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ABSTRACT 

Background: It has been proposed that cancer is more common in some families than in others, 

but the hypothesis lacks population level support. We use a novel approach by studying any 

cancers in large 3-generation families and thus are able to find risks even though penetrance is 

low.  

Methods: Individuals in the nation-wide Swedish Family-Cancer Database were organized in 3 

generations and the relative risk (RR) of cancer was calculated to the persons in the third 

generation by the numbers of cancer patients in generations 1, 2 and 3.  

Results: The RRs for any cancer in generation 3 increased by numbers of affected relatives, 

reaching 1.61 when at least 7 relatives were diagnosed. The median patient had 2 affected 

relatives, and 7.0% had 5 or more affected relatives with an RR of 1.46, which translated to an 

absolute risk of 21.5% compared to 14.7% in population by age 65 years. For prostate cancer, the 

RR was 2.85 with 4 or more affected family members with any cancer, and it increased to 14.42 

with 4 or more concordant cancers in family members. RRs for prostate cancer were approximate 

equal (2.70 vs 2.85) if a man had 1 relative with prostate cancer or 4 or more relatives diagnosed 

with any cancer.  

Conclusions: A strong family history of cancer, regardless of tumor type, increases cancer risk of 

family members and calls for mechanistic explanations. Our data provide tools for counseling of 

cancer patients with both low and high familiar risks.   
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INTRODUCTION 

The absence of correlation of risk of most cancers between spouses, particularly those not related 

to tobacco smoking, suggests that familial cancers are mainly due to genetic causes [1]. However, 

the known genes explain a small proportion of the familial clustering and, consistently, a recent 

analysis of genome-wide association studies (GWASs) on 13 cancers could explain no more than 

15 to 53% of the empirical familial risk [2, 3]. A further question is the sharing of familial risks 

between cancer sites. Data on many known cancer syndromes show pleotropic effects on multiple 

sites. For example, hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome), 

initially found in colorectal cancer families, was later shown to be associated with a high risk of 

endometrial cancers and a somewhat lower risk of at least half a dozen other cancers [4]. 

Similarly, BRCA1 and BRCA2 which were identified in breast and ovarian cancer pedigrees, are 

now known to predispose to at least five other tumors [5]. A review of Rahman on cancer 

predisposing genes listed 114 genes and only 39% were associated with cancer at a single site [6].  

Even this figure is likely to be too high because the initial studies focus on a single cancer type.  

 

Thus, despite an intense research effort in the past two decades, cancer predisposing genes seem 

to account for a small proportion of familial cancer, and the above GWAS analysis concluded that 

“most pairs of cancers…are unlikely to have strong genetic correlations” [3]. Population-based 

family studies from Utah, Iceland and Sweden have reported results on different (i.e., discordant) 

sites , and the Utah and the Icelandic data covered more than 2 generations [7-10]. In the Utah 

dataset, associations were estimated for 36 different cancer sites. Prostate cancer had most 

interactions with other cancer sites, and its relative risks were increased in the first-, second-, and 

third-degree relatives when probands diagnosed with 11 different cancer sites [7].According to 

the Icelandic data, 20 discordant cancer pairs were significant of 351 pairs tested and the relative 
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risks ranged from 1.1 to 1.5 among second degree relatives [9]. Based on the Swedish study on 

discordant cancers, we concluded our large study on 33 cancer sites: “Within the present sample 

size limits, we found no evidence of an overall susceptibility to cancer” [10].    

 

The issue of a general susceptibility to cancer does not appear to be settled because cancer 

syndromes often manifest multiple and diverse cancers while population-level family studies 

show far lower risks, if any, in discordant compared to concordant familial cancers. A limitation 

in published family studies has been a focus on pairs of selected cancers (A and B). Such a design 

would perform well if a genetic factor causes a reasonable risk (reasonably high penetrance) in 

cancers A and B but the statistical power would be low if a gene or a set of genes cause a lower 

risk (low penetrance) of many cancers. We present here a novel approach of analyzing cancers in 

3 generations and considering risks for any cancer and for the most common individual cancers. 

By combining data on first, second and third degree relatives we could identify families with 

large numbers of affected individuals. The data are relevant to genetic counseling, which 

understandably focuses on high risk syndromes and families. More broadly, our findings are 

useful in the general oncology practice, because they help physicians answer very common 

questions relating to the familial risks “caused by” malignancies found in the patients’ extended 

families.   

