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A B S T R A C T

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular
compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the
important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role
against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As
the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-
related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in
the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7
macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown
abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP
enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant
in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a
drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding
cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations de-
monstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured mac-
rophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent
mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.

1. Introduction

Oxysterols are found enriched in pathologic structures such as
macrophage foam cells and atherosclerotic lesions [1]. They originate
from a massive uptake of oxLDL-containing oxysterols in subendothelial
macrophages. Moreover, macrophages are able to produce oxysterols
intracellularly in late endosomes (LE), from both LDL-associated and
cellular cholesterol [2]. The large family of oxysterols includes sterols

oxidized at the ring, mainly at carbon 7 (e.g., 7-ketocholesterol and 7α/
β-hydroxycholesterol) and those oxidized at the side-chain, such as 24S-
hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol.
Generally, ring-oxidized sterols tend to be formed non-enzymatically,
whereas side-chain oxidation is usually catalyzed by specific enzymes
belonging to the cytochrome P450 family. The bulk of oxysterols in
oxLDL are oxidized at carbon 7, such as 7β-hydroxycholesterol (7β-HC)
and 7-ketocholesterol (7-keto). These oxysterols are responsible for the
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ability of oxLDL to induce cellular oxidative stress and cytotoxicity,
mainly via apoptosis [3–6].

Oxysterols are associated with a large variety of cellular effectors
linked to atherosclerosis. Among them, oxysterol-binding protein
(OSBP) and OSBP-related proteins (ORPs) constitute a family of lipid
binding/transfer proteins conserved in eukaryotes [7–9]. Several re-
ports have addressed the role of ORPs in intracellular cholesterol traf-
ficking and homeostasis, for example: control of endoplasmic re-
ticulum-late endosomes (ER –LE) contacts and LE motility (ORP1L),
neutral lipid metabolism (ORP2), cholesterol egress from LE (ORP5),
macrophage lipid and high-density lipoprotein metabolism (ORP8),
apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11)
[10–12]. The silencing of ORP8 or ORP1L altered the lipidome in RAW
macrophages emphasizing their important role in cellular lipid home-
ostasis [13].

Another important effector of oxysterols is bis(monoacylglycero)
phosphate (BMP), a phospholipid preferentially found in LE mem-
branes. BMP participates in cholesterol metabolism/trafficking in
macrophages and regulates cholesterol efflux to HDL [5,14–17]. We
recently showed that BMP exerts a protective action against the pro-
apoptotic effect of oxLDL via a reduced production of intracellular
oxysterols [5], but the underlying molecular mechanism remains to be
characterized. However, the emerging roles of OSBP/ORPs in sterol
trafficking between organelles suggest their putative involvement. BMP
has already been linked to two key proteins implicated in intracellular
cholesterol traffic, Niemann-Pick C1 (NPC1) and C2 (NPC2) that are
mutated in the Niemann-Pick disease type C [18]. NPC1 and NPC2 are
required to deliver free cholesterol from the endosomal compartment to
the plasma membrane and ER [19,20]. In vivo NPC cells are char-
acterized by aberrant BMP accumulation and oxidative stress [15].
Additionally, BMP and NPC2 cooperatively stimulate the efflux of
cholesterol from the endosomal system [21–23].

In the present study, we focused on the concerted effect of BMP and
members of the ORP family to protect against oxLDL cytotoxicity. ORP
transcription level analysis identified ORP11 as the most promising
candidate. Indeed, ORP11 not only localizes to the Golgi-LE interface
[24] but also a strong association of Osbpl11 gene polymorphisms with
cardiovascular risk factors and diabetes has been reported [25]. We
stably silenced ORP11 in RAW264.7 macrophages and demonstrated
that ORP11 knockdown abolished the protective effect of BMP by im-
pairing BMP-induced egress of cholesterol/oxysterols from endosomal
compartments. Our results suggest a functional interplay of BMP and
ORP11 to protect macrophages from oxLDL-induced cytotoxicity, with
implications for atherogenesis.

2. Materials and methods

2.1. Cell culture and treatments

RAW 264.7 cells were cultured in MEM supplemented with non-
essential amino acids, 10% foetal bovine serum, 2mM L-glutamine,
100 units/ml penicillin and 100 μg/ml streptomycin. They were routi-
nely grown in T-75 flasks at 37 °C in an atmosphere of 5% CO2 and
subcultured by trypsination at a 1:5 ratio. Experiments were started
24 h after seeding by pre-incubation without (control) or with 30 μM
dioleoylphosphatidylglycerol (DOPG) liposomes (BMP-enriched) [26]
for 24 h. The addition of PG was maintained throughout the experi-
ments. Cells were then incubated in basal conditions (unloaded) or in
presence of native (nLDL) or oxLDL (loaded) for 24 h at physiological
concentrations (100–200 μg/ml). Incubations with LDL were done in
medium-containing 5% lipoprotein deficient serum (LPDS). Other de-
tails of incubation conditions are given below and/or in the figure le-
gends. 293FT cells used for packaging of lentiviruses were cultured in
Opti-MEM supplemented with 10% FBS and 1% GlutaMAX. They were
grown in T-75 flasks at 37 °C in an atmosphere of 5% CO2. Transfec-
tions were carried out at 24 h after seeding the cells in serum-free Opti-

MEM GlutaMAX.

