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A B S T R A C T

We demonstrate the efficacy of power-law models in the analysis of tree branch growth. The models can be
interpreted as allometric equations, which incorporate multiple driving variables in a single scaling relationship
to predict the amount of growth within a branch. We first used model selection criteria to identify the variables
that most influenced (1) the length of individual elongating annual shoots and (2) the total length of all elon-
gating annual shoots in the individual branches of silver birch (Betula pendula Roth). We then applied the two
resulting power-law equations as dynamic models to predict the trajectories of crown profile development and
accumulation of branch biomass during tree growth, using total branch length as a proxy for biomass. In spite of
the wide size range and geographical distribution of the study trees, the models successfully reproduced the
dynamic characteristics of crown development and branch biomass accumulation. Applying the model to predict
long-term growth of a single branch that was initiated at the crown top generated a realistic crown profile and
produced a final basal branch size that was well within the range of field observations. The models also predicted
a set of more subtle and non-trivial features of crown formation, including the increased rate of growth towards
the tree apex, decrease in growth towards the lowest branches, the effect of branching order on the amount of
elongation, and the higher vigour of thick branches when the effect of branch height was controlled. In contrast,
a simple allometric model of the form Y=aXb was incapable of capturing all the variability in growth of in-
dividual branches and of predicting the features of crown shape and branch size that are associated with the
slowing-down of growth towards the crown base. We conclude that power-law models where the parameter a is
refined to include spatial information on branch features shows good potential for identifying and incorporating
actual crown construction processes in dynamic models that utilize the structural features of tree crowns.

1. Introduction

Development of tree crown is an iterative process in which a tree
constantly grows to adjust the three-dimensional (3D) structure in re-
sponse to changes in the environment and the internal organization
(Sorrensen-Cothern et al., 1993; Pretzsch, 2014). Although crown
construction averaged over several tree species largely follows allo-
metric laws and other biophysical rules (Farnsworth and Niklas, 1995;
Enquist, 2002; Bejan et al., 2008), there remains ample variation within
and between species and individuals (Lines et al., 2012; Bentley et al.,
2013; Pretzsch, 2014).

A seemingly stochastic component is involved in within-crown
distribution of extension growth within branches (Buck-Sorlin, 2000;
Stevenson et al., 2000; Kull and Tulva, 2002; Koyama et al., 2017). A
wide variety of environmental factors can generate apparent

stochasticity in crown development, because they influence local
growth habits and generate plastic responses. Environmental factors
include the quantity and quality of light (Baraldi et al., 1994; Kukk and
Sõber, 2015), wind and gravity (Brüchert and Gardiner, 2006; James
et al., 2006), mechanical contacts with neighbours (Hajek et al., 2015),
availability of growing space (Simard and Zimonick, 2005), tempera-
ture (Nakamura et al., 2016) and activities of other organisms
(Haukioja et al., 1990; Gonda‐King et al., 2014).

The internal organization of a crown comprises multiple organs and
tissues competing for limited resources. Allocation among the com-
peting sites is affected by concurrent physical and ecophysiological
factors that include hormonal control and correlative inhibition
(Sprugel, 2002; Tworkoski et al., 2006), trade-offs among elongation,
radial growth and reproduction (Obeso, 1997; Kramer et al., 2014),
biomechanical requirements (Sone et al., 2006; Loehle, 2016), capacity
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of transport tissue (Grönlund et al., 2016) and hydraulic limits (Koch
et al., 2004).

Several studies of trees have reported consistencies between annual
elongation and internal and external factors under strictly controlled
growth conditions (Normand et al., 2009; Chen and Sumida, 2017), in
tree saplings (Messier and Nikinmaa, 2000; Takahashi et al., 2006,
Collet et al., 2011), and in fixed crown positions (Osada et al., 2014).
The generation of crown asymmetry is well documented, and the im-
portance of hierarchical branching order for shoot growth is also well
known (Jones and Harper, 1987; Young and Hubbell, 1991; Lintunen
et al., 2011). However, the information available on within-crown
patterns of branch growth is scattered, and spatially and ontogeneti-
cally limited, because typical studies cover growth at specific crown
positions of only a handful of trees growing at a single site. In ecological
interactions that shape the competitive success of individual trees, the
functioning of plastic growth patterns within the crown thus remains
largely unexplored (Ford, 2014). Even the process-based functional-
structural models of tree architecture frequently simplify representation
of resource allocation to branches, using growth rules that overlook the
identification of the actual processes that generate crown architecture
(Lacointe, 2000; Mathieu et al., 2009; Ford, 2014).