 

PATIENT AND METHODS 

The Swedish Family-Cancer Database (FCD) was used to estimate familial cancer risks. It was 

formed by merging data from the Multigeneration Register, the Swedish Cancer Registry and 

several other databases [11-13]. The individual linkages in the databases were based on the 

unique national identification number. The latest update of the FCD contains information until 

2012, including 15.7 million individuals and 1.8 million medically verified cancer cases. The 
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FCD is composed of children born from 1932 onwards and their biological parents. The available 

offspring-mother-father triplets were used to create pedigrees comprising of first-degree relatives 

(parents and siblings), second-degree relatives (grandparents, uncles and aunts) and third-degree 

relatives (cousins). In the present study, individuals born before 1932 for which no parental 

linkage was available were considered as the first generation. Individuals born between 1932 and 

1951 were defined as the second generation. Offspring of the second generation were defined as 

the third generation. A total of 1,846,840 third generation individuals were enrolled into the study 

as index individuals who were used for calculating the cancer risks and the number of their first-

degree, second-degree and third-degree relatives affected with cancers was regarded as probands 

who was used to define the different family histories. 

 

Among the index individuals 41,106 cancers were diagnosed. A 4-digit diagnostic code, the 7th 

version of International Classification of Disease (ICD-7), was used to identify the cancer site. To 

estimate individual cancer risks for any cancer in the family, the 33 most common cancers were 

taken into consideration, including the upper aerodigestive tract, esophagus, stomach, small 

intestine, colorectum, anus, liver, pancreas, nose, lung, breast, cervix, endometrium, uterus, 

ovary, other female genital, prostate, testis, other male genital, kidney, urinary bladder, 

melanoma, skin, eye, nervous system, thyroid gland, other endocrine glands, bone, connective 

tissue and hematopoietic tissue (non-Hodgkin’s lymphoma, Hodgkin’s disease, myeloma and 

leukemia). In addition, tobacco related cancers were defined as lung, upper aerodigestive tract, 

kidney, and bladder cancers. Due to the small case numbers, the latter three were merged into one 

group termed ‘other tobacco related cancers’. For the most common cancers of the breast, 

prostate, colorectum and lung, risks for concordant cancers in the family were also investigated. 

Since breast cancer is sex-specific, only female cases among the index individuals were taken into 

account.  
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Based on the index individuals, person-years and cases were calculated stratifying for different 

family histories (i.e., numbers of relatives with cancer) and potential confounders such as sex, 

age, calendar period, residential area, and socioeconomic status. Considering these stratification 

variables as covariates, a Poisson regression model was employed to estimate familial risks. 

Thereby, relative risks (RRs) in terms of incidence rate ratios and their 95% confidence intervals 

(CIs) were calculated for different family histories [14]. Familial risks were found to be 

significantly increased or decreased, respectively, if the 95% CI did not include 1.00. Trend tests 

were performed to assess whether RRs increased by the number of the affected relatives. P-values 

less than 0.05 were considered statistically significant. 

All statistical analyses were performed using SAS software version 9.3. The Lund University 

regional ethics committee approved the study. 

 

RESULTS 

The birth years of cancer patients identified in the 3 generations probands under study are shown 

in Fig. 1. The probands among 3 generations had 468,549, 367,642 and 48,730 cancers, 

respectively. The risk was calculated to the third generation depending on the numbers and types 

of cancers in the proband generations; the birth years of cancer patients in the 3 generations show 

maximal births in years 1920, 1943 and 1964, respectively.  

 

Table 1 shows the distribution of family sizes and cancer cases among the third generation, with a 

minimum of less than 5 (with missing parental or grandparental information) and a maximum of 

more than 60. The proportion of cancer patients among the 1,846,840 individuals in the third 

generation appears not to depend on the family size. 
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Table 1 Family size and cancer cases distribution among the third generation 
  

Family size 
<=5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 >60 Total 

Cancer 
cases 5,430 9,439 10,150 7,350 4,211 2,202 1,150 579 279 149 86 32 49 41,106 

index 
individuals 254,706 385,914 451,620 339,970 198,819 104,858 53,980 27,741 14,070 7,238 3,927 1,975 2,022 1,846,840 