2.2. Preparation of lentiviruses and infection of RAW264.7 cells

Short hairpin RNA (shRNA) encoding pLKO.1 lentiviral transfer
vectors were purchased from Thermo Scientific TRC (The RNAi
Consortium) or from Sigma MISSION® TRC-Mm 1.0 (Mouse) shRNA
library (Sigma-Aldrich, St. Louis, MO, USA). After plating and selecting
bacteria, a plasmid purification (Plasmid Midi Kit, Qiagen) and DNA
quantification (NanoDrop®) were performed. A transfection complex
was prepared using 4 μg shRNA transfer vector, 3 μg packaging plasmid
p8.91 and 2 μg VSV-G expressing plasmid pMD2.G. This complex was
transfected into 293FT packaging cells using FuGENE HD transfection
reagent (Roche) in a 5:2 reagent:DNA proportion. After two days, viral
supernatants were collected, filtered and used to infect RAW 264.7
cells. Lentiviral transduction was performed using 8 μg/ml hex-
adimethrine bromide and selection was carried out using puromycin
10 μg/ml. The silencing efficiency of five ORP11 targeting shRNA
(shORP11) constructs was determined by quantitative real-time RT-
PCR and the shRNA with the best silencing efficiency was selected for
the following experiments. ORP3-specific shRNA lentivirus [13] was
included for a comparison, and a non-target shRNA (shNT) SHC002V
was used as a control plasmid. Early passages of the cell pools (until P8)
were used for experiments, at which time no significant reduction in the
silencing efficiency was observed.

2.3. Lipoprotein preparation and oxidation

Human LDLs were isolated from plasma by sequential ultra-
centrifugation [27]. LDL oxidation was achieved during 5 h dialysis at
37 °C against 10mM Tris, 150mM NaCl, pH 7.4 supplemented with
10 μM of CuSO4. Subsequent overnight dialysis was performed at 4 °C
against 10 mM Tris, 150mM NaCl, pH 7.4, containing 2mM EDTA to
eliminate CuSO4 and stop oxidation. LDL oxidation was evaluated by
GC–MS/MS quantification of their associated oxysterols compared to
native LDL.

2.4. Evaluation of cytotoxicity

After treatment, cells were washed with PBS and their viability was
assessed using a colorimetric MTT assay (Cell proliferation Kit I, Roche)
according to the manufacturer's instructions. MTT cleavage was de-
termined by reading the absorbance at 560 nm. Cell viability in control
and BMP enriched-cells was expressed as the percentage of maximum
cell viability relative to unloaded-control cells.

2.5. Extraction of RNA and proteins

After treatment, RNA and proteins for ORPs analysis were extracted
from cell lysates using NucleoSpin RNA/Protein kit (Macherey Nagel),
according to manufacturer's instructions. For ABCG1 and LXRα mRNA
analysis, total RNA was isolated using Trizol reagent (Invitrogen) ac-
cording to manufacturer's instructions. RNA concentrations were de-
termined with a NanoDrop® spectrophotometer and protein con-
centrations estimated with a Qubit® fluorometer.

2.6. ORPs mRNA analysis

For each RNA sample, the respective cDNA first-stand was gener-
ated with SuperScript® VILO cDNA Synthetis kit (Invitrogen) according
to manufacturer's instructions. Each cDNA sample was amplified in
triplicate for the genes of interest, using mouse 36B4 as a normalization
gene in each run. Quantitative real-time RT-PCR reactions were per-
formed using the Light Cycler® 480 SYBR Green I Master (Roche). The
threshold was set in the linear range of fluorescence, and a threshold
cycle (Ct) was measured for each well. The data was analyzed according
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to the comparative Fit Points method. The silencing efficiencies were
evaluated by comparing the expression levels between the control
(shNT) cells and the cell pool of interest. Primers are available on re-
quest.

2.7. ABCG1 and ABCA1 mRNAs analysis

Total RNAs were treated with RQ1 RNase-Free DNase I (Promega
Corporation, Madison, WI, USA), and reverse-transcribed with the
SuperScript™ III First-Strand Synthesis System (Life Technologies,
Carlsbad, CA, USA), using Oligo(dT) primers (Invitrogen by Life
Technologies,) in order to obtain first-strand cDNA. The quality of the
cDNA synthesized was examined by PCR. As a negative control, the
remainder of the DNase treated RNA was examined by PCR using the
same conditions. Quantitative real-time RT-PCR reactions were per-
formed on a LightCycler® 480 Real-Time PCR System (Roche, Penzberg,
Germany) using 1:2.5 diluted cDNAs and a LightCycler® 480 SYBR
Green I Master Mix (Roche, Penzberg, Germany) according to manu-
facturer's instructions. For each gene, triplicate assays were performed.
Two normalization gene candidates (GAPDH and HPRT) were tested for
gene expression variation in all the experimental conditions used in this
work. The HPRT gene was employed as a normalization gene as it met
the criteria imposed by the BestKeeper software analysis (data not
shown). The primer sequences are available on request.

