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Abstract: Reconstructing the position of an interaction for any dual–phase time projection chamber
(TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood–free
framework, a new algorithm to reconstruct the 2–D (x, y) position and the size of the charge signal (e)
of an interaction is presented. The algorithm uses the secondary scintillation light distribution (S2)
obtained by simulating events using a waveform generator. To deal with the computational effort
required by the likelihood–free approach, we employ the Bayesian Optimization for Likelihood–
Free Inference (BOLFI) algorithm. Together with BOLFI, prior distributions for the parameters of
interest (x, y, e) and highly informative discrepancymeasures to perform the analyses are introduced.
We evaluate the quality of the proposed algorithm by a comparison against the currently existing
alternative methods using a large-scale simulation study. BOLFI provides a natural probabilistic
uncertainty measure for the reconstruction and it improved the accuracy of the reconstruction over
the next best algorithm by up to 15% when focusing on events at large radii (R > 30 cm, the outer
37% of the detector). In addition, BOLFI provides the smallest uncertainties among all the tested
methods.
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1 Introduction

While there is considerable evidence for existence of dark matter coming from astronomical and
cosmological observations on different scales, its direct observation remains a challenge [1–5].
Several theoretical models have been proposed assuming that dark matter is composed of yet
undetected particles [6], with Weakly Interacting Massive Particle (WIMP) being one of the most
popular candidates [7–9]. In case of WIMPs, this is in principle possible through observation of
recoiling nuclei [9, 10].

As is the case in any rare event search, to achieve a high sensitivity to signal events (nuclear
recoil events from WIMPs) the reduction of background events is crucial. Background events in
Dark Matter Direct Detection experiments are electronic or nuclear recoils from beta particles,
gamma photons or neutrons from a variety of sources. Dual–phase Time Projection Chambers
(TPCs), using high density detector media such as liquid xenon (LXe), have been particularly
successful in exploring increasing regions of the WIMP parameter space. The TPC design, in
combination with the xenon target, provides two main ways to reduce background events. The first
way is the ability to infer the type of recoil (electronic or nuclear) by accurately reconstructing
the size of the light and charge signal, respectively defined as the number of prompt scintillation
photons and ionization electrons. Properly retrieving these quantities allows for the reduction of
electronic recoil background events in the analysis. The second way is the ability to reconstruct the
3–D spatial position of events. Most of the background events will interact in the outer region of the
TPC due to the self-shielding properties of the high density liquid xenon. By selecting only events
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from an inner region of the detector, the signal over background ratio is increased. This motivates
the need for accurate position and size of the charge signal reconstruction. Position reconstruction
is an important part of experiments such as LUX [11] and XENON [12, 13] and relies on the
prompt scintillation light, labeled as S1 signal, and the secondary scintillation light generated by
the ionization electrons, labeled as S2 signal, both described in Section 2.

Defined z as the depth of the interaction, the goal of position reconstruction is to infer the 3–D
(x,y,z) position of the interaction by combining the 2–D (x,y) position of the S2 signal with the
depth of the interaction, the latter being estimated bymeasuring the drift time. The estimation of z is
in general easier and more precise than the 2–D (x,y) position reconstruction. With this regard, one
important assumption is that the drift field is uniform throughout the TPC. An uniform drift field
ensures that electrons drift up straight, so that the 2–D (x,y) position at which they are generated
is the same as where they are extracted into the gas phase and produce the S2 signal. When this
assumption does not hold, the field distortion needs to be modelled and the reconstructed position
needs to be corrected for this distortion. As will be shown in Section 4, the method introduced in the
present work directly infers the 2–D (x,y) position without the need for field distortion correction.
Moreover, position reconstruction typically involves reconstructing the 2–D (x,y) position from the
S2 hit pattern and then combining that with the drift time in order to find the 3–D (x,y,z) position of
the interaction. However, there are also cases where estimating the z coordinate from the S2 signal
alone is desirable. In the case of a S2–only driven analysis (where only S2 signals are used, allowing
for a lower energy threshold) no drift time is in general available [14]. In fact, the shape of the S2
signals might be used to provide information on the depth of the interaction but is typically an order
of magnitude less accurate than using the drift time and is not used for detector fiducialization.
With the proposed method the drift time can also in principle be estimated for cases in which only
the S2 signal is available. Finally, in order to reconstruct the recoil energy of an event the number of
prompt scintillation photons and the number of ionization electrons need to be determined. In the
case of ionization electrons, this involves finding the total charge signal of the S2 event (number of
photo–electrons observed), and then applying various corrections, taking into account the position
of the interaction. In the last example of Section 4 the charge signal of the event is directly inferred
from the waveform and from the S2 hit pattern, using as well the bottom PMT array in order to
retrieve additional information.

In the present work we implement a novel position and size of the charge signal reconstruction
algorithm, based on the likelihood–free framework. The presented approach is applicable to any
dual–phase TPC. To provide concrete examples and simulations we use the specifications of the
XENON1T TPC and employ the open source Processor for Analyzing XENON (PAX) [15] data
processor and waveform simulator developed by the XENON collaboration.

The article is structured as follows: in Section 2 we present the detector physics of direct
detection as well as some of the already available algorithms used for reconstructing the position
of an event in dual–phase TPCs starting from the S2 hit pattern. In Section 3 we introduce the
likelihood–free framework, justifying the reasons for its recent success, defining the quantities
needed in order to perform the analyses and motivating its use in position reconstruction of events
in a dual–phase TPC. Several advantages can be obtained by using the likelihood–free framework,
such as the availability of a posterior distribution for the parameters of interest as well as retrieving
credible intervals straightforwardly from those posteriors. In order to deal with the computationally
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expensive calculations, the Bayesian Optimization for Likelihood–Free Inference (BOLFI) [16] is
introduced and properly designed for executing the proposed analyses. In Section 4 we present
three examples to explain how the likelihood–free approach works and to show its advantages over
the currently existing alternative methods. The first inceptive example uses a simplified model
to generate simulated data. For the other two examples, we use the full event simulator PAX
processor. In particular, for the third and final example, beyond reconstructing the 2–D (x,y)
position we additionally reconstruct the size of the charge signal (e) of the event. Our conclusions
are presented in Section 5.

2 XENON1T detector

Dark Matter direct detection experiments aim to detect Dark Matter from particles scattering on
the detector medium. Both nuclear and electronic recoils lead to three physical processes, known
respectively as phonon emission, scintillation and ionization, where the proportion for each process
is different depending on the type of recoil. By using a detector which is sensitive to two of these
processes, nuclear and electronic recoils can be discriminated. Since most WIMP signal models
only predict nuclear scattering, the removal of electronic recoil events greatly reduces the number
of background events [17].

Among the different available types of detectors typically used for direct detection experiments
[9], in the present work we focus on noble–liquid TPCs [12, 18, 19], although the method presented
in this work can be applied to any liquid–gas TPC, as shown in the following. A dual–phase
(liquid–gas) TPC uses both the scintillation and the ionization signals to detect particles scattering
on atoms in the detector. Besides providing the ability to distinguish between nuclear and electronic
recoil events, a dual–phase TPC can also reconstruct the spatial position of the events. Properly
reconstructing the 3–D (x, y, z) position of events is crucial in order to discard background events at
the edges of the TPC and to perform spatially dependent corrections that are caused by nonuniform
detector responses. The ratio between S1 and S2 is used to discriminate between nuclear and
electronic recoils, further reducing the background.