Here, we focus on the analysis of branch growth throughout the
entire crowns of silver birch (Betula pendula Roth) individuals ranging
from the juvenile to the reproductive stage within a geographical gra-
dient. Our aim is to identify the best set of explanatory variables for
dynamic models that encompass the patterns of branch growth shared
by the tree individuals regardless of the developmental stage or the
effects of unknown site-specific factors. We considered both structural
variables and variables that estimated the availability of photosynthetic
radiation, as well as plausible proxies for physiological information. As
an advancement to our previous analyses of static crown structure
(Lintunen and Kaitaniemi, 2010; Lintunen et al., 2011), we demonstrate
the use of power-law models as a method that serves both to detect the
dominant factors influencing branch growth within the crown and as a
method for constructing dynamic models to estimate branch growth
and crown formation.

2. Materials and methods

2.1. Power-law modelling

The power-law models can be considered as allometric scaling
equations (Y= aXb) in which the normalization constant (a) has been
modified to include information on additional factors affecting the
scaling relationship, a procedure that has been implicitly adopted in
many existing model equations (e.g. Cole and Lorimer, 1994; Mäkinen,
2002; Kantola and Mäkelä, 2004), and explicitly considered in others
(White and Gould, 1965; Kaitaniemi and Lintunen, 2008; Peters et al.,
2018).

We analysed branch growth within the crown of silver birch by

focusing on annual branch elongation rate described as 1) the annual
total branch elongation (ΔLb), calculated as the summed length of all
elongating shoots within individual first-order branches, and 2) the
annual length of the individual elongating shoots (ΔLs). The models for
ΔLb and ΔLs were constructed as power-law models, imitating the S-
system approach (Voit, 2000), as:
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where Xi are independent explanatory variables, α and gi are para-
meters, and j = b refers to the model of ΔLb and j = s to the model of
ΔLs.

Using branch diameter (db) as an example of an explanatory vari-
able (Xgi), the Eq. (1) can be interpreted as an allometric equation with
the form
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where gi is the scaling exponent and a is the normalization constant
following from Eq. (1) as
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The construction of power-law models is not restricted to structural
features, which are widely used for the static allometric analysis of tree
structure by utilizing logarithmically transformed versions of power-
law equations (Sileshi, 2014). Variables describing the contribution of
physiological processes can be equally included in the list of in-
dependent explanatory variables (Xi) as long as their values can be
considered constant at the time scale when the value of the dependent
response variable (such as ΔLj here) is set (Voit and Sands, 1996). Yet,
the potential of power-law models to operate as dynamical models of
plant development by themselves has remained largely unexplored,
with few examples covering the dynamic processes of tree growth (Voit
and Sands, 1996; Renton et al., 2005a,b). In other contexts, the S-
system approach with its power-law notation has been documented
extensively with plentiful justification for process modelling (Savageau,
1979a,b; Voit, 2000; Voit et al., 2015).

2.2. Variables for models of branch elongation in silver birch

We considered a selected set of structural and physiological vari-
ables to potentially influence branch growth in silver birch (Fig. 1,
Table 1). We first used a full set of candidate variables to construct
models according to Eq. (1), and then used model selection criteria to
identify the most parsimonious set of variables to remain as in-
dependent variables Xi. One year was used as the time step to calculate
ΔLj and to estimate the values of Xi. Branch-specific values were used
for ΔLb, and values specific for an individual long shoot (Fig. 1) were
used for ΔLs as described in Table 1.

The annual levels of PAR and Narea were included as potential Xi

variables, because both have been associated with crown growth habits

Fig. 1. Measurement and calculation of structural branch para-
meters listed in Table 1. hrt = h1/ht, where h1 is the height of the
branch base and ht is the total tree height. hrc = h2/hc, where h2 is
the distance between the branch base and the lowest living branch
and hc is the crown length. lrb = l/lb, where l is the distance be-
tween the shoot base and the branch base along the line lb, and lb is
the primary branch axis length measured as a straight line between
the branch base and tip. dbh is diameter at breast height, db is the
primary branch base diameter and ds diameter at the bifurcation
point of the side branch bearing a long shoot. In silver birch, the
long shoots are responsible for elongation and production of new
buds whereas the short shoots bear only one bud and typically
elongate less than 5mm per year. The short lines (|) crossing the
branch indicate typical points of recording information during the
measurement of branch structure. The downward facing side
branches have been drawn without foliage.
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in different studies (Umeki and Seino, 2003; Dong et al., 2015, Coble
et al., 2017). PAR and PARav (Table 1) indicate the potential to capture
photosynthates, and Narea indicates the availability and distribution of a
key nutrient that also itself is related to the photosynthetic potential
within the crown (Evans, 1989; Wyka et al., 2016). Although the values
of PAR and PARav correlate with Narea, their relationship in silver birch
is not straightforwardly linear, which leaves open the possibility of
partially independent effects (Kaitaniemi et al., 2018).

The availability of growing space and the risk of mechanical abra-
sion within the stand are also both known to influence growth alloca-
tion (Young and Hubbell, 1991; Hajek et al., 2015), and their potential
effects were included in the models using lbn to indicate the proximity of
neighbouring trees.