Percent 2.13% 2.45% 2.25% 2.16% 2.12% 2.10% 2.13% 2.09% 1.98% 2.06% 2.19% 1.62% 2.42% 2.23% 

 

Cancer risks in the third generation are shown in Table 2 by the number of cancer patients in 

generations 1, 2 and 3. Risks were compared to those without relatives with cancer. For men the 

highest RR was 1.46 when 7or more relatives were diagnosed with cancer; for women the highest 

RR was 1.72 when 7 or more relatives were diagnosed. In data on combined sexes, the RRs 

reached 1.61 when at least 7 relatives were diagnosed. The RRs increased by numbers of affected 

relatives (all trend test p-values < 0.0001). The median patient in the third generation had 2 

affected relatives and 7.0% had 5 or more affected relatives. 

Table 2 Familial risks for any cancer among the third generation 
Cancer cases 
in the family 

 Male  Female  Total 

 N1 RR2 95%CI3  N RR 95%CI  N RR 95%CI 
0   2605 ref4,5 --  3721 ref5 --  6326 ref5 -- 
1  4334 1.07 (1.01-1.13)  6362 1.10 (1.04-1.15)  10696 1.08 (1.04-1.13) 
2  4151 1.11 (1.05-1.18)  6172 1.17 (1.11-1.23)  10323 1.14 (1.10-1.19) 
3  2793 1.14 (1.08-1.21)  4282 1.23 (1.16-1.30)  7075 1.19 (1.14-1.24) 
4  1578 1.28 (1.19-1.37)  2247 1.27 (1.19-1.36)  3825 1.28 (1.21-1.34) 
5  725 1.36 (1.24-1.49)  976 1.29 (1.19-1.41)  1701 1.32 (1.24-1.41) 
6  290 1.44 (1.26-1.65)  424 1.44 (1.27-1.63)  714 1.44 (1.31-1.58) 
7+   166 1.46 (1.23-1.74)  280 1.72 (1.48-2.00)  446 1.61 (1.43-1.82) 

1: N=Number of cancer cases among the index individuals; 
2: RR=Relative risk;  
3: CI=Confidence interval; 
4: ref=Reference; 
5: Trend test p-value < 0.0001. 
 

In Table 3 we show results for specific cancers in four ways of defining proband cancers, on 

top by considering any cancer and in the bottom by considered only concordant cancer. In 

addition any cancer excluding concordant cancer and any cancer excluding concordant cancer 

and cancer syndrome were also taken into consideration. 
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 For lung cancer the RRs were significantly increased when relatives were diagnosed with 

concordant cancer only (trend test p-value < 0.0001). For colorectal, prostate and breast cancers, 

most comparisons were significant and all the trend tests were statistically significant; For 

prostate cancer, when probands had any cancer, the RR increased to 2.85 with 4 or more affected 

family members, and it increased to 14.42 with 4 or more concordant cancers in family members. 

For breast cancer, the RR increased to 1.48 with 4 or more affected family members with any 

cancer, and it increased to 3.77 with 4 concordant cancers in family members.    

Table 3 Familial risks for colorectal, lung, prostate and breast cancers among the third generation 
for different family histories 

Cancer cases in the 
family 

 Colorectal cancer  Lung cancer  Prostate cancer  Breast cancer 

 N1 RR2 95%CI3  N RR 95%CI  N RR 95%CI  N RR 95%CI 

Any cancer 

0  326 ref4 --  114 ref --  85 ref --  1063 ref -- 

1  552 1.09 (0.92-1.29)  195 1.11 (0.85-1.44)  176 1.38 (1.02-1.86)  1801 1.09 (0.99-1.19) 

2  572 1.25 (1.05-1.47)  182 1.19 (0.91-1.55)  183 1.70 (1.26-2.28)  1785 1.20 (1.09-1.31) 

3  372 1.23 (1.03-1.48)  117 1.18 (0.88-1.59)  107 1.62 (1.17-2.25)  1269 1.29 (1.17-1.43) 

4+  373 1.44 (1.20-1.73)  111 1.30 (0.96-1.75)  164 2.85 (2.11-3.86)  1248 1.48 (1.33-1.63) 
P-value for 
trend test     < 0.0001    0.08    < 0.0001    < 0.0001 

                  