The XENON1T TPC is suspended in a cryostat filled with 3.2 t of ultra-pure liquid xenon,
2 t of which is in the sensitive region of the TPC where particles scattering on the xenon can be
detected and their position and energy reconstructed. The TPC is of cylindrical shape with a height
and diameter of about 1 m. The TPC also consists of a field cage and various electrodes such that an
electric field can be created inside the TPC to drift charges to the top (gaseous region) of the TPC.
Here a second stronger electric field extracts the electrons from the liquid into the gaseous xenon
where the electrons generate another scintillation light signal from their interactions with the xenon
gas. To detect both the prompt scintillation light (S1) from the initial scatter as well as the S2 from
the electrons extracted at the top of the TPC, the TPC is instrumented with 248 photomultiplier
tubes (PMTs). These circular 3-inch diameter Hamamatsu PMTs are placed in two arrays at the top
and at the bottom of the TPC. The top array contains 127 PMTs, which are positioned in concentric
rings in order to maximize the radial resolution of the position reconstruction. Figure 1 shows the
detector physics of a typical interaction in a dual–phase TPC. Further details about the XENON1T
TPC can be found in [12].
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Figure 1. The working principle of a dual–phase (liquid–gas) TPC. A particle interacting with the detector
medium will produce scintillation light and ionization charge. The light is seen by the PMTs at the top and
bottom of the TPC (the S1 signal). The charges drift to the top of the TPC by the electric field Edrift. At the
top of the TPC the charges are extracted by the extraction field Eextraction and causing a secondary scintillation
light signal (S2). The time delay between S1 and S2 signal encodes the depth of the interaction whereas the
distribution of light on the top PMT array encodes the transverse position. The ratio between the S1 and
S2 energy provides the discrimination between electronic and nuclear recoils, lastly the S1 and S2 energy
provides information on the recoil energy. Figure reproduced from [20] with permission.

The S2 signal is delayed by the drift time of the electrons through the TPC and this drift time
is proportional to the depth at which the interaction occurred. This proportionality makes the drift
time a very accurate estimator of the depth of the interaction z. In XENON100 the resolution of the
vertical position of the interaction was found to be a factor 10 better than the resolution of the (x, y)
coordinates [13]. Since the S2 signal is always generated at the top of the TPC, very close to the
top PMT array, the distribution of light over the top PMTs (the S2 hit pattern) contains information
about the location of the S2 signal. Figure 2 shows the resulting S2 hit pattern for an event having
input coordinates (x, y, z) = (2.63 cm,−17.96 cm, 0 cm).

2.1 Position Reconstruction Algorithms in XENON1T

Several methods have been developed to reconstruct the 2–D (x,y) position using a S2 signal [11,
13, 21]. Next, we briefly describe some of the main algorithms provided in PAX: the “maximum
PMT” method, a likelihood based method called Top Pattern Fit (TPF) and a method that uses an
artificial neural network (NN). All these algorithms are implemented in PAX, the open source event
reconstruction and data processing software developed by the XENON collaboration [15]. The
version used in the following analyses is PAX v6.8.0, the same version that was used for the most
recent XENON1T results [22].
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Figure 2. The S2 hit pattern resulting from the secondary oscillation light S2 given the input coordinates
(x, y, z) = (2.63,−17.96, 0). The size of the charge signal of the event (e) is fixed equal to 25.

The fastest and simplest method to reconstruct the 2–D (x,y) position, the “maximum PMT”
method, looks for the PMT that captures the largest count of photoelectrons among the top PMT
array, and takes that PMT and their corresponding 2–D coordinates as the position from which the
S2 signal originated. This method has an uncertainty on the order of the distance between the top
PMTs. The “maximum PMT” method can be used to give a rough estimate of the position of the
S2 signal. We will however employ it in our first introductory example in Section 4.1, when using
a simplified model.

The TPF method consists of an algorithm that, given a S2 hit pattern, returns the most likely 2–
D (x,y) position, estimated by optimizing a likelihood function. The employed likelihood function
is the Poisson likelihood chi–square χ2

λ [23]. This likelihood function assumes that the number
of photoelectrons counted in a certain PMT is distributed according to a Poisson distribution with
mean:

λi = Nobs
LCEi(x, y)∑

j∈PMTs LCEj(x, y)
, (2.1)

where Nobs is the total number of observed photoelectrons in the S2 hit pattern, LCEi(x, y) is the
light collection efficiency (LCE) of PMT i for photons produced at position (x,y) and the sum is taken
over all working PMTs in the top PMT array. The LCE functions are not analytically known but
are rather numerically estimated using optical photon Monte Carlo simulations. Those simulations
take into account both the geometry of the detector and the optical and reflective properties of the
employed materials. The LCE maps are not defined on the continuum but rather simulated on a
grid, after which an interpolation is used. In practice, the LCE maps evaluate the probability for
a photon to reach a certain PMT given a set of assumed known 2–D position (x,y). For each live
PMT on the top PMT array, a corresponding LCE map is implemented. By sampling from the LCE
maps, an expected S2 hit pattern that originated from known 2–D positions (x,y) can be simulated,
allowing to use the LCE maps to reconstruct the unknown 2–D positions (x,y) of events. Besides
the most likely position, the TPF algorithm also returns the likelihood function values, defining
the goodness–of–fit measure of the reconstructed S2 hit pattern. The method can also be used
for retrieving confidence regions, since the likelihood surface is (partially) evaluated during the
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reconstruction. The TPF method was the main position reconstruction algorithm used in [24].
The last position reconstruction method is an artificial neural network (NN), trained with

simulated S2 hit patterns from the same optical photon Monte Carlo simulation used to retrieve the
LCE functions [22]. NN provided the best resolution in XENON100 (3 mm) among all the methods
used to reconstruct the 2–D (x,y) position at that time (TPF was introduced after XENON100).
The performance of NN strongly depends on the resulting training set, and while the TPF method
is physically motivated, the trained NN method learns to approximate the likelihood in an ad–hoc
way. The network consists of a fully connected feed–forward network with 2 hidden layers, one
input node for each PMT and two output nodes for (x,y). The NN method was the main position
reconstruction algorithm used in [22].

In addition to the algorithms discussed here, several other algorithms such as the centroid
algorithm [21] are also implemented in PAX. For our study we chose to compare against NN and
TPF since those were found to perform best in the XENON1T detector.

In the following Sections of the present work we focus on a novel method, based on the
likelihood–free framework, to reconstruct the 2–D (x,y) position. Beyond providing pointwise
estimates, our method automatically provides credible regions for the parameters of interest. To
retrieve a measure of the uncertainties related to each parameter of interest is crucial in order to
discard events belonging to the background of the TPC. A key difference with respect to the TPF
method is that with our proposed algorithm no LCE maps are needed as input to the optimization
algorithm. Finally, one of the advantages of the proposed method lies in the fact that its procedure
can be easily extended to more than two parameters. We show this feature in the last example where,
together with the 2–D (x,y) position, also the size of the charge signal (e), a proxy for energy of the
interaction, will be reconstructed.

3 Statistical Methodology

In this Section 3 we introduce the likelihood–free framework, motivating its use and explaining
the reasons for its success. In Section 3.1 the Approximate Bayesian Computation (ABC) and
the ABC–Population Monte Carlo (ABC–PMC) algorithms are presented, while in Section 3.2 we
introduce the Bayesian Optimization for Likelihood–Free Inference (BOLFI), a tool for accelerating
likelihood–free inference that will be largely used in the examples presented in Section 4. Our
choices for executing likelihood-free inference are discussed in Section 3.3.