The variables db, ds, and dbh, or variables closely related to them, are
standard variables in models of plant development, and their influence
on elongation growth can be linked to both structural allometry and
transport capacity within a tree (Ford et al., 1990; Grote and Pretzsch,
2002; Savage et al., 2010). dbh also serves to indicate the age and on-
togenetic stage of a tree.

The annual values of the variables hrt, hrc, and lrb, in turn, re-
presented the variants of positional variables, which have turned out
successful in characterizing many patterns of tree growth (Baldwin and
Peterson, 1997; Grote and Pretzsch, 2002; Remphrey et al., 2002,
Renton et al., 2006; Normand et al., 2009). They can be considered as
aggregate variables that potentially contain information on many types
of processes. For example, they are, to some extent, linked with the
distribution of PAR within the silver birch crown (Kaitaniemi et al.,
2018), but may also reflect various features of internal organization in
terms of the relative transport capacity for nutritive, hormonal or other
substances within the stem, crown or individual branch (Sachs, 2004).
In the analysis of ΔLb, their average values also reflected structural
constraints stemming from previous growth events.

We excluded branch mortality and other types of resource loss, due

to the lack of substantial data, and likewise did not consider the
numbers of buds produced within branches.

2.3. Data for model calibration

The data for the calibration of the branch growth models originated
from eight study plots with two to six trees each (N=32 trees in all),
and were a subset of the data described in further detail in Table 1 from
both Kaitaniemi and Lintunen (2010) and Lintunen and Kaitaniemi
(2010). The sample trees had either Scots pine (Pinus sylvestris L.) or
silver birch as the dominant neighbouring species. Already existing
architectural models were used in the estimation of PAR and PARav for
these two species (Kaitaniemi et al., 2018). The 4 – 35-year-old study
trees were in the phase of active growth and covered a wide size range
(Table 2). The study plots were located along a 400-km southwest-
northeast transect between latitudes 60 °N and 63 °N and longitudes
21 °E and 29 °E in the boreal forest zone of Finland and represented
Myrtillus type forest sites, characterized by mesic till soils and medium
fertility.

Annual elongation through the growth of long shoots was measured
to describe the rate of elongation in each study branch (ΔLs and ΔLb).
Elongation was measured at the end of the growing season from a
sample of 1–12 sample branches systematically selected from the basal,
middle and apical part of each tree crown. On average there were six
sample branches per tree. ΔLs was measured as the distance between the
long shoot base and the most apical bud of a long shoot, and ΔLb was
calculated as the sum of all individual long shoot lengths within a
branch (Fig. 1).

The ΔLs values for each long shoot position were obtained, along
with the full 3D structure of the sample branches, by recording the 3D
positions of all individual short and long shoots and branching points
using a digitizer in the field (Fig. 1, Lintunen and Kaitaniemi, 2010).
Dead side branches were left out from the measurements. The proce-
dure provided also the 3D positions of the sample branches within the
main stem. The branching orders (i) and the lengths of branch segments
between the long shoot positions were also recorded, which yielded
positional information for model development (Fig. 1). In addition to
the detailed measurements of the sample branches, the length lb and
branching angle for all the remaining branches of each tree was mea-
sured using the digitizer (Lintunen et al., 2011).

Within each sample branch, Narea and relative PAR were estimated
for one to two foliage sampling positions depending on branch size.
Leaf samples for the determination of Narea in the lowest crown parts
mainly originated from the nonelongating short shoots, whereas the
samples in the uppermost parts frequently included two fully expanded
basal leaves of elongating long shoots. The leaf area was measured
digitally from fresh samples, and the amount of N was analysed from
dried samples with the Kjeldahl method. PAR was estimated for the leaf
sampling positions (Kaitaniemi et al., 2018), using the LIGNUM model
as described in Lintunen et al. (2013). The instantaneous relative PAR
with respect to the PAR of an open overcast sky was used as a shortcut
estimate of the annual cumulative PAR (Gendron et al., 1998;
Yoshimura and Yamashita, 2014).

In order to estimate PAR for the positions of leaf samples, the 3D
crown structure with leaves of all trees on the plot was constructed
using the models described in Lintunen et al. (2011). If the sampling

Table 1
List of the explanatory variables considered. See Fig. 1 for explanations. PAR
refers to the relative amount of photosynthetically active radiation estimated
under an overcast sky.