2.8. Western Blot analysis

ORP11 protein was electrophoresed on 6% polyacrylamide gels.
After blocking unspecific binding, antibody incubations were carried
out in blocking buffer (5% fat-free powdered milk in TBS containing
0.05% Tween 20). The bound primary antibodies were visualized with
peroxidase-conjugated anti-rabbit IgG (Bio-Rad). Rabbit polyclonal
antibody against ORP11 [24] was used at 1:800 dilution and mouse
polyclonal antibody against tubulin (Sigma) at 1:1000 dilution. All data
was quantified with ImageJ software.

2.9. Immunofluorescence

Cells were plated on coverslips and, after treatments, fixed at room
temperature for 30min with 4% paraformaldehyde. Subsequently, cells
were incubated for 30min at room temperature with 0.1% BSA to block
unspecific antibody binding and for 60min with primary antibodies
(anti-BMP, anti-ORP11 or anti-GM130) in PBS containing 0.05% sa-
ponin, followed by incubation with Alexa 488– or Alexa 546-con-
jugated secondary antibodies. The specimens were mounted with
Mowiol and examined with a Zeiss LSM 510 confocal microscope
equipped with the C-Apochromat 63XW Korr (1.2 n.a.) objective. The
data was quantified with ImageJ software using JACoP (Just Another
Colocalization Plugin). Colocalization scores using Mander's overlap
coefficient (M1 and M2) were calculated for individual cells re-
presentative of a cell population. Thresholds were set to remove the
background signal while remaining representative of the confocal
image.

2.10. Incorporation of [3H]oleate into CE

Macrophages were exposed to 1 μCi/ml [3H]oleate during 24 h of
nLDL or oxLDL loading. Unloaded macrophages were labeled by sus-
pending [3H]oleate into the growth medium utilizing an ethanolic stock
solution, while maintaining final ethanol concentration<0.1%. After
treatments, total lipids were extracted from cell lysates according to the
method of Bligh and Dyer [28], separated by TLC (hexane/diethyl
ether/acetic acid, 80:20:1, v/v) and quantified with a radioactivity
analyzer (Raytest, France). Degree of cholesterol esterification was
expressed as percentage of cholesteryl [3H]oleate relative to total
radioactivity recovered.

2.11. Sterol efflux to HDL

Cells were pre-incubated with 2 μCi/ml [3H]cholesterol for 24 h.
Sterol efflux under 6 h was measured in basal conditions (5% LPDS) or
in response to HDL (100 μg/ml) in 5% LPDS-containing medium. The
total radioactivity in cells and in media was determined by liquid
scintillation counting. Total lipids from both cell and media were ex-
tracted according to the method of Bligh and Dyer [28] and sterols were
separated by TLC (hexane/diethyl ether/acetic acid/methanol,
50:50:1:5, v/v). The radioactivity associated with each sterol fraction
(cholesterol and oxysterols, free or esterified) was measured with a
radioactivity analyzer (Rayster, France) and converted to DPM ac-
cording to liquid scintillation counting. The efflux of each sterol was
expressed as the percentage of radioactivity released into the medium
relative to total radioactivity in cells plus media.

2.12. Quantification of BMP and PG species by LC-MS/MS

After treatments, samples were spiked with C14:0/C14:0-BMP
(DMBMP) and C14:0/C14:0-PG (DMPG) as internal standards, and total
lipids were extracted from cell lysates and media according to the
method of Bligh and Dyer (24). The resulting samples were dried under
nitrogen flow and resuspended in methanol prior to measurement. LC-
MS/MS was carried out on an Agilent 1100 Series HPLC system (Agilent
Technologies, Santa Clara, CA) integrated with an 4000 QTrap mass
spectrometer (AB SCIEX, Foster City, CA) using a Shiseido CAPCELL
PAK C18 MGIII Type column (5 μm, 2.0×50mm) (Shiseido CO., LTD.,
Tokyo, Japan). LC separation (2 μl sample injection) was performed
utilizing methanol:acetonitrile (95:5) with 25mM ammonium formate
and 0.1% formic acid as monocratic mobile phase at a flow rate of
100 μl/min. The mass spectrometer was operated in positive ion mode
utilizing the following optimized parameters for BMP and PG for multi
reaction monitoring (MRM) mode: declustering potential 55 V (for
BMP) and 70 V (for PG), collision energy 30 V, collision cell exit po-
tential 15 V, entrance potential 10 V, Q1 resolution set to unit and Q3
resolution set to low. Internal standards for quantification were mon-
itored at 684.6/285.1 Da (for DMBMP) and at 684.6/495.5 Da (for
DMPG).