3.1 Approximate Bayesian Computation

Bayesian inference has become an increasingly popular alternative to the frequentist approach over
the last 20 years, thanks to several algorithmic advances that allow complex models to be fitted
to data. In the frequentist framework the relation between observed data robs and the vector of
the parameters θ ∈ Θ ⊆ Rp (where p ≥ 1 is the dimension of the parameter space) can be fully
described by the likelihood function f (robs | θ). In the Bayesian framework a prior distribution
is assigned to the vector of parameters, θ ∼ π(θ). A Bayesian analyses is based on the so–called
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posterior distribution for θ, defined according to the Bayes theorem:

π(θ | robs) =
f (robs | θ)π(θ)∫

Θ
f (robs | θ)π(θ)dθ

, (3.1)

where the denominator of Equation (3.1) is a normalizing constant, often referred to as the evidence
in computer science literature. The evaluation of Equation (3.1) relies on the ability to calculate
the normalizing constant, but since in the vast majority of cases this quantity cannot be analytically
calculated, the posterior is usually approximated using various sampling techniques such as Markov
Chain Monte–Carlo (MCMC) algorithms [25, 26]. As long as the likelihood is known, MCMC
techniques are feasible. However this might not be the case, for example when the relationship
between the data and the parameters is highly complex or unknown or if there are observational
limitations. ABC is a framework of statistical inference designed for situations in which the
likelihood function is intractable, but simulation through the forward model is possible. Recently,
ABC has been applied in many different fields of science, such as astronomy [27–34], biology and
epidemiology [35], ecology [36], population genetic problems [37–40] and population modeling
[41].

The resulting ABC posterior distribution, following the notation from [42], can be written as:

πε (θ | s(robs)) =
∫ 

f (s(rprop) | θ)π(θ)IAε,s(robs)(s(rprop))∫
Aε,s(robs)×Θ

f (s(rprop) | θ)π(θ)ds(rprop)dθ

 ds(rprop), (3.2)

where IAε,s(robs)(·) is the indicator function for the set Aε,s(robs) = {s(rprop) | ρ(s(robs), s(rprop)) ≤ ε}.
According to the definitions provided through Equation (3.1) and Equation (3.2) for the true

posterior distribution and the ABC posterior distribution respectively, it follows that π(θ | robs) ≈
πε (θ | s(robs)) for ε → 0 and s(·) sufficient. In practice, however, for computational reasons, some
tolerance ε > 0 has to be allowed, which causes an approximation error in the ABC procedure.
Secondly, rather than comparing the entire observed data robs with the simulated sample rprop, the
similarity between the observed and the simulated data is based on suitably selected summary
statistics. While a desirable situation involves selecting summary statistics s(·) that are sufficient
[43], this rarely happens when facing real problems necessitating ABC. As pointed out in [42],
for most situations the summary statistics are usually determined by the problem at hand and
selected by the experimenters in the field, making the implementation of a general procedure for
retrieving highly informative summary statistics challenging. Provided that the summary statistics
and the tolerance are properly selected, the ABC posterior distribution suitably matches the true
posterior distribution [37, 44–48]. The original basic ABC algorithm [39, 40] can require a huge
computational time in order to produce the desired number of posterior samples, because it only
uses prior distributions throughout the procedure [42]. Recently, many algorithms that extend the
basic ABC algorithm have been proposed [16, 42, 44, 46, 49–54], but at least for the first example
presented in this work we focus on the ABC–PMC algorithm [55].

The ABC–PMC algorithm, in order to improve the efficiency of the statistical inference,
constructs a series of intermediate distributions rather than only using the prior distributions. The
first iteration of the ABC–PMC algorithm uses tolerance ε1 and draws proposals from the specified
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prior distribution. Starting from the second iteration, the algorithm draws proposals from the
previous iteration’s ABC posterior distribution. After a particle is selected from the previous
iterations particle system, it is moved according to some kernel. Since the obtained proposals
are not directly drawn from the prior distributions, importance weights are used. The importance
weight for particle J = 1, . . . , N at iteration t is defined as:

W (J)t ∝ π(θ
(J)
t )/

N∑
K=1

W (K)
t−1φ

[
τ−1
t−1

(
θ
(J)
t − θ

(K)
t−1

)]
,

where φ(·) is a Gaussian kernel with variance τ2
t−1 (i.e. twice the weighted sample variance of

the particles from iteration t − 1, as originally suggested by [55]). The steps required to run the
ABC–PMC algorithm are displayed in Algorithm 1.

Algorithm 1 ABC–PMC algorithm for θ
if t = 1 then

for J = 1, . . . , N do
Set d(J)1 = ε1 + 1
while d(J)1 > ε1 do

Propose θ(J) by drawing θprop ∼ π(θ),
Generate rprop ∼ f

(
· | θ(J)

)
Calculate distance d(J)1 = ρ(s(robs), s(rprop))

end while
Set weight W (J)1 = N−1

end for
else if 2 ≤ t ≤ T then

Set τ2
t = 2 · var

(
{θ(J)

t−1,W
(J)
t−1}

N
J=1

)
for J = 1, . . . , N do

Set εt = qth quantile of {d(J)
t−1}

N
J=1

Set d(J)t = εt + 1
while d(J)t > εt do

Select θ∗t from θ
(J)
t−1 with probabilities

{
W (J)

t−1/
∑N

K=1 W (K)
t−1

}N
J=1

Propose θ(J)t ∼ N(θ∗t , τ2
t )

Generate rprop ∼ f
(
· | θ(J)t

)
Calculate distance d(J)t = ρ(s(robs), s(rprop))

end while
Set weight W (J)t ∝ π(θ

(J)
t )/

∑N
K=1 W (K)

t−1φ
[
τ−1
t−1

(
θ
(J)
t − θ

(K)
t−1

)]
end for

end if

The series of tolerances decreases such that ε1 > ε2 > · · · > εT , where T is the final iteration
of the ABC–PMC algorithm. Both the rule to reduce the tolerances and the total number of
iterations T are selected in advance and must be properly tuned for the considered application
[33, 35, 41, 47, 55–57]. We will discuss our choices to run the ABC–PMC algorithm in Section 4.
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The result of the ABC–PMC analysis consists of the approximate posterior distribution, used to
provide both pointwise estimates and credible regions on the parameters of interest.

One of the advantages of working in the Bayesian framework is the availability for calculating
credible intervals starting from the posterior distribution. Given the general posterior distribution
π(θ | robs), B is a credible set for θ if:

Pr(θ ∈ B|robs) =
∫
B

π(θ | robs)dθ. (3.3)

As an example, a credible interval for θ of level 100(1−α)%, where α is the first type error, is defined
as that interval B such that

∫
B
π(θ | robs)dθ = 0.95 [58]. Among the others, an often used credible

interval is the Highest Posterior Density (HPD) interval [59, 60]. For a general HPD interval of
level α, the posterior probability for the region B is 100(1 − α)%. Moreover, the minimum density
of any point within the region B is equal to or larger than the density of any point outside that region.
An HPD is that interval for which most of the distribution lies [61]. We stress on the fact that one
of the advantages of the proposed algorithm is the availability non only for pointwise estimates but
also for credible intervals for the parameters of interest.

3.2 Bayesian Optimization for Likelihood–Free Inference

One of the major obstacles to likelihood–free inference is the computational cost of the method. In
fact ABC is based on the idea of identifying relevant regions of the parameters of interest of the
model by finding those estimates such that rprop, or more often its summary s(rprop), is comparable
with robs, or more often its summary s(robs). It is clear then that the role played by the summary
statistics and by the discrepancy measure defined to compare s(rprop) and s(robs) is key in order
to retrieve useful statistical properties, and in particular making the ABC posterior distribution a
suitable approximation of the true posterior. Most of the parameters proposed during the resampling
step result in large distances between s(rprop) and s(robs) and those estimates for the parameters for
which the distances would be small are unknown, as pointed out in [62]. This latter fact means that,
when using the ABC–PMC algorithm presented in Section 3.1, the number of datasets to simulate
through the forward model is usually at least on the order of 106, since weak information is generally
available in advance about relevant regions of the parameter space.