Variable Unit Description

a) Model for total branch elongation (ΔLb)
PARav branch-specific average PAR
hrt height of primary branch base in relation to tree height
hrc height of primary branch base in relation to crown length
lrb, av branch-specific average relative distance of long shoots from

branch base along the main axis
db cm primary branch base diameter
ds, av cm branch-specific average of side branch diameter at bifurcation

points within a branch
dbh cm tree diameter at breast height
Narea, av g m−2 branch-specific average of area-based nitrogen content of

foliage within a branch
lbn cm tree-specific average distance of basal branches to

neighbouring tree branches

b) Model for individual long shoot elongation (ΔLs)
PARa relative amount of photosynthetically active radiation under

overcast sky
hrt height of primary branch base in relation to tree height
hrc height of primary branch base in relation to crown length
lrb relative distance of long shoot from branch base along the

primary branch axis
db cm primary branch base diameter
ds cm diameter at the bifurcation point of the side branch bearing

the long shoot
dbh cm tree diameter at breast height
Narea

a g m−2 area-based nitrogen content of foliage
lbn cm tree-specific average distance of basal branches to

neighbouring tree branches

a Sampled within a cube with 20 cm side lengths around the shoot base.

Table 2
Numbers of sample trees in various diameter classes.

Diameter range (dbh, cm) N of trees

4 – 8 6
8 – 12 16
12 – 16 5
16 – 20 5
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position was located inside the canopy, PAR was computed for a total of
four random positions within a cube with 20 cm side lengths around the
sampling point, and the average of the values was used in the analyses
to even out the fine scale variation of light in the crown (Kaitaniemi
et al., 2018). Branch-specific average values of relative PAR (PARav)
and Narea (Narea, av) were used for the analysis of ΔLb, whereas the
analysis of ΔLs included only those long shoots (on average nine long
shoots per tree) for which measurements of Narea and PAR were avail-
able within the same 20-cm cube where their basal point was located
(Kaitaniemi et al., 2018).

Branch base diameter db was measured at the base of each primary
branch axis, and diameters (d) for the remaining branch parts, in-
cluding ds, were estimated with a taper model (coefficient of determi-
nation R2=0.96) based on unpublished measurements collected
during the study by Lintunen (2013):

d= 0.3(i−1)(1 – 0.98 lrb) db (4)

where i is the branching order, such that for the primary branch i=1,
for side branches bifurcating from the primary branch i=2, and so on.
In the estimation, we assumed that the minimum acceptable diameter
was 0.15 cm.

The minimum distance between the tips of the longest branches and
the branches of each crown-bordering neighbour tree was measured in
four 90-degree compass sectors to obtain tree-specific average distance
of basal branches to neighbouring tree branches (lbn). The average of lbn
was used for all branches and all long shoots within branches. The
measurements of lbn were restricted to neighbouring trees with stems
within a 5-m radius from the target tree stem.

2.4. Model selection

We first parameterized the model in Eq. (1) for both ΔLb and ΔLs
with all the candidate explanatory variables (Table 1) included, and
then proceeded with backward elimination of the variables that did not
contribute to the model fit. Occasionally, when elimination occurred
between two almost equally important variables, the variables elimi-
nated were added back at a later stage to ensure that the contribution of
a particular variable was not dependent on other variables remaining in
the model. Model selection and parameterization was conducted using
the SAS procedure NLMIXED (SAS Institute Inc., Cary, NC, USA) with
the Newton-Raphson method with line search as the optimization
method. Normal distribution was set as the conditional distribution for
the dependent variables ΔLb and ΔLs (Wolfinger, 1999). Random effects
were not considered because the focus was on the selection of fixed
explanatory variables and their parameterization. The Bayesian in-
formation criterion (BIC) was used as the criterion for model selection
(Schwarz, 1978). The steps of model selection are shown in Appendix
A.

2.5. Model validation and analysis

We utilized model-predicted trajectories of long-term branch elon-
gation, and the resulting estimates of crown profile and branch bio-
mass, to validate the behaviour of the final models against three sources
of additional data. In the validation, we assumed that the total branch
length (Lt) at any time step was suitable as a proxy for branch biomass.
The details of calculating the crown profile and the trajectories of
growth using the models of ΔLb and ΔLs are described in Appendix A.

The first source of data for validation was the model of proportional
branch biomass growth by Tahvanainen and Forss (2008), which pro-
vided an independent estimate of branch biomass increment over time
in different crown positions. We repeatedly applied the model of ΔLb to
generate a similar trajectory of biomass increment as Tahvanainen and
Forss (2008). The trajectory of growth was obtained by using the final
model of ΔLb to predict the growth of a single branch initiated at the

crown top.
The second source of data was the Lt of the sample branches, which

was also obtained during the digitization of the 3D branch structure
(Fig. 1). The measured Lt provided estimates of Lt at different crown
positions and that way reflected the prior trajectory of total branch
elongation (ΔLb) in the field. To validate the final model of ΔLb, the
average field-measured Lt was compared with Lt predicted by the model
at different crown positions during the crown development, similar to
the estimation of the biomass growth trajectory.