2.13. Quantification of total oxysterols by GC–MS

Oxysterol were quantified by a modified protocol based on Iuliano
[29]. After treatments, each cell pellet was crushed with a FastPrep
®-24 Instrument (MP Biomedical) in Methanol/EGTA (2:1, v/v) solu-
tion. Total lipids were extracted by a modified method of Bligh and
Dyer [28] from cell lysates and media in dichloromethane/methanol/
water (2.5:2.5:2, v/v), spiked with internal standards 19-hydro-
xycholesterol and vitamin E. Esters were hydrolyzed with KOH-CH2Cl2
and neutralized with phosphoric acid addition prior to a second Bligh
and Dyer extraction. Next, a Solid Phase Extraction (SPE) using SiOH
96-well plate (100mg/well, Macherey Nagel) was performed. After
sample application, the extraction plate was washed with 2-propranol/
heptane (0.5:99.5, v/v) to eliminate neutral lipids like cholesterol. After
drying under aspiration, oxysterols were eluted with 2-propanol/hep-
tane (0.3:0.7, v/v). Oxysterols were converted to trimethysilyl ether by
addition of BSTFA/ACN (bis(trimethylsilyl)trifluoroacetamide/acet-
onitrile, 1:1; v:v) at 55 °C for 60min. Gas chromatography-mass spec-
trometric analysis was performed on a ThermoScientific Trace GC
coupled to a Trace ISQ Mass selective detector (ThermoScientific). The
silylated oxysterols were separated on an Agilent J&W HP-5MS capil-
lary column (30m, 0.25mm, 0.25 μm phase thickness). The oven
temperature program was as follows: 180 °C for 1min, 20 °C/min to
250 °C, 5 °C/min to 300 °C where the temperature was kept for 8min,
and then 35 °C/min to 325 °C. High purity helium was used as carrier
gas at a flow rate of 0.8 ml/min in constant flow mode. The samples
were injected in a splitless mode with an injection volume of 1 μl. The
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injector, transfer line and source temperatures were 270 °C, 280 °C and
250 °C respectively. The mass spectrometer was operated in the selected
ion monitoring (SIM) mode, and the following ions were monitored for
analysis: 7α-hydroxycholesterol 456–367m/z, 7β-hydroxycholesterol
456–367m/z, 25-hydroxycholesterol 546–456m/z, 7-ketocholesterol
472–382m/z. Peak detection, integration and quantitative analysis
were executed using Xcalibur Quantitative browser (ThermoScientific)
based on calibration lines built with commercially available oxysterols
standards (Avanti Polar Lipids or Interchim).

2.14. GC–MS quantification of free cholesterol

After treatments, total lipids were extracted from cell lysates ac-
cording to the method of Bligh and Dyer [28] in chloroform/methanol/
water (2:2:1.8; v/v), spiked with stigmasterol as internal standard,
followed by sterols separation on TLC (hexane, diethyl ether, methanol,
acetic acid, 50:50:5:1, v/v). Cholesterol was extracted from silica
(hexane/diethyl ether, 1:1; v/v), dried under nitrogen and converted to
its respective trimethylsilyl ether by treatment with BSTFA at room
temperature, overnight. Gas chromatographic analysis was performed
with a Hewlett Packard (HP-6890) and a J & W 122–4762
(60m×0.25mm) capillary column. The eluted compounds were de-
tected at the column outlet by a mass spectrometer (Hewlett Packard
MS-5973) and quantified using the internal standard stigmasterol.

3. Results

3.1. Analysis of OSBP and ORPs mRNA expression in RAW264.7
macrophages

First, we established the cellular response in RAW264.7 macro-
phages to native (nLDL) or oxidized LDL (oxLDL) loading, by de-
termining the respective mRNA expression levels of OSBP/ORP. After
exposure to nLDL the mRNA levels of OSBP, ORP1L, ORP8, ORP9 and
ORP11 increased significantly compared to unloaded conditions
(Fig. 1). ORP2, ORP9 and most strikingly ORP11 mRNA levels were
higher in oxLDL loaded macrophages. ORP11 has recently been de-
scribed to be associated with both Golgi elements and endosomal
compartments [24], indicating a putative role in the non-vesicular lipid
transport between Golgi and endosomes. Furthermore, OSBPL11 gene
has been reported to be involved in cholesterol metabolism in obese
patients [25] and facilitate cholesterol trafficking in skin fibroblasts
[30]. Consequently, we focused our further efforts on ORP11, in-
vestigating its possible involvement in BMP mediated oxLDL-derived
sterol regulation.

3.2. ORP11, a candidate implicated in BMP-mediated oxysterol traffic

Next, we examined whether BMP accumulation would impact
ORP11 expression in RAW264.7 macrophages. Consistent with the
change in mRNA expression, ORP11 protein level was increased upon
nLDL incubation and by almost two-fold upon oxLDL incubation
(Fig. 2A). In oxLDL BMP-enriched cells, ORP11 was further up-regu-
lated, suggesting a functional relationship between BMP and ORP11.
This prompted us to determine the endogenous subcellular distribution
of ORP11 in RAW264.7 macrophages compared to BMP. Consistent
with earlier reports in HEK293 and HuH7 cells (20), ORP11 strongly,
but not exclusively, colocalized (M2=0.89 ± 0.03 vs.
M1= 0.67 ± 0.04) with GM130, a Golgi marker displaying a typical
compact juxtanuclear distribution (Fig. 2B). Additionally, ORP11 la-
belling also colocalized with BMP (M2=0.91 ± 0.05), known to be an
endosomal resident in RAW264.7 macrophages and representing a ty-
pical punctated perinuclear pattern [17], consistent with a possible
cooperation between these two factors involved in sterol trafficking.