In order to address the issue related to the decision about the similarity between s(rprop) and
s(robs), an alternative to the first class of algorithms able to reduce the computational burden by
several order of magnitude is provided by BOLFI [16]. BOLFI combines probabilistic modelling of
the distance function that compares s(rprop) with s(robs) via optimization, to facilitate likelihood-free
inference. The basic idea behind BOLFI is to find, avoiding unnecessary computations, relevant
regions of the parameter space where the discrepancy between s(rprop) and s(robs) is small. This
is done by using a probabilistic model to learn on the stochastic relation between the parameter
estimates and the similarity between s(rprop) and s(robs) . Once the probabilistic model is ready, it can
be used to retrieve a suitable approximation to the true posterior distribution [16]. Therefore, the
problem becomes to infer the regression function of the discrepancies, which is unknown, focusing
on regions of the parameter space where those discrepancies are small. In their work, [16] proposed
to use Bayesian optimization [63], modelling the function of the discrepancies with a Gaussian
process. The choice for using Gaussian processes to model the function of the discrepancies is
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not mandatory. Recently Gaussian processes have been used as surrogate models for evaluating
generative models that are expensive to compute [64–66]. In the present work, we followed the
specifications suggested by [16]. Further details on BOLFI can be found in [16] and the Python
package called ELFI [67] is freely available for likelihood–free inference, offering both the ABC–
PMC algorithm and BOLFI as available inference options.

3.3 Likelihood–free inference for event reconstruction in a dual-phase TPC

As highlighted in the previous Sections, one of the most important choices when working in
the likelihood–free framework is the selection of summary statistics highly informative on the
parameters of interest. Since the comparison between the entire simulated S2 hit pattern, rprop, and
the entire observed S2 hit pattern, robs, is computationally unfeasible, reducing the sample space
without losing information on the 2–D (x,y) position is crucial. For the examples presented in
Section 4, we generally perform two separated ABC–PMC/BOLFI analyses. The first analysis uses
as summary statistic the well known Euclidean distance while for the second analysis the Bray–
Curtis dissimilarity is used. The Bray–Curtis dissimilarity is not a true metric, since it does not
have the triangle inequality property. Despite this, for our goal of properly comparing robs with rprop,
we found the Bray–Curtis extremely useful. One of the advantages of the Bray–Curtis relies on its
interpretability: a Bray–Curtis dissimilarity equal to 0 means that robs and rprop are exactly the same,
while a value equal to 100 defines the maximum difference that can be observed between two S2 hit
patterns. Moreover the Bray–Curtis dissimilarity, originally used in ecology [68], works under the
assumption that the samples are taken from the same physical size, such that for instance the PMTs
that count the number of photoelectrons. Given the observed S2 hit pattern, robs, and a simulated
one, rprop, the summary statistics based on the Euclidean distance and the Bray–Curtis dissimilarity
are respectively defined as:

ρ(robs, rprop)Euclidean =

√√
n∑
i=1
(r iobs − r iprop)2 (3.4)

and

ρ(robs, rprop)Bray–Curtis =
∑n

i=1 |r iobs − r iprop |∑n
i=1 |r iobs + r iprop |

, (3.5)

where n is the total number of PMTs composing the S2 hit pattern, assuming all the PMTs are
operational. By using Equation (3.4) or Equation (3.5) we reduce the sample space from 128 to 1,
while preserving the information carried out by the entire sample, as will be shown in the coming
examples. We note that for the third and last example a further distance, namely the Energy distance,
will be as well used and combined with the Bray–Curtis dissimilarity in order to reconstruct the
3–D coordinates (x, y, e). Details are found in Section 4.3.

We end this Section by presenting the statistical tests used to compare the performances of
the likelihood–free algorithm and the already available options, focusing in particular on TPF and
NN. Using large-scale simulation studies, for each method and given some known inputs, the 2–D
(x,y) position or the 3–D coordinates (x, y, e) of an event is reconstructed. Then, we calculated
the Euclidean distance from the input position for each of the used methods. In particular, for the
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examples presented in Section 4.1 – 4.2 that reconstruct the 2–D (x,y) position, defined (xinput, yinput)
and (xrec, yrec) as respectively the input coordinates and the reconstructed coordinates with one of
the different methods, the Euclidean distance deuc in R2 is defined as:

deuc =
√
(xinput − xrec)2 + (yinput − yrec)2. (3.6)

To quantify the goodness of the 3–D reconstruction presented through the third example of
Section 4.3, the Euclidean distance deuc in R3 between the reconstructed event (xrec, yrec, erec) and
the input coordinates (xinput, yinput, einput) is retrieved, according to Equation (3.7):

deuc =
√
(xinput − xrec)2 + (yinput − yrec)2 + (einput − erec)2. (3.7)

We note that since the 2–D (x,y) position and the charge signal e have different units of measure,
Equation (3.6) and Equation (3.7) define distances on different parameter spaces. In particular, we
defined the range of the charge signal to be the same order of magnitude than the 2–D (x,y) positions,
as shown in Section 4.3. Finally, statistical tests are performed to compare the results obtained
by BOLFI with TPF, the latter being the best currently existing method among the available ones.
Because the different reconstruction algorithms are used on the same set of events, the most suitable
statistical test would be the paired sample t test [69]. Unfortunately, for all the considered examples
of Section 4, the assumption of normality underlying the paired sample t test does not hold. In fact
the Shapiro–Wilk test used to test the normality assumption of the distribution provides P–values
for which the hypothesis of normality is always strongly rejected. For this reason we used the non
parametric Wilcoxon Signed Rank Test [70].

4 Examples and discussions

In this Section we show the advantages of using the likelihood–free framework to reconstruct the
2–D (x,y) position over the currently existing alternative methods quickly reviewed in Section 2.1.
We do so by presenting three numerical examples. In the first example we use a simple forward
model in order to reconstruct the 2–D (x,y) position starting from a S2 hit pattern. The second and
the third example use a more complex and realistic forward model. Therefore, for computational
reasons, BOLFI is required to perform the likelihood–free analyses. In the second example we
are interested just in reconstructing the 2–D (x,y) position of an event, while in the third and final
example we add a third variable, the size of the charge signal (e), making a three parameter inference
problem (x,y,e). The softwares used to perform the analyses and to produce the Figures are Python1
and R.2

4.1 A first simple simulation example

In this first example we start investigating the feasibility for reconstructing the 2–D (x,y) position
given the S2 hit pattern by using the likelihood–free framework and in particular by implementing
the ABC–PMC algorithm introduced in Section 3.1. In order to do so, we use a simple forward

1http://www.python.org
2https://cran.r-project.org
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model that samples from the LCE maps. This forward model, that returns for a given set of 2–D
coordinates (x,y) the corresponding S2 hit pattern, requires to specify the LCE map binning (zoom
factor) and the number of photons to be specified. Since we use the LCE maps directly the spatial
resolution will be limited by the grid spacing of the LCE maps. To ensure the limiting factor is due
to the binning of the LCE maps and not due to our algorithm we fix the zoom factor equal to twice
the LCE map zoom factor (giving us twice the resolution). We fix the number of detected photons
to 500. Given the discrete nature of this simple forward model, we add stochastic noise from a
standard Normal distribution to the resulting S2 hit pattern.

Beyond the definition of the forward model, prior distributions have to be assigned to the
parameters of interest, that are in this case the 2–D coordinates x and y. For (x,y), according to
Equation (4.1), a Bivariate Normal prior distribution is used, where the means are the coordinates
(xmax PMT, ymax PMT) estimated by the “maximum PMT” method and the covariance matrix is diag-
onal with standard deviations equal to 15 cm. The parameters previously defined are also known
as the hyper–parameters of the prior distribution. We recall that the “maximum PMT” method
estimates as reconstructed position that PMT with the largest count of photonelectrons.(

xprop
yprop

)
∼ N2

[(
xmax PMT
ymax PMT

)
,

(
15 0
0 15

)]
. (4.1)

A coordinate (xprop, yprop) is valid if the following constraint, related to the dimension of the TPC,
is satisfied:

x2
prop + y2

prop ≤ 47.92cm2. (4.2)

Once the constraint is satisfied, (xprop, yprop) can be used to obtain the simulated S2 hit pattern, rprop,
and the steps outlined in Algorithm 1 can take place.