The third source of data were the lengths (lb, Fig. 1) of the remaining
branches in our study trees, i.e. those branches that were not used for
model parameterization, to estimate the average crown profile of the
study trees. To obtain a model-predicted crown profile for comparison,
the model of ΔLs was repeatedly applied to predict the branch main axis
length (Lc) at each annual time step and crown position. Because the
model of ΔLs predicted Lc, whereas lb in the data underestimated Lc by
ignoring curves within a branch (Fig. 1), the crown profile for com-
parison was generated from lb by estimating Lc = 1.18lb (see Appendix
A for more details). For simplicity, because the crown profile was ob-
tained as a by-product of comparing the model predicted and observed
branch lengths during the crown development, we assumed a constant
45° branching angle and a linear shape for all branches in the com-
parison. Description of a more accurate crown profile estimation for
silver birch is available in Lintunen et al. (2011).

Finally, a more detailed analysis of model behaviour in the various
crown parts and in trees with differing size was obtained graphically by
plotting the outcomes of altering the values of Xi within a re-
presentative range.

2.6. Alternative models

The performance of the final models of ΔLs and ΔLb was further
assessed by comparing them with alternative models obtained from the
literature. The fit of the alternative models was compared with the
measured ΔLs and ΔLb using the same model diagnostics as with the
power-law models. In addition to BIC, the fit was assessed by analysing
the regression between the observed vs. the predicted values and testing
the significance of slope b = 1 and intercept a=0 (Piñeiro et al.,
2008). The root-mean-squared error (RMSE) was also reported for the
alternative models. Further, the fit was also assessed by using the al-
ternative models to generate similar growth trajectories as described in
Model validation and analysis.

First, a simple allometric model was considered as plausible alter-
native for ΔLb:

ΔLb = αdbβ (5)

Second, we used the empirical model underlying the statistics in
Table 2 of Lintunen and Kaitaniemi (2010) to infer ΔLb from the sta-
tistical model explaining variation in growth vigour (GV). Lintunen and
Kaitaniemi (2010) measured GV as totlongt/totlengtht-1, where totlongt is
the measured total annual elongation at the end of year t and totlengtht-1
is the total length (including all alive side branches) at the end of year t-
1. Since GV in Lintunen and Kaitaniemi (2010) was based on tree level
sums of lengths, including stem elongation, we assumed that the in-
dividual branches grew with the same GV as whole trees, resulting in

= + − × + × − × ×GV p treeage p CI treeage CI0.13 0.003 0.0141 2 12 12

(6)

ΔLb (t) = GV × Lt (t-1)

where CI12 is a competition index, p1=0.03 and p2=0.02 with Scots
pine neighbours, and p1=0 and p2=0.03 with silver birch neigh-
bours. The measured values of input variables (Lintunen and
Kaitaniemi, 2010) were used in the analysis of ΔLb whereas the gen-
eration of growth trajectories relied on the average GV observed in the
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data.
Third, the model predicting ΔLs and underlying the statistics in

Lintunen and Kaitaniemi (2010) was also applied to the subset of trees
and shoots present in our sample

= − × − × + × +

+ × × + × × + + ×

+ × + + ×

L CI treeage h L

h L CI treeage p p CI

p treeage p p h

Δ 1.18 23.3 0.27 0.02 0.005

0.0005 0.91
s rc c

rc c

rc

9

9 1 2 9

3 4 5 (7)

where CI9 is a competition index, Lc is equal to lb, p1=0, p2=0 and
p3=0 with silver birch neighbours, p1=0.86, p2 = -0.51 and p3 = –
0.06 with Scots pine neighbours, p4 varies as a function of i as
p4(1)=3.4, p4(2)=3.6, p4(3)=3.9 and p4(4)=3.3 with p4(1) being the
parameter for primary branch etc, and p5 correspondingly varies as a
function of i as p5(1)=0.18, p5(2)=0.04, p5(3) = –0.05 and p5(4) =
–0.01. The generation of crown profile, by predicting the ΔLs of the
primary branch, was based on the observed average values of CI9 and
treeage and the assumption of silver birch neighbours (Lintunen and
Kaitaniemi, 2010). The values of hrc and Lc for the generation of crown
profile were calculated as described in Appendix A.

Eqs. (6) and (7) both describe statistical models with interactions
between continuous variables, which requires the values predicted to
be calculated as described, e.g. in Jaccard et al. (1990). We used the
SAS procedure GENMOD to generate the predicted values as an output.

3. Results

3.1. Performance with calibration data

The variables Xi retained in the final model for total branch elon-
gation ΔLb (Table 3a) included the height of branch base in relation to
crown length (hrc), branch base diameter (db), and branch-specific
average values of both relative distance of long shoots from branch base
along the main axis (lrb, av) and side branch diameter at bifurcation
points (ds, av). The final model for individual long shoot elongation ΔLs
(Table 3b) also included the height of branch base in relation to crown
length (hrc) and branch base diameter (db), together with the diameter
at the bifurcation point of the side branch bearing the long shoot (ds).