3.3. Impact of ORP11 silencing on protective action of BMP towards oxLDL

To further investigate the function of endogenous ORP11 protein in
macrophages, we generated stably silenced RAW264.7 cells using
shRNA lentiviruses targeting ORP11 mRNA, and ORP3 mRNA used as a
non-relevant ORP protein. The gene silencing efficiency was de-
termined by quantitative real-time RT-PCR after lentiviral transduction
and selection. Cell pools transduced with each virus were in-
dependently selected two times and the silencing efficiencies were be-
tween 0 and 69%. shORP11.2 and shORP3.2 cell pools with the highest
knock-down efficiency (69% and 70%, respectively) was chosen for
further experiments and silencing efficiencies were determined at the
protein level (Fig. 3A). ORP11 and ORP3 knockdown efficiencies in
these cell pools corresponded well to the level of mRNA reduction (Data
not shown). ORP3 was chosen as a control for BMP enrichment, as well
as cell viability, as it mediates cell adhesion, independently of choles-
terol homeostasis [31,32]. Furthermore, ORP3 is localized in plasma
membrane/ER Membrane Contact Sites (MCS) [12,33], but excluded
from LE.

To fully validate our cell models, we ensured that BMP enrichment
after PG supplementation was maintained after ORP11 and ORP3 si-
lencing. As expected [26], incubation of control (shNT) RAW264.7
macrophages with PG lead to a 3–4 fold increase of cellular BMP in all
tested conditions (Fig. 3B). Importantly, BMP accumulation was
maintained at similar levels in both ORP11 and ORP3 silenced cells
(shORP11 and shORP3) compared to their respective controls.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Unloaded

nLDL

oxLDL

a a

b

b

a

aa

b

b

Fig. 1. Expression level of major OSBP/ORP mRNA in
RAW264.7 macrophages. Cells were incubated in the
absence or presence of 100 μg/ml nLDL or 200 μg/ml
oxLDL for 24 h. Cells were analyzed for different mRNA
content by qPCR. Data are means ± SD of 3 wells and
are representative of 2 independent experiments. a,
p < 0,05 compared to unloaded; b, p < 0,05 compared
to nLDL.
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Furthermore, as shown in Table 1, BMP molecular species composition
was similar between shNT11 and shOPR11 cells, as well as shNT3 and
shORP3 cells.

In a previous report [5], we showed that oxLDL exposure induced
cell death that was partially restored by BMP enrichment. These effects
were not observed in both unloaded and nLDL loading conditions.
Consistently, cell viability in both shNT11 and shNT3 cells was drasti-
cally affected after oxLDL exposure compared to nLDL-loaded cells

(Fig. 4A), and BMP enrichment reduced oxLDL negative effect as cell
viability leapt from 2% up to 20%. By contrast, cell viability remained
low at only 9% in BMP-enriched shORP11 cells, indicating that func-
tional ORP11 is required for the protective effect of BMP. Importantly,
this is specific to ORP11, as silencing of ORP3 had a different effect on
the protective action of BMP against oxLDL-induced cytotoxicity.
Contrariwise, the increase in cell viability upon BMP enrichment was
higher in shORP3 cells compared to shNT3 cells.

Fig. 2. ORP11 expression in RAW macrophages. (A) Western Blotting analysis of endogenous ORP11 protein. Control and BMP-enriched cells were incubated in the
presence of 100 μg/ml of nLDL or 200 μg/ml oxLDL for 24 h (upper panel). Quantification of ORP11 protein was related to tubulin. Data are mean ± SD of 3 wells
and are representative of 2 independent experiments. a, p < 0,05 compared to control; b, p < 0,05 compared to nLDL; c, p < 0,05 compared to oxLDL (lower
panel). (B) Intracellular localization of endogenous ORP11 by confocal microscopy double staining with anti-ORP11 (red) and anti GM130 (green) or anti-BMP
(green) antibodies. Colocalization scores using Manders' overlap coefficient (M1 and M2) were calculated for individual cells representative of the population of cells
(minimum of 15 cells per conditions) using Just Another Colocalization Plugin (JACoP) for ImageJ. M1 represents the fraction of the red signal overlapping the green
signal and M2 represents the fraction of the green signal overlapping the red signal.

Fig. 3. Characterization of RAW264.7 macrophages subjected to ORP11 knock-down. (A) A representative Western Blotting of RAW macrophages showing efficiency
of silencing for ORP11 (90%) and ORP3 (85%) at the protein level ORP11 (shORP11.2) and ORP3 (shORP3.2) (B) Effect of ORP11 silencing on BMP level. Unloaded
and BMP-enriched shNT11, shORP11, shNT3 or shORP3 cells where incubated with 100 μg/ml nLDL or 200 μg/ml oxLDL for 24 h. BMP was quantified by liquid
chromatography-mass spectrometry as described in M&M. Data are the means ± SD of 3 wells and representative of 3 independent experiments. a, p < 0,05
compared to control; b, p < 0,05 compared to nLDL; c, p < 0,05 compared to oxLDL; d, p < 0,05 compared to oxLDL BMP enriched in shNT cells.
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Table 1
Molecular species of BMP. shNT11, shORP11, shNT3 and shORP3 cells were cultured with 30M 18:1/18:1-PG for 48 h, in the absence or presence of 200 g/ml oxLDL
for 24 h. Analysis of BMP molecular species was performed by liquid chromatography-mass spectrometry as described in M&M. Data are expressed as mole percent
and are the means ± SD of 3 wells and representative of 3 independent experiments.

