x), s′(x)) ≤ δ. Then there is s′′ ∈ T such that d(s′′(xy), s(xy)) < ε and
d(s′′(xy), s′(xy)) < ε, and the claim follows by the triangle inequality.

The next proposition is a metric modification of Galliani’s proof from [8].
The remarkable thing is, that the Boolean encoding he uses can be made to
work in this metric setting.

Proposition 6. Assuming all models considered have diameter at least D,

x ⊆ε y ⇒ ∀v1∀v2∀z(
(d(z, x) > δ/2 ∧ d(z, y) > ε)∨
(d(v1, v2) < d2 + δ ∧ d(v1, v2) > d1 − δ)∨
(d(v1, v2) > d2 ∧ d(z, y) > ε)∨
((d(v1, v2) < d1 ∨ d(z, y) < ε+ δ/2) ∧ z ⊥δ v1v2))

for any d1 < d2 < D and 0 < δ < d1, D − d2.
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Proof. Assume T |= x ⊆ε y. Let T ′ = T [M/v1][M/v2][M/z].6 Let

T1 = {s ∈ T ′ : d(s(z), s(x)) > δ/2 & d(s(z), s(y) > ε},
T2 = {s ∈ T ′ : d(s(v1), s(v2)) < d2 + δ& d(v1, v2) > d1 − δ},
T3 = {s ∈ T ′ : d(s(v1), s(v2)) > d2 & d(s(z), s(y)) > ε},
T4 = T ′\(T1 ∪ T2 ∪ T3).

So we need to show that anything not in T1∪T2∪T3 satisfies the fourth disjunct.
Now, if s ∈ T4 is such that d(s(v1), s(v2)) ≥ d1 > d1− δ, then (as it is not in T2)
d(s(v1), s(v2)) ≥ d2 + δ > d2. Thus (since s /∈ T3) d(s(z), s(y)) ≤ ε < ε+ δ/2. So
the first conjunct is satisfied.

Next consider s, s′ ∈ T4. If d(s(z), s(y)) ≤ ε, then s′′ = s[s′(v1v2)/v1v2] ∈ T4
and it witnesses the independence atom with respect to s and s′. If, on the
other hand, d(s(z), s(y)) > ε, then (by s /∈ T1 ∪ T2 ∪ T3) d(s(z), s(x)) ≤ δ/2
and d(s(v1), s(v2)) ≤ d2, and thus d(s(v1), s(v2)) < d1. Since T , and thus also T ′

satisfies x ⊆ε y, there is s+ ∈ T ′ such that d(s+(y), s(x)) < ε, so d(s+(y), s(z)) <
ε+δ/2. Let s′′ = s+[s′(v1v2)/v1v2][s(x)/z]. Then d(s′′(z), s(z)) = d(s(x), s(z)) ≤
δ/2 < δ and s′′(v1v2) = s′(v1v2) so we are done if we can show s′′ ∈ T4. But
by the values for v1v2, s′′ /∈ T2, and d(s′′(z), s′′(y)) = d(s(x), s+(y)) < ε so
s′′ /∈ T1 ∪ T3.

Proposition 7.

x ⊆ε+δ y ⇐ ∀v1∀v2∀z(
(d(z, x) > δ/2 ∧ d(z, y) > ε)∨
(d(v1, v2) < d2 + δ ∧ d(v1, v2) > d1 − δ)∨
(d(v1, v2) > d2 ∧ d(z, y) > ε)∨
((d(v1, v2) < d1 ∨ d(z, y) < ε+ δ/2) ∧ z ⊥m v1v2))

for any d1 < d2 < D and 0 < δ < d1, D − d2 and with m = min{d2−d12 , δ2}.