The model in Table 3a predicted ΔLb with higher precision (Table 4,
Fig. 2a) than the model of eq. (6), in which a constant GV throughout
the crown was assumed (Table 4, Fig. 2b). The fit of the allometric eq.
(5) with respect to ΔLb was also inadequate (Table 4, Fig. 2c). The
model in Table 3b predicted ΔLs slightly better (Table 4, Fig. 3a) than
eq. (7) (Table 4, Fig. 3b).

3.2. Performance with validation data

The model of ΔLb produced a growth trajectory for Lt that was
closely similar to both the trajectory of total branch length observed in
the field (Fig. 4a), and the trajectory for branch biomass resulting from
the model by Tahvanainen and Forss (2008) (Fig. 4b). Predictions based
on GV in eq. (6) failed to follow the observed values. The simple allo-
metric model of eq. (5) (with parameters α=38.4, β = 0.26)

succeeded well in predicting Lt, although it did not track the curvilinear
trajectories predicted by both the model of ΔLb and Tahvanainen and
Forss (2008) (Fig. 4).

The model of ΔLs applied to predict the growth trajectory of the
branch main axis resulted in an approximate crown profile that fol-
lowed the observed branch lengths, whereas the model in eq. (7)
overestimated branch lengths (Fig. 5).

3.3. Model predictions

The parameter values in the final models (Table 3) suggest that hrc
and db both have a strong effect on ΔLb (Table 3a). Further, ΔLb was
highest in branches with low branch-specific average side branch dia-
meter at the bifurcation points within a branch (ds,av) and low branch-
specific average distance of shoots from the branch base along the main
chord (lrb,av). ΔLs increased with increasing hrc and decreased as a
function of db (Table 3b). High ds was associated with increased ΔLs.

The graphical plots showed an increase in ΔLb (Table 3a) towards
the crown apex and as a function of branch diameter (Fig. 6a). ΔLb was
highest in branches that showed the lowest ds,av values and which had
most of their shoots close to the branch base (Fig. 6b).

ΔLs (Table 3b) increased towards the crown apex and decreased as a
function of db (Fig. 7a). High values of ds were associated with increased
ΔLs (Fig. 7b).

4. Discussion

4.1. Model-predicted crown features

The model-predicted trajectories of long-term branch elongation
were capable of reproducing the dynamic development of crown profile
and the accumulation of branch length and biomass in the course of tree
growth, which are features not addressed by typical static crown profile
models (Power et al., 2012; Crecente-Campo et al., 2013; Gao et al.,
2017). At the same time, the models served as construction rules ap-
plicable throughout entire silver birch crowns and they predicted many
non-trivial features of crown formation, which previously have been
reported in various species and in separate studies. The models re-
produced a higher growth rate towards the tree apex in terms of both
ΔLb (Goulet et al., 2000; Colombo and Templeton, 2006) and ΔLs
(Remphrey et al., 2002, Takahashi et al., 2006), the decrease in ΔLb and
ΔLs in the lowest branches (Goulet et al., 2000; Umeki and Kikuzawa,
2000), the effect of branching order (measured here as ds) on ΔLs
(Kozlowski and Ward, 1961) and the higher values in the ΔLb of thick
branches in comparisons using equal branch height (Goulet et al.,
2000).

Within-crown accumulation of branch biomass, estimated as the
total length of the woody branch parts, was closely similar to the
growth trajectory based on direct biomass measures (Tahvanainen and

Table 3
Final variables and parameter values (± 95 % confidence interval) in the
power-law models constructed to describe a) total branch elongation and b)
individual long shoot elongation.

α g1 g2 g3 g4

a) =L αh l d dΔ b rc
g

rb av
g

b
g

s av
g1

,
2 3

,
4

10.7 ± 8.5 1.5 ± 0.6 −0.8 ± 0.3 1.4 ± 0.3 −1.1 ± 0.5

b) =L αh d dΔ s rc
g

s
g

b
g1 2 3

36.2 ± 6.0 1.0 ± 0.9 0.9 ± 0.2 −0.6 ± 0.2

Table 4
The Bayesian Information Criterion (BIC) for the corresponding model, and the
intercept and slope of the regression between the observed vs. the predicted
values for the alternative models of a) total branch elongation (Fig. 2) and b)
individual long shoot elongation (Fig. 3). Significance tests for the regression
parameters given as * P≤ 0.05 and *** P≤ 0.001.

BIC Intercept Slope

a) LΔ b
Table 3a 1434.8 0.1 1.0***
Eq. (5) 1524.7 –10.6 1.3*
Eq. (6) 1922.3 31.8*** 0.2*

b) LΔ s
Table 3b 2071.5 0.4 1.0***
Eq. (7) 2134.3 –1.4 1.4***
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Forss, 2008). The model of ΔLb appeared to slightly overestimate Lt in
comparison with the field observations, which may result from the
exclusion of dead side branches in the measurements of Lt in the field.