The last required step before running the ABC–PMC algorithm consists of tuning some of the
parameters originally introduced by [55]. In particular four parameters need to be properly selected:
the desired particle sample size N , the total number of iterationsT , the initial tolerance ε1 and finally
the rule to reduce the tolerance through the iterations. These parameters are not tuned once, but they
are rather the result of successive attempts and adjustments that combine computational savings
with a suitable approximation by the ABC posterior distribution to the true posterior. We defined
the desired particle sample size N = 1000, the total number of iterations T = 40, ε1 = 4 and finally
we adaptively selected the next tolerance of the algorithm by calculating the qt = 85th percentile
of {d(J)

t−1}
N
J=1, the distances of the previous step accepted particles system. There are of course

other possible choices: when choosing T and qt , the most important aspect to consider is to avoid
stopping the algorithm too soon (i.e. the ABC posterior distribution is a poor approximation of the
true posterior) as well as to avoid to run the algorithm for too long (i.e. the overall efficiency of the
algorithm is low). We found that, with the chosen quantile, after 40 iterations further reductions of
the tolerance did not lead to a better approximation of the ABC posterior distribution, suggesting
that a suitable approximation to the true posterior is reached. As outlined in Algorithm 1, starting
from the second iteration, rather than using the prior distribution, a perturbation kernel is used. We
used the Gaussian perturbation kernel proposed in [55], taking into account the previously defined
constraint on the parameters and calculating the importance weights accordingly.
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Once all the necessary quantities are defined, the ABC–PMC algorithm can be executed in
order to reconstruct the 2–D (x,y) position. As an example of that, we consider an event whose
true position is (xinput = 2.63 cm, yinput = −17.96 cm). The z coordinate is fixed equal to 0. By
entering (xinput, yinput) in the forward model we obtain the observed S2 hit pattern, robs. The goal is,
using only robs, to reconstruct the position of the S2 event. The results of our ABC–PMC analysis
are displayed in Figure 3 and summarized in Table 1. The summary statistic used to produce the
present plots is the Euclidean distance defined in Equation (3.4). Looking at the left plot of Figure
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Figure 3. (left) ABC posterior distributions for x (top) and y (bottom) estimated at the end of each iteration.
At the beginning of the procedure (cyan solid lines) the ABC posterior distributions are broader because of
the large used tolerance ε . Once ε is sufficiently small, the ABC posterior distribution stabilizes and further
reductions of the tolerance do not improve the posterior (bluer solid lines). The final tolerance is ε40 = 0.76.
For the final ABC posterior distributions, obtained after T = 40 iterations, the corresponding HPD 95%
interval are displayed for both x and y(brown dashed–point lines). (right) Bivariate contour plot of the joint
ABC posterior distribution (x,y) and its corresponding pointwise estimates, obtained with ABC–PMC (black
square), TPF (orange cross) and NN (green x). Those reconstructed positions are compared with the original
input (red triangle). The reconstructed positions obtained by TPF and NN are outside the 2–D surface of the
posterior and do not belong to the HPD 95% interval.

3 we can evaluate the final ABC marginal posterior distributions, obtained after T = 40 iterations
and non–parametrically estimated, for x and y. The ABC marginal posteriors exhibit two local
modes apart from the global maximum. Note that both the TPF and the NN methods seem to find
reconstructed position coordinates near the local modes. Through the 40 iterations, the tolerance
ε decreases, allowing the procedure to move from poorly informative ABC posterior distributions
(cyan solid lines, corresponding to the first iterations) to stable and informative ones (bluer solid
lines), once the tolerance has sufficiently decreased. The final tolerance is ε40 = 0.76. Together with
the posterior distributions, we used as pointwise statistic that defines the reconstructed coordinate
the posterior mean. In this case, since the ABC–PMC uses importance weights, the posterior
means for x and y are the result of weighted means. There are of course other possible choices
when picking a pointwise indicator from a posterior distribution, such as the maximum at posteriori
(MAP) estimate. We found for the present analyses the posterior mean to provide the closest results
to the input coordinates. Once samples from the posterior distribution are available, it is possible
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to retrieve a credible interval for the parameters of interests. In this case we calculated a HPD
95% credible interval for both x and y. The HPD interval provides useful information: first of all
we can see how these intervals contain the input coordinates. As second, the HPD interval can be
used to evaluate the accuracy of the position reconstructed with other methods, in this case TPF
and NN. The right side plot of Figure 3 shows the bivariate contour plot, where it is possible to
observe that, for the presented example, the positions reconstructed using ABC are much closer to
the input coordinates that any reconstructed position obtained with the currently existing alternative
methods.

Input Values ABC posterior means (HPD 95% interval) TPF method NN method maximum PMT method
x [cm] 2.63 2.69 (2.60; 2.85) 2.52 2.54 4.12
y [cm] -17.96 -17.99 (-18.16; -17.92) -17.88 -18.20 -15.36

Table 1. Comparison between the ABC posterior means, used as pointwise statistics, and the estimates
obtained with the currently existing alternative methods. Together with the pointwise estimates for the
ABC–PMC analysis, a HPD 95% interval is displayed. The last column defines the reconstructed (x,y)
position estimated with the “maximum PMT” method, employed to define the hyper–parameters for the prior
distribution used in the ABC–PMC analyses.

We performed the ABC–PMC positioning reconstruction analysis over 6297 independent events.
Then, we calculated the Euclidean distance from the input position for each of the four usedmethods,
according to Equation (3.6). The results, displayed in Figure 4, show that the proposed ABC–
PMC algorithm improves the accuracy of the reconstruction with respect to the currently existing
alternative methods both when using the Euclidean distance or the Bray–Curtis dissimilarity as
summary statistic. The average Euclidean distance for the positions reconstructed with ABC–PMC
that use as summary statistic to compare rprop and robs Equation (3.4) is 0.0487 cm. When using
Equation (3.5) as a summary statistic the average Euclidean distance is as well 0.0489 cm. The
average Euclidean distances for the positions reconstructed with TPF and NN are respectively equal
to 0.0923 cm and 0.4943 cm. In this simple initial example the smallest distances from the input
coordinates are obtained when using the ABC–PMC algorithm and as summary statistic to compare
rprop and robs Equation (3.4) or Equation (3.5). The main explanation for why the ABC–PMC analysis
outperformed the TPF method lies in the fact that, at least for this simple forward model, TPF gives
discrete reconstructed positions, while ABC gives continuous ones. We note that the factor 2
improvement between ABC–PMC and TPF is due to the same factor 2 difference in the zoom factor.

The goal for this first example that uses a simple forward model that samples from the LCE
maps, and whose likelihood is tractable, was to introduce the ABC–PMC algorithm as a novel
framework to reconstruct the 2–D (x, y) position using as information the S2 hit pattern. Since for this
simple forward model TPF gives discrete reconstructed positions while ABC gives continuous ones,
operating a comparison of the performanceswith respect to the currently existing alternativemethods
is unfeasible. We tested the feasibility for a likelihood–free analysis, defined prior distributions
for the parameters of interest and retrieved highly informative summary statistics. In the next two
examples more complex forward models having intractable likelihoods will be used and also TPF
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Figure 4. Euclidean distances obtained using Equation (3.6) for all the four methods resulting from the
reconstruction of 6297 independent events. The proposed ABC–PMC algorithm improves the reconstruction
with respect to the currently existing alternative methods for both the selected summary statistics. The
average Euclidean distances from the input for the positions reconstructed with ABC–PMC (and by using
as summary statistic Equation (3.4)), ABC–PMC (and by using as summary statistic Equation (3.5)), TPF
and NN are respectively equal to 0.0487 cm, 0.0489 cm, 0.0923 cm and 0.4943 cm. Note that the factor 2
improvement between ABC–PMC and TPF is due to the same factor 2 difference in the zoom factor. Since
the likelihood is known for this forward model we would get the same performance from ABC–PMC and
TPF for the same zoom factor. Using a higher zoom factor shows that the LCE map binning is indeed the
limiting factor and not due to the ABC–PMC algorithm itself. Secondly we observe that for this forward
model both summary statistics (Euclidean and Bray–Curtis) are equally informative.

will give continuous reconstructed positions, allowing for a comparison between our proposed
method and the currently existing alternative methods. The full waveform simulation and BOLFI
as the statistical tool for the likelihood–free inference will be used in order to execute the analyses.