shNT11 cells shORP11 cells shNT3 cells shORP3 cells

BMP molecular species 18:1/18:1 18:1/18:1 18:1/18:1 18:1/18:1 18:1/18:1 18:1/18:1 18:1/18:1 18:1/18:1

PG PG PG PG PG PG PG PG

mol% oxLDL mol% oxLDL mol% oxLDL mol% oxLDL

mol % mol % mol % mol %

16:0/18:1 4.21 6.63 2.56 5.68 2.99 5.83 2.36 7.25
18:1/18:2 4.38 14.05 3.23 13.74 4.32 12.59 5.39 12.74
18:1/18:1 72.73 66.88 80.47 69.77 73.55 65.97 65.74 58.83
18:2/18;2 0.00 0.39 0.00 0.41 0.01 0.30 0.00 0.40
18:1/20:4 1.75 1.99 1.82 2.17 2.27 3.07 2.12 2.64
18:2/20:4 0.01 0.09 0.01 0.07 0.03 0.10 0.01 0.21
18:1/22:6 16.00 9.24 10.87 7.44 13.75 10.20 20.33 14.83
18:1/22:5 0.92 0.74 1.04 0.73 3.08 1.96 4.06 3.10

Fig. 4. Effect of ORP11 silencing on protective action of BMP towards oxLDL. Control and BMP-enriched shNT, shORP11 or shOPR3 cells where incubated with
100 μg/ml nLDL or 200 μg/ml oxLDL for 24 h. (A) Cell viability was evaluated. Data are the means ± SD of 3 wells and representative of 3 independent experiments.
a, p < 0,05 compared to nLDL; b, p < 0,05 compared to oxLDL; c, p < 0,05 compared to shNT oxLDL BMP enriched cells; d, p < 0,05 compared to shNT3 oxLDL
BMP enriched. Control and BMP-enriched shNT or shORP11 cells where incubated in the absence or presence of 100 μg/ml nLDL or 200 μg/ml oxLDL for 24 h. (B and
C) 7-oxycholesterols (7α-, 7β-hydroxycholesterol, and 7-ketocholesterol) and 25-hydoxycholesterols (D) were quantified by GC–MS/MS as described in M&M. Data
are the means ± SD of 3 wells and representative of 3 independent experiments. a, p < 0,05 compared oxLDL, b, p < 0,05 compared to shNT oxLDL BMP enriched.
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Cytotoxicity of oxLDL has been shown to be at least partly mediated
by C-7 proapoptotic oxysterols [6]. Consistently, oxLDL exposure was
correlated to increased amounts of C-7 oxysterols (7α-HC, 7β-HC and 7-
keto) in both shNT11 and shORP11 cells (Fig. 4B), as well as in shNT3
and shORP3 cells (Fig. 4C). As expected, the production of oxysterol
was very low in both control and nLDL conditions (Fig. 4B). BMP ac-
cumulation significantly reduced C-7 oxysterols amounts in shNT11
and shNT3 cells. Importantly, silencing of ORP11 but not ORP3 sup-
pressed this BMP effect. The content of enzymatically and non-en-
zymatically accessible 25-hydroxycholesterol (25-OH), which has
greater or lesser cytotoxicity depending on the cell considered [4], was
also increased upon oxLDL exposure in both shNT11 and ORP11 cells.
No 25-OH was detected in shNT3 or shORP3 cells. In contrast to C-7
oxysterols, the production of 25-OH was unaffected by BMP enrichment
(Fig. 4C). Together these results demonstrate the dependency of func-
tional ORP11, but not ORP3, in BMP protective effect against both
oxLDL induced cell death and proapoptotic C-7 oxysterols formation.
This suggests a functional interplay of ORP11 and BMP selectively af-
fecting the proapoptotic production of oxysterols and a concerted ac-
tion of ORP11 and BMP for sterol trafficking and metabolism in mac-
rophages.

3.4. Impact of ORP11 silencing on the fate of oxLDL-derived cholesterol

We further aimed to investigate the possible cooperation between
BMP and ORP11 in regulating cholesterol homeostasis in RAW264.7
macrophages. Free cholesterol (FC) levels, were compared in shNT11
and shORP11 cells. As shown in (Fig. 5A), in shNT11 cells, FC levels
were similar in all tested conditions regardless nLDL/oxLDL exposure or
BMP enrichment. ORP11 silencing did not change FC content in un-
loaded or nLDL-loaded cells, independently of BMP enrichment. In
contrast, it induced FC accumulation upon oxLDL loading, which was
further enhanced in BMP-enriched cells. These increases in cellular FC
may be related to differences in cholesterol esterification or cholesterol
efflux. Cholesterol esterification was measured as a proportion of
radioactivity recovered in cholesterol ester (CE) after incubation with
[3H]oleate for 24 h. Neither BMP enrichment nor ORP11 silencing
modified the rate of cholesterol esterification markedly in oxLDL loaded
cells (Fig. 5B).