4.2. Model performance

The predicted crown profile corresponded to measurements of
branch length and was comparable to our previous architectural model
(Lintunen et al., 2011). However, the predicted Lc of the longest pri-
mary branches remained below the approximate 3-m maximum re-
ported for mature silver birch (Ilomäki et al., 2003; Sellin and Kupper,
2006), and observed also in the largest crowns of our data. In part this
may reflect the effects of stand density on crown development (Ilomäki
et al., 2003), hence potentially on the model parameters as well, but
may also reflect the unknown consequences of using the growth mea-
surements of just a single year for model parameterization. Similarly,
the largest crowns in our data had also considerably higher Lt than that
predicted by the model, which suggests the need for caution in applying
the model to tree and stand conditions not typical for our data.

The crown profile and the resulting final branch length predicted by
our models was also sensitive to the effect of ds, which we estimated
simply by assuming a taper model common for all branch positions.
Thus, the model precision can probably be improved by using refined
values for ds and by re-estimating its associated parameter g2.

Overall, the new models were simpler than our previous model
versions and provided reasonably good fit, considering the wide size
range and geographical distribution of the sample trees. The amount of
variation in growth of birch individuals can be large even in far more
strictly defined tree samples (Umeki and Kikuzawa, 2000; Umeki and
Seino, 2003).

4.3. Modelling processes of crown construction

We consider the dynamic nature of the models as an important step
towards incorporating the actual crown construction processes in ap-
plications that utilize the structural features of crown shape. An effi-
cient tool in the process is the selection of variables for the final models,
which acts as a procedure for identifying key factors that modify branch
growth. A striking feature of the final models was that they operated
with morphological variables that are measurable by hand, or currently
perhaps using terrestrial laser scanning (Raumonen et al., 2015;
Sievänen et al., 2018). The predictable behaviour of the models sug-
gests that morphological measurements for estimating the amount of
annual growth together with power-law approximation can be suc-
cessfully used to analyse and construct models that capture many es-
sential features of actual growth processes.

In contrast to purely stochastic tree clones generated from laser
scanning data (Potapov et al., 2016; 2017), power-law models can
provide insight into physiological processes, because they can easily be
refined to include and assess the importance of additional physiological
factors. In contrast to a more traditional approach, in which a separate
model is used to calculate the amount of resources and empirical
growth rules are used to generate crown architecture (Renton et al.,
2005b), the power-law approach demonstrated its capability for dy-
namic generation of realistic crown features on its own.

It was also evident that the simple allometric model, in which the
normalization constant was included as a single variable without any
spatial information, was inadequate to predict the variability of growth
in individual branches. Even though the allometric model reasonably
followed the average growth trajectory of branches, it failed to depict
the slowing-down of branch growth towards the crown base (Maillette,
1982). Thus, the power-law models provided improved features com-
pared to the simple allometric model, and also served as a tool for

Fig. 2. Plots with observed vs. predicted total branch elongation (ΔLb) using different models. The 1:1 lines are also shown.

Fig. 3. Plots with observed vs. predicted individual long shoot length (ΔLs) using different models. The 1:1 lines are also shown.
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assessing factors that may influence the values of constituents in allo-
metric equations and their patterns of covariation. The values of the
scaling exponent and normalization constant are tightly linked, and
various combinations of values may provide acceptable fit with em-
pirical observations (West and West, 2011). Analysing power-law
models with or without assuming a constant scaling exponent can be
used to reveal information on processes that generate variation in
empirically observed scaling relationships (Kaitaniemi and Lintunen,
2008).

A useful future enhancement would be the addition or replacement
of driving Xi variables using variables that directly indicate the re-
sources available for crown development. A more explicit consideration
of the branching topology and the sequence of events during crown and
stand development may also be beneficial, because various mechanisms
can contribute to growth at different crown positions and at different
times of tree ontogeny. At the crown apex, the availability of light may
guide upward growth sufficient for a tree to persist in competition,
although at some point hydraulic constraints will limit the increase in
height (Ishii et al., 2008). At lower crown positions, dynamically
changing differences in relative shading (Henriksson, 2001), amount of
growing space (Jones and Harper, 1987), branch orientation in relation
to the sun (Stoll and Schmid, 1998), GV, and timing of events
(Duchesneau et al., 2001) may be more influential and give rise to other
typical responses, such as crown asymmetry. The costs of maintenance
are likely to increase as branch size increases (Cannell and Morgan,
1989; Spatz and Bruechert, 2000), and the longest and most vigorous
branches can also become subject to mechanical abrasion with neigh-
bouring trees, both setting limits to branch growth and GV (Hajek et al.,
2015; Loehle, 2016). Since neighbouring trees and other biotic factors
undergo simultaneous changes, crown structure is likely to be rarely at
the fully optimal state.