4.2 Position Reconstruction using full waveform simulation

The first example introduced in Section 4.1 is useful to show from a practical standpoint how to
implement the ABC–PMC algorithm and to show the potential of the likelihood–free framework in
reconstructing the 2–D (x,y) position. Aimed by the same goal, the second example presented below,
rather than using a simple forward model that samples from the LCE maps, employs the complete
waveform simulation and reconstruction. Once provided the input coordinates (xinput, yinput), beyond
the S2 top hit pattern this forward model also returns the S2 bottom hit pattern and the time required
by the photo–electrons to reach the top PMTs, known with the term timing. The forward model
returns the S2 bottom hit pattern together with the S2 top hit pattern by considering the light
distribution as well as the light collection efficiency of the S2 signal over all PMTs in the TPC. We
note that in the previous example we called the S2 top hit pattern simply S2 hit pattern. From now
on we will clearly distinguish the type of S2 hit pattern we are referring to, specifying the terms
“bottom” or “top”. Since TPF and NN only consider the S2 top hit pattern to reconstruct the 2–D
(x,y) position, we consider for this second example only the S2 top hit pattern as well, in order to
present a comparison that uses the same amount of information among the employed methods.

The new forward model is much more complex and realistic and therefore slower than the one
used in Section 4.1, making the use of the ABC–PMC algorithm computationally unfeasible. For
this reason, rather than the ABC–PMC algorithm, the likelihood–free analysis is carried out using
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BOLFI, introduced in Section 3.2. In the following we consider all the PMTs to be operational. We
consider two different sizes of the charge signal, one releasing 10 electrons, another one releasing
25 electrons. As prior distribution for (xprop, yprop) we use Equation (4.1), but the mean hyper–
parameters are taken from the TPF method rather than from the “maximum PMT” method. Also
in this case, when using BOLFI to reconstruct the 2–D (x,y) position, we perform the analyses for
two different summary statistics: in the first analysis we use the Euclidean distance defined through
Equation (3.4), while in the second analysis the Bray–Curtis dissimilarity defined through Equation
(3.5) is used.

As pointed out in Section 3.2, in order to reduce the computational effort required to perform the
likelihood–free analysis, the function for the discrepancies is modeled through a Gaussian process
and its minimum is inferred by using Bayesian optimization. Rather than using the discrepancies
directly, [16] suggested to use the logarithm of the discrepancies in cases where the underlying
function is expected to be very peaked. For our study, a complication is provided by the constraint
on the parameters (x,y) introduced in Equation (4.2). We modified the acquisition function in
BOLFI in order to discard those proposed coordinates for which the constraint of Equation (4.2)
does not hold. A typical output provided by BOLFI is displayed in Figure 5, where the input
coordinates are (xinput = 2.63 cm, yinput = −17.96 cm). By looking at the top plot of Figure 5, it is
possible to appreciate the behavior of the logarithm of the discrepancies. If the summary statistic
is properly defined (i.e. is highly informative on the parameters of interest), then the minimum of
the logarithm of the discrepancies will tend to the input coordinates. As a result of the Gaussian
process, the target surface is inferred as shown in the bottom left plot of Figure 5. BOLFI, using
any proper sampling algorithm such as MCMC or SMC, will reconstruct the posterior distribution
for (x,y) by sampling from those regions of the logarithm of the discrepancies having the smallest
values, as shown in the bottom plots of Figure 5. When calling BOLFI, five of the parameters
originally introduced by [16] need to be properly tuned. The first parameter, called initial evidence,
gives the number of initialization points sampled straight from the prior distributions before starting
to optimize the acquisition of points. A second parameter, named update interval, defines how often
the GP hyper–parameters are optimized, while the parameter acquisition noise variance defines the
diagonal covariance of noise added to the acquired points. The fourth parameter, n evidence, is
used to build the Gaussian process to the logarithm of the discrepancies. Finally, a fifth parameter,
n samples, is used to define the length of the MCMC algorithm used to sample from the posterior
distribution (the burn–in is for default equal to half of n samples). We note that, when tuning these
parameters, both inferential and computational considerations have to be taken into account. In
particular, if initial evidence, n evidence and n sample are fixed too small, BOLFI is faster but might
fail in retrieving relevant regions of the parameter space and estimating the right variability of the
posterior distribution. On the opposite, for large values of initial evidence, n evidence and n sample,
the computational time required by BOLFI increases. The choices for the parameters required by
BOLFI rely on the prior distributions, the employed summary statistics and the forward model used
to generate the simulated sample, which make general rules for tuning the parameters required by
BOLFI unfeasible. Our choices for those parameters are summarized in Table 2 and are the result
of a tuning procedure that balances the inferential reliability of BOLFI (i.e. to infer relevant regions
of the parameter space) with its computational time.
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Figure 5. (top) Logarithm of the discrepancies returned by BOLFI for a generic 2–D (x,y) position, using
as summary statistic the Bray–Curtis dissimilarity defined in Equation (3.5). The input coordinates are
(xinput = 2.63 cm, yinput = −17.96 cm). For both x and y the minimum was obtained when the proposed
coordinates were close to the input coordinates, meaning that the used summary statistic preserved relevant
features about the parameters of interest. (bottom left) The acquisition function resulting from the BOLFI
analysis. After acquiring the set of evidence points an MCMC algorithm samples from relevant region of
the parameter space. (bottom right) Contour plot and marginal posterior distributions for x and y obtained
after the MCMC sampling. For both x and y an HPD 95% interval is retrieved: x ∈ (1.13, 4.83) and
y ∈ (−19.56,−15.25).

initial evidence update interval acq noise var n evidence n sample
50 1 5 300 1000

Table 2. Definition of the parameters used to initialize BOLFI. We found these choices to perform at best
from both a computational and an inferential standpoint.

Once the five parameters according to Table 2 are defined, BOLFI can be used to reconstruct the
2–D (x,y) position. Considering the two different low levels for the size of the charge signal and
the two different summary statistics, we perform four analyses. The location parameter from the
posterior distribution used to provide the reconstructed position is the posterior mean. We tried to
use also the posterior mode and the posterior median, but these two statistics did not perform as
well as the posterior mean.

When the input size of the charge signal is fixed at 25, BOLFI reconstructs the 2–D (x,y)
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position better than TPF and NN, as shown in Figure 6. In particular, using the Bray–Curtis
dissimilarity to compare the observed and the simulated S2 top hit pattern leads to an overall
improvement, over 1000 reconstructed positions, of 11% with respect to TPF. When focusing to
events on the edges of the TPC (i.e. R > 30 cm), the 2–D (x,y) position reconstructed with BOLFI
is 15% more accurate with respect to TPF. The Euclidean distance performs slightly worse than the
Bray–Curtis dissimilarity, but the results are still more accurate with respect the currently available
methods (5% more accurate than TPF when focusing on all the events and 10% more accurate than
TPF when focusing on events at R > 30 cm). The right plot of Figure 6 shows the mean distance
from the input positions as function of the radius R. It is possible to note that, when using BOLFI
and the Bray–Curtis dissimilarity, the results are more accurate than TPF and NN for any level of
the radius R.