As macrophage cholesterol efflux is essentially dependent on the
expression of ATP-binding cassette transporters ABCG1 and ABCA1
[34], we measured their mRNA expression in shORP11 cells by quan-
titative real-time RT-PCR. ABCG1 mRNA levels were significantly re-
duced in ORP11 silenced cells compared to control (Fig. 5C) and further
decreased under BMP-enrichment conditions. In contrast, no differ-
ences were observed in ABCA1 mRNA levels (Fig. 5D). We then mea-
sured cholesterol efflux to HDL which is dependent of ABCG1 in mac-
rophages whereas efflux to ApoA1 is only dependent of ABCA1 [35]. As
expected from our previous report [5], BMP enrichment slightly but
significantly reduced cholesterol efflux to HDL in oxLDL-loaded shNT11
cells (Fig. 5E). Cholesterol efflux was reduced in shORP11 cells com-
pared to shNT11 cells, and completely abolished in BMP-enriched
shORP11 cells. This is in good agreement with the above observed re-
duction of ABCG1 expression upon ORP11 silencing. Even if it is dif-
ficult to compare changes in mRNA levels and % of efflux, these two
parameters lead in the same direction. Together, these observations
suggest that ORP11 is intrinsically and specifically involved in oxLDL-
derived cholesterol retention/efflux and support a facilitating role of
BMP in that process.

4. Discussion

We previously demonstrated that BMP exerts a protective action
against the pro-apoptotic effect of oxLDL on macrophages via a reduced
production of intracellular pro-apoptotic oxysterols [5]. In the present
study, we report a new role for ORP11 in modulating the protective

action of BMP against oxLDL cytotoxic effects, putatively via the control
of the intracellular trafficking of cholesterol/oxysterols. Our data sug-
gest that in cultured macrophages BMP and ORP11 together control the
sterol metabolism to dampen the generation of cytotoxic 7-oxysterols.

Human and mouse ORPs genes are expressed in a large variety of
tissues [33,36–39], but there are clear differences in tissue-specific
expression patterns between the members of the ORPs family
[13,40,41]. In the present study, we confirmed the expression of eight
OSBP/ORPs genes in mouse RAW264.7 macrophages and found that
most ORP mRNAs are induced after exposure of the cells to nLDL, a
major sterol carrier. More interestingly, three ORP genes were up-
regulated upon incubation of the cells with oxLDL: ORP2, ORP9 and
ORP11. ORP2 regulates the membrane contact between ER and lipid
droplets, providing a plausible explanation for its up-regulation under
oxLDL exposure [42–45]. ORP9 localizes at the Golgi/ER interface and
regulates phosphatidylinositol-4-phosphate (PI4P) metabolism in Golgi
membranes, competitively with ORP4S [46]. Recently, ORP11 was
demonstrated to dimerize with ORP9 and to localize at the interface of
Golgi complex and LE [24]. This is consistent with their concomitant
upregulation upon oxLDL treatment, as oxLDL promotes endolysosomal
lipid storage in macrophage foam cells [47].

Little is known about the functions of ORP11, but given its in-
tracellular localization at the Golgi-LE interface [24], and that of BMP
almost exclusively in LE [16,48], we envision that these two molecules
could work together to egress oxLDL-derived cholesterol and/or oxy-
sterols out of the endosomal compartment. Of interest, upregulation of
ORP11 protein expression upon oxLDL exposure was enhanced in BMP
enriched cells. Furthermore, a strong colocalization of BMP and ORP11
in the endosomal compartment was observed. To further analyze the
function of ORP11, we generated stably silenced ORP11 depleted
RAW264.7 macrophages. ORP3 silenced cells were chosen as non-re-
levant controls as ORP3 expression was not modulated by nLDL/oxLDL
exposure in our cell model. Moreover, so far known functions of ORP3
are not related to sterol metabolism [31]. We observed as a key result
that the protection of BMP against the cytotoxic effect of oxLDL was
specifically impaired by ORP11 knock-down. Importantly, this could
not be attributed to the lack of BMP or different BMP molecular species
in shORP11/shORP3 cells since both amount and composition of BMP
were similar to respective shNT cells. Impacts on cell death/survival
have been reported for ORP8 [49,50], OSBP [51], ORP4 [52], and
ORP9 [53], via protein–protein interactions or impacts on membrane
lipid domains [7]. ORP11 affected cell viability significantly only after
BMP accumulation, suggesting that this protein-phospholipid interac-
tion is an essential link of the cell survival-promoting machinery, and
that BMP needs ORP11 to protect cell viability. This hypothesis was
supported by the oxysterol profile in ORP11 knock-down as the nega-
tive impact of ORP11 silencing on cell viability was correlated with an
elevated level of pro-apoptotic 7-oxysterols. Cells overexpressing
ORP11 displayed multilamellar bodies associated with the Golgi com-
plex related to ORP11 intracellular localization at the LE-Golgi inter-
face [24]. Moreover, ORP11 interacts with ORP9, a family member
implicated in cholesterol transport between ER and Golgi membranes
[54].