Proof. Assume T satisfies the formula on the right hand side and let s ∈ T be
arbitrary. Let T ′ = T [M/v1][M/v2][M/z] and choose s′ ∈ T ′ such that s′(z) =
s′(x) = s(x) and d(s′(v1), s(v2)) < d1 (exists by universal quantification). Fur-
ther choose s+ ∈ T ′ such that d(s+(z), s+(y)) ≤ ε and d(s+(v1), s+(v2)) ≥ d2+δ.
Then neither of s′ and s+ satisfies any of the first three disjuncts of the right
hand side formula, so both must be in the part of T ′ satisfying the fourth. Thus
there is s′′ in this part satisfying d(s′′(z), s′(z)) < m, d(s′′(v1v2), s+(v1v2)) < m.
So d(s′′(v1), s′′(v2)) > d2−2m > d1, and we must have d(s′′(z), s′′(y)) ≤ ε+δ/2.
So d(s′′(y), s(x)) = d(s′′(y), s′(z)) < ε+ δ/2 +m ≤ ε+ δ.

Note that in the following translation we only have a translation for the
dependence atom =ε

ε (·) and not the general form =ε
δ (·). We show the proof for

6 T [M/x] = {s(a/x) : s ∈ T, a ∈ M} denotes the team one gets by adding every
possible value for x to each assignment of T .
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the open forms, but the closed ones go through practically verbatim. Here the
closed version of the dependence atom may feel a bit more natural, as the open
form talks about a contraction.

Proposition 8. 1. =ε
ε (x̄, y) ⇒ ∀z(d(z, y) < 2ε ∨ x̄z|εx̄y).

2. =ε
ε (x̄, y) ⇐ ∀z(d(z, y) < ε ∨ x̄z|εx̄y).

Proof. For the first direction assume T |==ε
ε (x̄, y) and let T ′ = T [M/z]. Let

Y1 = {s ∈ T ′ : d(s(z), s(y)) < 2ε} and Y2 = T ′\Y1. Now if s, s′ ∈ Y2 we
cannot have d(s(x̄z), s′(x̄y)) ≤ ε, as then we would have d(s(y), s′(y)) < ε and
thus d(s(z), s(y)) ≤ d(s(z), s′(y)) + d(s′(y), s(y)) < 2ε, a contradiction. Thus Y2
satisfies the second disjunct.

For the other direction, assume T satisfies the right hand side, and s, s′ ∈ T
are such that d(s(x̄), s′(x̄)) ≤ ε. If d(s(y), s′(y)) ≥ ε, then s+ := s[s′(y)/z] and
s
′+ := s′[s(y)/z] cannot satisfy the first disjunct on the right hand side, so we

must have d(s+(x̄z), s
′+(x̄y)) > ε,a contradiction.

7 Outlook

We have introduced team semantics for logics with both exact and approximate
dependence/independence atoms in the setting of metric spaces. We have shown
that for compact carrier spaces, requiring teams to be closed sets leads to very
nice behaviour, provided that our formulae contain only atoms of a certain type.
While not all atoms are permitted in a single formula for this, we have approxi-
mate version of all atoms available. For formulae using the open variants of the
approximate atoms, some questions remain open for now, but we believe that
this will be straight-forward to settle.

There are some potential connections to other areas of logic we wish to ex-
plore in the future. On the one hand, as observed in Subsection 3.3 requir-
ing teams to be closed adds a flavour of constructive math to the resulting
statements. Concretely, there could be some relationship between satisfaction
of formula interpreted via team semantics with closed teams, and provability in
systems such as RCA0 + WKL from reverse math [21] or BISH + WKL from
intuitionistic reverse math (e.g. [14, 5]).

On the other hand, the translations in Section 6 do not really give us a true
comparison of logics, as they don’t contain a measure of accuracy of the transla-
tions. A remedy seems to be considering many-valued logics, e.g., continuous first
order logic from [2], that have a built-in grading of the strength of implications.
Such a logic opens up a plethora of questions of the right choice of semantics,
as it allows both for new connectives and enables new ways of aggregating truth
values over a team.
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