Any cancer 
(excluding 
concordant 

cancer)5 

0  326 ref --  114 ref --  85 ref --  1063 ref -- 

1  619 1.12 (0.95-1.33)  203 1.10 (0.84-1.42)  233 1.66 (1.27-2.17)  2094 1.14 (1.05-1.25) 

2  547 1.21 (1.02-1.44)  187 1.24 (0.95-1.61)  150 1.46 (1.09-1.94)  1782 1.22 (1.11-1.33) 

3  317 1.20 (0.99-1.45)  102 1.12 (0.83-1.51)  92 1.65 (1.20-2.27)  1047 1.24 (1.12-1.38) 

4+  265 1.33 (1.08-1.63)  84 1.17 (0.85-1.62)  79 2.02 (1.45-2.81)  748 1.27 (1.13-1.42) 
P-value for 
trend test     0.0047    0.28    0.0007    < 0.0001 

                  
Any cancer 
(excluding 
concordant 
cancer and 

cancer 
syndrome)6 

0  326 ref --  -- -- --  -- -- --  1063 ref -- 

1  639 1.14 (0.96-1.34)  -- -- --  -- -- --  2142 1.15 (1.05-1.25) 

2  532 1.19 (1.00-1.41)  -- -- --  -- -- --  1762 1.21 (1.11-1.33) 

3  320 1.26 (1.04-1.52)  -- -- --  -- -- --  995 1.22 (1.10-1.35) 

4+  241 1.30 (1.05-1.59)  -- -- --  -- -- --  689 1.25 (1.11-1.40) 
P-value for 
trend test     0.0059    --    --    < 0.0001 

                  

Concordant 
cancer 

0  326 ref --  114 ref --  85 ref --  1063 ref -- 

1  467 1.61 (1.37-1.88)  115 1.59 (1.22-2.07)  223 2.70 (2.04-3.59)  1849 1.65 (1.51-1.80) 

2  85 2.41 (1.85-3.13)  17 2.45 (1.46-4.12)  91 6.53 (4.67-9.13)  387 2.25 (1.97-2.58) 

3  19 5.54 (3.34-9.22)  1 1.73 (0.23-12.87)  17 7.49 (4.15-13.52)  71 3.24 (2.45-4.27) 

4+   4 9.00 (3.05-26.59)  0 -- --  6 14.42 (5.64-36.85)  12 3.77 (1.95-7.27) 
P-value for 
trend test     < 0.0001    < 0.0001    < 0.0001    < 0.0001 

1: N=Number of cancer cases among the index individuals; 
2: RR=Relative risk; 
3: CI=Confidence interval; 
4: ref=Reference; 
5: Family members who had the same cancer with the third generation cancer cases were excluded; 
6: For colorectal cancer, cancer syndrome was endometrium cancer; for breast cancer, cancer syndrome was ovary cancer. 
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Smoking is a well-known environmental cause of familial clustering of cancer, and we thus 

assessed the familial risk of lung cancer and other tobacco related cancers when family members 

were diagnosed with any smoking related cancers (Table 4). Most of the RRs were significant and 

the trend tests were highly significant. 

 
Table 4 Familial risks for tobacco related cancers among the third generation 

Tobacco related 
cancer cases in the 

family 
 Lung cancer  Other tobacco related cancers  Tobacco related cancers 

 N1 RR2 95%CI3  N RR 95%CI  N RR 95%CI 
0  471 ref4 --  1413 ref --  1884 ref -- 
1  197 1.40 (1.16-1.68)  473 1.12 (0.99-1.27)  670 1.19 (1.07-1.32) 
2+  51 1.78 (1.29-2.46)  123 1.46 (1.16-1.82)  174 1.54 (1.27-1.86) 

P-value for trend test    < 0.0001    0.0012    < 0.0001 
1: N=Number of cancer cases among the index individual; 
2: RR=Relative risk; 
3: CI=Confidence interval; 
4: ref=Reference. 
 