Vihervaara et al. [13] tested the effect of knocking down ORP1L,
ORP3 or ORP8 in RAW264.7 macrophages, on the cellular lipidome. In
basal conditions, levels of FC and CEs were elevated in ORP1L and
ORP8 knock-down cells. Levels of PIs, PEs, or SMs were differently
modified, revealing distinct roles of the different ORPs as regulators of
macrophage lipid composition. In the present work we showed that
both ORP11 and ORP3 silencing did not interfere with BMP metabo-
lism, as similar amounts of BMP were observed compared to shNT
controls. The fact that BMP molecular species were not changed may
suggest that ORP11 and ORP3 do not impact either on fatty acid me-
tabolism. By contrast, ORP11 silencing increased the cellular choles-
terol content in the presence of oxLDL, the effect being amplified after
BMP accumulation, indicating a cumulative effect of ORP11 and BMP
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to regulate LE cholesterol levels. The increase of free cholesterol in
ORP11 knock-down cells was not associated with a reduction of cho-
lesterol esterification, indicating that ORP11 is not required for cho-
lesterol transport from LE to the ER. However, cholesterol efflux to HDL
was markedly reduced in ORP11 silenced cells after BMP accumulation,
concomitant with reduced ABCG1 expression. Related functions have
been assigned for several ORP family members: Knock-down of ORP8
up-regulated cholesterol biosynthesis in hepatic cells through sterol
regulatory element binding protein (SREBP) activity [55] and induced
FC accumulation in macrophages [13] apparently via the inhibition of
its efflux through ABCA1 [41]. ORP1L deficient macrophage displayed
an increase of FC and CE, due to the inhibition of cholesterol efflux
[56], and it was proposed that ORP1L impacts the endosomal choles-
terol transport via the formation of MCSs between LE and ER [57–59].
ORP5 was suggested to mediate cholesterol egress from the LE limiting
membrane in concert with Niemann-Pick C1 [60]; however, ORP5 and
ORP8 were also identified as dual PS/PI4P transporters [61,62]. The
closely related ORP2 has the capacity to enhance the transport of newly

synthesized cholesterol to the cell surface [63] and during steroid
hormone biosynthesis via LXR [64]. Moreover, OSBP negatively reg-
ulates ABCA1 protein stability and consequently the cellular cholesterol
efflux capacity [65].

OSBP/ORPs proteins have been originally characterized as sterol
sensors and/or transporters at membrane contact sites (MCS) between
ER and other organelles [11,12]. More recently, this role was expanded
to the binding/transfer of glycerophospholipids [66], such as PI4P
[10,61,67–70], phosphatidylinositol bisphosphate (PIP2) [62,71] or
Phosphatidylserine (PS) [69,72,73]. Similarly, ORP11 localizes via its
N-terminal domain in Golgi and LE membranes, and is implicated in
non-vesicular communication between these two organelles [24]. We
propose that, in cooperation with BMP, ORP11 could act as a key
component of a new pathway of non-vesicular lipid transport between
LE and Golgi. BMP could be considered as a potential ligand of the ORD
on ORP11, which could act as lipid signal to stimulate the egress of
cholesterol from LE. This non-vesicular transport could be facilitated by
a MCS between these two organelles [11,74]. ORP11 could act directly

µ

Fig. 5. Effect of ORP11 silencing on cellular cholesterol fate. Unloaded and BMP-enriched shNT or shORP11 cells where incubated in the absence or presence of
100 μg/ml nLDL or 200 μg/ml oxLDL for 24 h. (A) Free cholesterol (FC) was quantified by GC/MS as described in M&M. Data are the means ± SD of 3 wells and
representative of 2 independent experiments. a, p < 0,05 compared to shNT oxLDL cells; b, p < 0,05 compared to shNT oxLDL BMP enriched; c, p < 0,05
compared to shORP11 oxLDL . (B) Cells where incubated with [3H] oleate and cholesterol esterification was measured as the proportion of radioactivity recovered in
CE. ABCG1 (C) and ABCA1 (D) mRNA content was measured by RT-PCR as described in M&M. a, p < 0,05 compared to shNT oxLDL; b, p < 0,05 compared to shNT
oxLDL BMP enriched; c, p < 0,05 compared to shORP11 oxLDL. (E) Cells where incubated with [3H] cholesterol for 24 h. Cholesterol efflux was stimulated by
100 μg/ml HDL for 6 h. Data are the means ± SD of 3 wells and representative of 3 independent experiments. a, p < 0,05 compared to shNT oxLDL; b, p < 0,05
compared to shNT oxLDL; c, p < 0,05 compared to shNT oxLDL BMP enriched; d, p < 0,05 compared to shORP11 oxLDL.
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as a cholesterol carrier stimulated by BMP or via a yet known partner
like NPC2 regulation as described for NPC1 [75–77]. However, Maeda
et al. [72] classified ORP11 within a clade that may not bind/transport
cholesterol. Therefore, we find it possible that ORP11 may promote
sterol transport indirectly via regulation of the assembly or function of a
MCS. Further study of a putative molecular interaction between BMP
and ORP11 by employing biomimetic membranes and liposomes will be
crucial for elucidating the mechanism of ORP11 action and its mod-
ulation by BMP.

To conclude, the present work identifies ORP11 as a regulator of
macrophage cholesterol homeostasis. ORP11 regulates the cytotoxicity
of oxLDL and oxysterols via the endosomal phospholipid, BMP, as well
as cholesterol efflux from macrophages. Consistent with the genetic
findings of Bouchard et al. [25], ORP11 may thus act as a modulator of
atherosclerosis.
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