Since we did not detect the effect of neighbour distance on branch
growth, the distance to neighbouring trees may have occurred over a
range in which a change in distance itself does not explain crown ex-
pansion (Simard and Zimonick, 2005). The stand densities were rela-
tively low (Lintunen and Kaitaniemi, 2010), and extensive mechanical
contacts generating prominent crown asymmetry were not anticipated
or observed. We also used an average measure of distance for all the
basal branches throughout the crown, whereas mechanical contacts
may be prominent only in specific compass directions and in the longest
branches (Hajek et al., 2015).

The list of explanatory variables in the final models included in-
direct factors such as ds, hrc and lrb, av, whereas some direct factors were
omitted, such as PAR and Narea, which indicate potential photosynthetic
capacity within the crown. The exclusion of PAR and Narea suggests that
the indirect variables defining mainly the relative position of the
branches and shoots within the crown were sufficient to capture the
effect of PAR and Narea. There are several examples of positional effects
in addition to light that can influence growth responses, and the use of
ds, hrc and lrb, av may have indicated the favourability of growth posi-
tions relative to the structural organization of the entire crown. For
example, differences in the relative levels of shading instead of absolute
differences in PAR may greatly modify the allocation of growth
(Henriksson, 2001; Dong et al., 2015), while differences in height or GV

Fig. 4. a) Growth trajectories for the total length of all woody
branch parts predicted by the models Table 3a (black line), eq.
(5) (dotted line) and eq. (6) (short dashes). The symbols in-
dicate average observed total branch length in three tree age
classes (white circle is below 10, triangle is 10–20, and black
circle is above 20 years). Branch age was used to estimate a
standardized hrc for the observed branch length in different
tree age classes (see Appendix A). b) Cumulative total length
of all woody branch parts in relation to the maximum total
branch length predicted by the models in a), and compared
with the model of proportional cumulative biomass
(Tahvanainen and Forss, 2008) at different values of hrc (long
dashes). A new branch is initiated at lower left and reaches its
maximum size at upper right.

Fig. 5. Growth trajectories of a primary branch axis predicted by the models
Table 3b (black line) and eq. (7) (dotted line), illustrated as the distance from
the branch tip to the stem, together with an approximate crown profile (dashed
line) estimated from the trajectory of axis length predicted by model Table 3b.
Growth of a single primary branch axis was predicted as its hrc decreases during
stem elongation. A 90° branching angle was used in the plots for growth tra-
jectories, and a 45° branching angle in the plot of crown profile. The symbols
indicate average observed primary branch axis length in three tree age classes
(white circle is below 10, triangle is 10–20, and black circle is above 20 years).
Branch age was used to estimate a standardized hrc for the observed branch
length in different tree age classes as explained in Appendix A.
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among branches may affect growth independently of light (Goulet
et al., 2000, Osada et al., 2014), and mechanisms of apical control may
also contribute to growth allocation (Duchesneau et al., 2001, Palubicki
et al., 2009).

The use of ds, hrc and lrb, av as indirect explanatory variables in the
models can be considered as a shortcut to cover multiple possible
configurations of internal organization, although there may remain the
need for more precise definition through the specification and inclusion
of additional factors Xi in the models. However, many alternative trait
configurations may provide plants with equal performance in terms of
growth or other measures of success (Delagrange et al., 2004; Hubbell,
2006; Marks and Lechowicz, 2006; Kaitaniemi, 2007), thus even a
simplified model can be operationally efficient for many purposes
(Rosindell et al., 2012).

Some important factors were omitted from the models for reasons of
simplicity or lack of sufficient data. For example, temperature, pre-
cipitation and site fertility greatly influence tree growth (Niinemets and
Lukjanova, 2003; Dewar et al., 2009), and in models where prediction
at multiple locations and for several years is required, they are clearly
candidates to be included with their own Xi as driving variables to in-
dicate the availability of resources for growth. Investment in re-
production or losses to herbivory could be included as an efflux that
removes resources from growth. We also ignored the effects of neigh-
bouring species and competition indices, which we previously reported
as being influential for silver birch growth and crown construction
(Lintunen and Kaitaniemi, 2010). Instead, they were considered
through the use of PAR and Narea, both of which increase with the
presence of silver birch as the dominant neighbouring species in com-
parison to Scots pine neighbours with equal height (Kaitaniemi et al.,
2018). The positional variables ds, hrc and lrb may have incorporated the
direct effects of PAR and Narea.

5. Conclusions

We conclude that the power-law approach shows good potential for
modelling and analysing crown development at the level of 3D crown
structure, using variables that capture features of both structure and
functioning of crowns. The models can provide improved precision
regarding allocation of growth compared with classical statistical
models or simple allometric estimates of growth. Even further precision
may be obtained by including resource availability and identifying the
consequences of processes associated with detailed branching topology
and spatial interactions among trees during stand development.
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