DISCUSSION 

In taking family histories and in advising concerned individuals from cancer families the 

physician frequently faces a problem if the pedigree shows many diverse cancers which do not fit 

into any of the known cancer syndromes. There is no unambiguous scientific evidence 

demonstrating the existence of an overall susceptibility to many cancers. Some supporting 

evidence is derived from cancer syndromes and known cancer predisposing genes which manifest 

cancers at many sites [6]. However, known cancer syndromes account for a small share of all 

cancers and the GWAS based approach on 13 different sporadic (i.e., not hereditary) cancers 

provided genetic evidence against genetic sharing between pairs of cancers [3]. Family studies 

from Utah, Iceland and Sweden have arrived at an essentially similar conclusion that pairwise 

analysis of cancer sites fails to support the hypothesis of an overall general susceptibility to 

cancer [7-10]. The present results contradict such conclusions as they provide population level 

evidence of predisposition to diverse common cancers. An important limitation of the present 

study is that the third generation had reached a maximal age of 65 years by the end of the follow-
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up in year 2012 and most cancers were diagnosed at the 50s. As the median age of cancer 

diagnosis in Sweden is 70 years, a large proportion of the third generation had not entered the risk 

age for cancer.  

 

The present approach is novel in considering families in 3 generations and, instead of a pair-wise 

analysis, it considers clustering of any cancers in the families. The approach was devised after 

considering the emerging knowledge of the germline genetic architecture of cancer, which is 

characterized by rare high-and medium-risk genes and numerous low-risk genes, detected by 

GWAS [15]. An illustrative point is the genetic architecture of prostate cancer, for which 

medium-risk genes account for a few percent while low-risk genes/loci account for 39 % of the 

familial clustering [16]. Thus, considering familial cancer in 3 generations and multiple relatives 

has the advantage that the threshold for penetrance is lowered.  

 

The present data showed that the median individual in the third generation had 2 affected family 

members and his risk was 1.14 for any cancer. Furthermore, 7.0% had at least 5 affected relatives 

and their risk was about 1.46. To translate the latter figure into an absolute risk, the cumulative 

risk of cancer by 65 years (matching the maximal age in the present third generation) for 

combined sexes was 14.7 % in Sweden [17]; thus the RR of 1.46 would lead to an absolute risk of 

21.5%. Looking at specific cancers, when having the same number of relatives affected with any 

cancer, the RR of prostate cancer was much higher than the overall RR (1.38 vs 1.08, 1.70 vs 

1.14, 1.62 vs 1.19, 2.85 vs 1.28). Since 715 cases were diagnosed with prostate cancer, which 

accounted for a very small proportion of the third generation cancer patients (the total number of 

41,106 cases), the higher RRs of prostate cancer did little contribution to the overall RRs. That 

could interpret familial risks for any cancer were not as high as prostate cancer; the risk of 
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prostate cancer risk was approximately equal (2.70 vs 2.85) if a man had 1 relative with prostate 

cancer or 4 or more relatives diagnosed with any cancer.  

 

Although the present data do not provide direct insight into possible mechanisms, a large number 

of cancer predisposing genes are tumor suppressors [6]. A number of tumor suppressor genes are 

involved in DNA repair, guarding the integrity of the genome, or in other essential cellular 

processes, and it would be easily understandable that damage in such genes would promote 

cancers in many tissues; these processes have been coined as ‘hallmarks of cancer’ [18-21]. 

Furthermore GWASs have identified genomic locations which contribute to susceptibility of 

numerous cancers, including chromosome 8q24 next to the MYC gene and 5p next to the TERT 

gene [2, 22, 23]. However single nucleotide polymorphisms (SNPs) in these loci are largely 

specific to individual cancers but their clustering next to the important effector genes is thought to 

signal shared mechanisms. The complex regulation of these loci is not fully understood but they 

may contribute to shared susceptibility to multiple cancers. The recently detected ‘super 

enhancers’ are key regulatory elements, which promote oncogene transcription in many cancers 

and would provide another mechanistic rationale to the present findings [24, 25].    

 

In conclusion, this nation-wide study on families spanning a century provided compelling 

evidence that there indeed is a general susceptibility to cancer. The results are weighted by 

common cancers – because they are more common they are more prominent in statistical analyses 

- and whether the overall susceptibility applies to all cancer needs to be resolved in future studies. 

The data provided herein provide tools for genetic counseling of “regular” patients with multiple 

cases of cancer in their family but lacking a clear-cut hereditary predisposition. Moreover, the 

present data help place cancer risk in high risk families into their correct context.  Future 
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challenges include molecular identification of the underlying causes of familial accumulation as 

described here.  
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LEGENDS TO FIGURES 

Fig. 1. Birth year distribution of cancer patients in the 3 generations probands. The year of 

maximal number of cases is shown on top of each distribution. 

 

 

 

 