Figure 6. Size of the charge signal = 25; (left) Distribution of the Euclidean distances obtained using
Equation (3.6) for all the methods once 1000 events are reconstructed. For each method the corresponding
average Euclidean distance and standard deviation is displayed. When using BOLFI and the Bray–Curtis
dissimilarity, the accuracy respect TPF improves of 11%. (middle) Distribution of the Euclidean distances
obtained using Equation (3.6) for all the methods on the subset of the reconstructed events whose R > 30 cm.
When using BOLFI and the Bray–Curtis dissimilarity, the accuracy respect TPF improves of 15%. The
standard deviations retrieved with BOLFI are smaller than the ones obtained with the commonly employed
methods. (right) Mean distances from the input positions as function of the radius R. When using BOLFI
and the Bray–Curtis dissimilarity, the results are more accurate than TPF and NN for any level of the radius
R.

When the size of the charge signal is fixed at 10, BOLFI also reconstructs the 2–D (x,y)
position better with respect to TPF and NN, as shown in Figure 7. In particular, using the Bray–
Curtis dissimilarity to compare the observed and the simulated S2 hit pattern leads to an overall
improvement, over 1000 reconstructed positions, of 7% with respect to TPF. When focusing to
edge events at R > 30 cm of the TPC, the accuracy with respect to TPF improves to 13%. Also
in this case the Euclidean distance performs slightly worse than the Bray–Curtis dissimilarity, but
the results are still more accurate than the currently available methods (1% more accurate than
TPF when focusing on all the events and 7% more accurate than TPF when focusing on events at
R > 30 cm). The right plot of Figure 7 shows the mean distance from the input positions as function
of the radius R. It is possible to note that, when using BOLFI and the Bray–Curtis dissimilarity, the
results are more accurate than TPF and NN for any level of the radius R.

In order to provide statistical evidence to the qualitative evaluations discussed above, the
results of the Wilcoxon Signed Rank Test, that compares the errors on the reconstruction obtained
by the best BOLFI algorithm (i.e. BOLFI mean Bray–Curtis) with the errors obtained with TPF, are
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Figure 7. Size of the charge signal = 10; (left) Distribution of the Euclidean distances obtained using
Equation (3.6) for all the methods once 1000 events are reconstructed. For each method the corresponding
average Euclidean distance and standard deviation is displayed. When using BOLFI and the Bray–Curtis
dissimilarity, the accuracy respect TPF improves of 7%. (middle) Distribution of the Euclidean distances
obtained using Equation (3.6) for all the methods on the subset of the reconstructed events whose R > 30 cm.
When using BOLFI and the Bray–Curtis dissimilarity, the accuracy respect TPF improves of 13%. The
standard deviations retrieved with BOLFI are smaller than the ones obtained with the commonly employed
methods. (right) Mean distances from the input positions as function of the radius R. When using BOLFI
and the Bray–Curtis dissimilarity, the results are more accurate than TPF and NN for any level of the radius
R.

presented in Table 3. DefinedΛ = median(BOLFI Bray–Curtis)−median(TPF), the null hypothesis
H0 stating that the medians of the errors between BOLFI mean Bray–Curtis and TPF are statistically
equivalents is always rejected with P–values of order at least 10−7. Together with the P–values,
we also reported the 95% confidence interval for Λ. It is possible to note that all the confidence
intervals do not contain 0, suggesting that BOLFI reconstructs the (x, y) position statistically better
than TPF, and consequently also than NN, for all the considered cases.

Λ P–value (H0: Λ = 0) 95% confidence interval for Λ
Size of the charge signal = 25 1.01 · 10−7 (−0.085;−0.038)

Size of the charge signal = 25, R > 30 cm 1.67 · 10−8 (−0.12;−0.059)
Size of the charge signal = 10 1.88 · 10−8 (−0.11;−0.047)

Size of the charge signal = 10, R > 30 cm 9.25 · 10−7 (−0.13;−0.056)

Table 3. Wilcoxon Signed Rank Test that compares the medians between BOLFI mean Bray–Curtis and
TPF. The null hypothesis is H0: the medians are statistically equivalents. The alternative hypothesis is H1:
TPF median is statistically smaller than BOLFI mean Bray–Curtis. For each considered case a P–value is
displayed, together with a 95% confidence interval.

4.3 Position and Energy Reconstruction using full waveform simulation

In this last example we use similar specifications to the previously presented example but, beyond
the 2–D (x,y) position, we consider also the size of the charge signal (e) as a parameter of interest
whose posterior distribution has to be retrieved. The reconstruction of the event is defined by
the 3–D coordinates (x, y, e). While for (x, y) the same prior distribution defined in the previous
example is used, a prior distribution has to be assigned to the e. Since we are reconstructing the
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number of ionization electrons, the natural choice for the prior distribution is a Poisson random
variable having rate parameter λ. This discrete density cannot be used in the ELFI Python package
both when inferring the function of the discrepancies and when using the MCMC algorithm to
retrieve samples from the posterior distributions. In order to solve this problem, we used as prior
distribution for e a lognormal distribution having mean the size of the charge signal reconstructed
with PAX (PAX e) and standard deviation equal to 5 cm:

eprop = logNormal(PAX e, 5). (4.3)

Because of the presence of a third parameter, we found both the Euclidean distance and the
Bray–Curtis dissimilarity defined respectively through Equations (3.4) and (3.5) to be alone not
informative enough to properly reconstruct the 3–D event (x, y, e). For this reason we decided to
add as further distance function the energy distance, to be combined with the previously defined
metrics. The energy distance is defined as:

ρ(robs, rprop)energy =
∫ +∞

−∞

(
F̂(robs) − F̂(rprop)

)2
dF̂(rprop), (4.4)

where F̂(robs) and F̂(rprop) are the densities estimated respectively using robs and rprop.
Although the S2 bottom hit pattern does not contain valuable information about the 2–D (x,y)

position, it could be useful to better reconstruct e. For this reason we use as information not only
the S2 top hit pattern but also the S2 bottom hit pattern. From a practical standpoint, including
the S2 bottom hit pattern increases the dimension of vector returned by PAX from 127 to 248.
However, we note that using the S2 bottom hit pattern to reconstruct the 2–D (x,y) position leads
to worse results than using the S2 top hit pattern only, because the gain in information is smaller
than the noise introduced by those further 121 PMTs. For this reason, we use both the S2 top hit
pattern and S2 bottom hit pattern to calculate the Energy Distance defined in Equation (4.4) and
only the S2 top hit pattern to calculate the Bray–Curtis dissimilarity defined through Equation (3.5).
The overall distance function selected to compare robs with rprop is therefore the sum between the
Bray–Curtis dissimilarity that uses as information on robs and rprop only the S2 top hit pattern, and
the Energy distance that uses as information on robs and rprop all the 248 PMTs. The logarithm of the
discrepancies returned by BOLFI for a generic 3–D (x,y,e) event is displayed in Figure 8. We finally
note that, since in the previous example the Bray–Curtis dissimilarity performed better than the
Euclidean Distance to reconstruct the 2–D (x,y) position, for this example the analyses with BOLFI
only considers the Bray–Curtis dissimilarity, combined with the Energy distance as just described.

Figures 9 and 10 show the results once 1000 events have been reconstructed by using the
new specifications and the settings from Table 2 required to initialize BOLFI. To quantify the
goodness of the 3–D reconstruction, the Euclidean distance deuc in R3 between the reconstructed
event (xrec, yrec, erec) and the input coordinates (xinput, yinput, einput) is retrieved, according to Equation
(3.7).

When the size of the charge signal is fixed at 25 electrons, BOLFI is more accurate than TPF and
NN in reconstructing the 3–D (x,y,e) coordinates, as shown in Figure 9. The overall improvement,
over 1000 reconstructed positions, is of 14% respect TPF. When focusing to events on the edges of
the TPC (i.e. R > 30 cm), the accuracy respect to TPF improves of 15%. The right plot of Figure
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Figure 8. Logarithm of the discrepancies returned by BOLFI for a generic 3–D (x,y,e) event. The input
coordinates are (einput = 25, xinput = 2.63 cm, yinput = −17.96 cm). For all three parameters the minimum
was obtained when the proposed coordinates were close to the input coordinates, meaning that the used
summary statistics preserved relevant features about the parameters of interest.

9 shows that the results obtained with BOLFI are more accurate than TPF and NN for any level of
the radius R.

Figure 9. Size of the charge signal = 25; (left) Distribution of the Euclidean distances defined in Equation
(3.7) for all the methods once 1000 events are reconstructed. For each method the corresponding average
Euclidean distance and standard deviation is displayed. When using BOLFI the accuracy respect TPF
improves of 14%. (middle) Distribution of the Euclidean distances defined in Equation (3.7) for all the
methods on the subset of the reconstructed events whose R > 30 cm. When using BOLFI the accuracy
respect TPF improves of 15%. The standard deviations retrieved with BOLFI are smaller than the ones
obtained with the commonly employed methods. (right) Mean distance from the input positions as function
of the radius R. When using BOLFI the results are more accurate than TPF and NN for any level of the
radius R.

When the size of the charge signal is fixed at 10 electrons, BOLFI keeps being more accurate
in reconstructing the 3–D (x,y,e) coordinates than TPF and NN, as shown in Figure 10, although the
performances are not as good as the previous case in which the size of the charge signal was equal
to 25 electrons. The overall improvement, over 1000 reconstructed positions, is 5% with respect to
TPF. When focusing on events at high radii of the TPC (i.e. R > 30 cm), the accuracy improves of
6% with respect to TPF. The right plot of Figure 10 shows that the results obtained with BOLFI are
more accurate than TPF and NN for any level of the radius R.

Also for this example, in order to provide statistical evidence to the qualitative evaluations
discussed above, we conclude the analyses by presenting the results of the Wilcoxon Signed Rank
Test that compares the errors on the reconstruction obtained by the best BOLFI algorithm (i.e.
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Figure 10. Size of the charge signal = 10; ((left) Distribution of the Euclidean distances defined in Equation
(3.7) for all the methods once 1000 events are reconstructed. For each method the corresponding average
Euclidean distance and standard deviation is displayed. When using BOLFI the accuracy respect TPF
improves of 5%. (middle) Distribution of the Euclidean distances defined in Equation (3.7) for all the
methods on the subset of the reconstructed events whose R > 30 cm. When using BOLFI the accuracy
respect TPF improves of 6%. The standard deviations retrieved with BOLFI are smaller than the ones
obtained with the commonly employed methods. (right) Mean distance from the input positions as function
of the radius R. When using BOLFI the results are more accurate than TPF and NN for any level of the
radius R.

BOLFI mean Bray–Curtis) with the errors obtained with TPF. Table 4 summarizes the results of
the Wilcoxon Signed Rank Test for the all the considered cases. The null hypothesis H0 stating that
the medians of the errors between BOLFI mean Bray–Curtis and TPF are statistically equivalents is
always rejected with P–values of order at least 10−9. Together with the P–values, we also reported
the 95% confidence interval for Λ. It is possible to note that all the confidence intervals do not
contain 0, suggesting that BOLFI reconstruct the (x, y, e) events statistically better than TPF, and
consequently also than NN, for all the considered cases.

Λ P–value (H0: Λ = 0) 95% confidence interval for Λ
Size of the charge signal = 25 2.2 · 10−16 (−0.31;−0.22)

Size of the charge signal = 25, R > 30 cm 2.2 · 10−16 (−0.34;−0.23)
Size of the charge signal = 10 5.14 · 10−13 (−0.079;−0.045)

Size of the charge signal = 10, R > 30 cm 4.28 · 10−9 (−0.095;−0.047)

Table 4. Wilcoxon Signed Rank Test that compares the medians between BOLFI mean Bray–Curtis and
TPF. Defined Λ = median(BOLFI Bray–Curtis) −median(TPF), the null hypothesis is H0: the medians are
statistically equivalents. The alternative hypothesis is H1: TPF median is statistically smaller than BOLFI
mean Bray–Curtis. For each considered case a P–value is displayed, together with a 95% confidence interval.

5 Summary

We presented a novel method, based on the likelihood–free framework, to reconstruct the 2–D (x, y)
position and the 3–D (x, y, e) coordinates of an interaction, using the S2 signal and its corresponding
S2 top and bottom hit patterns. Although for the presented examples we used the XENON1T TPC,
the proposed algorithm can be used for any dual–phase TPC. In order to run both the ABC–PMC and

– 22 –



BOLFI algorithms, we defined suitable prior distributions for the parameters of interest (x, y, e) and
selected highly informative discrepancy measures, such as the Euclidean distance, the Bray–Curtis
dissimilarity and for the last example the Energy distance.

We evaluated the quality of the proposed algorithm by reconstructing at first the 2–D (x, y)
position and then adding as further parameter of interest the size of the charge signal (e). We
performed a comparison with the currently existing alternative methods on a sample of 1000 in-
dependent events, obtained by using the open source PAX data processor and waveform simulator
developed by the XENON collaboration. When focusing only on the 2–D (x, y) position reconstruc-
tion, BOLFI improved the accuracy of the reconstruction over TPF of 11% and 7%, respectively
when the size of the charge signal was fixed to 25 electrons and 10 electrons. We found even
larger improvements if focusing on events having radius R > 30 cm, the outer 37% of the detector.
For those cases BOLFI improved the accuracy of the reconstruction over TPF by 15% and 13%,
respectively when the size of the charge signal was assumed known and fixed to 25 electrons and 10
electrons. When focusing on the 3–D (x, y, e) reconstruction, BOLFI kept improving the accuracy
of the reconstruction over TPF. In particular the gain in accuracy was 14% and 5%, respectively
when the input size of the charge signal was equal to 25 electrons and 10 electrons. Also in this
more complex example we found slightly better improvements if focusing on events having radius
R > 30 cm, with BOLFI improving the accuracy of the reconstruction over TPF by 15% and 6%,
respectively when the input size of the charge signal was equal to 25 electrons and 10 electrons.
Finally, the uncertainties associated to the parameters of interest retrieved by BOLFI are always the
smallest among all the tested methods.

The proposed likelihood–free method presents several advantages with respect to the currently
existing alternative methods. While TPF method relies on the ability to retrieve the LCE functions,
that must be numerically estimated, BOLFI just requires a simulator that given a set of input
coordinates provides a simulated S2 hit pattern (and as further feature the timing). BOLFI is also
preferable with respect to the NN method, since it is much more accurate. We note also that BOLFI
does not need any correction for reconstructing the size of the charge signal as it directly infers
the number of ionization electrons. Moreover, the drift time and hence the depth coordinate z
can in principle be reconstructed. In the present work we used z = 0 because simulating deep
events requires a model of the drift field which is very detector specific. However if we were to
reconstruct the position of deep events no field distortion correction is needed since it is included in
the forwardmodel. One possible limitation of likelihood–free inference is the computational burden
of its analysis. BOLFI reconstructs events several orders of magnitude faster than the ABC–PMC
algorithm but still requires order one minute reconstruction time, most of which is used by the
waveform generator. The TPF method is faster, although the likelihood region is evaluated only
on a 7 cm x 7 cm grid. BOLFI automatically allows for properly defined credible intervals on the
parameters of interest, similar to TPFs confidence intervals for the frequentist framework. Our
proposed method will only be as good as the simulator can simulate the detector physics. For a
real application of this method the simulator will have to be tuned to data. This was done for the
PAX processor and the XENON1T TPC, but for our studies we only used simulations. The benefit
of our method, compared to other reconstruction algorithms, is what will allow for a complete
simulator which can simulate many physical effects. For example the PAX processor does simulate
field distortion from the non–uniformities in the electric drift field in the TPC which was tuned to
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data. Ultimately the speed and accuracy of the simulator determines the speed and accuracy of
the reconstruction. We note however that the gain in accuracy presented in this work justifies the
applicability of BOLFI over TPF even if our algorithm is computationally more expensive.
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