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ABSTRACT 

Aims: ApoC-III is an important novel target underpinning the link between hypertriglyceridemia with 

cardiovascular disease. Here, we investigated how apoC-III metabolism is altered in subjects with 

type 2 diabetes, and focused on whether the perturbed plasma triglyceride concentrations in this 

condition are determined primarily by the secretion rate or the removal rate of this apoprotein. 

Second, we investigated whether improvement of glycemic control using the GLP-1 analogue 

liraglutide for 16 weeks modifies apoC-III dynamics. 

Materials and methods: Postprandial apoC-III kinetics were assessed after a bolus injection of 

[5,5,5-
2
H3]leucine, using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics 

in two situations; in subjects with type 2 diabetes subjects before and after liraglutide therapy, and in 

type 2 diabetic and BMI-matched non-diabetic subjects. Liver fat content, subcutaneous abdominal 

and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. 

Results: Improved glycemic control by liraglutide therapy for 16 weeks reduced significantly apoC-

III secretion rate (561±198 vs. 652±196 mg/day, p=0.03) and apoC-III levels (10.0±3.8 vs. 11.7±4.3 

mg/dL, p=0.035) in type 2 diabetic subjects. Change in apoC-III secretion rate was associated 

significantly with the improvement in indices of glucose control (r=0.67; p=0.009) and change in 

triglyceride AUC (r=0.59; p=0.025). In line, the apoC-III secretion rate was higher in subjects with 

type 2 diabetes compared with BMI-matched non-diabetic subjects (676±208 vs. 505±174 mg/day, 

p=0.042).  

Conclusions: The results reveal that the secretion rate of apoC-III associates with elevation of 

triglyceride-rich lipoproteins in type 2 diabetics, potentially through the influence of glucose 

homeostasis on the production of apoC-III.  

Keywords: apoC-III; kinetics; lipoproteins; stable isotopes; type 2 diabetes 
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INTRODUCTION 

Apolipoprotein C-III (apoC-III) is increasingly recognized as an important determinant of 

hypertriglyceridemia and a risk factor for cardiovascular disease (CVD)
1-4

. ApoC-III also 

substantially improves the prediction of CVD in type 2 diabetes beyond that obtained with the 

variables used in the Framingham risk score
5
. Loss of function mutations in the gene encoding apoC-

III (APOC3) is associated with low triglyceride levels
6,7

, and a decreased risk for CVD while 

overexpression of APOC3 is associated with hypertriglyceridemia
8
. These results have identified 

apoC-III as an emerging target linking hypertriglyceridemia with cardiovascular disease, and clinical 

trials on apoC-III antisense oligonucleotides designed to inhibit synthesis of the apoprotein are in 

progress
9
. 

ApoC-III is a small apoprotein that is mainly secreted from the liver on very low-density lipoprotein 

(VLDL) particles and to a lesser degree from the intestine on chylomicrons. In the circulation, apoC-

III is continuously exchanged between different lipoprotein particles and significant amounts of apoC-

III are carried not only on VLDL but also on low- and high-density lipoprotein (LDL and HDL) 

particles
10,11

. The distribution of apoC-III between different lipoprotein fractions is dependent on the 

metabolic state, varying between the fasting and postprandial states and between subjects with normal 

and high plasma triglyceride levels
11-14

. The impact of apoC-III on CVD risk is complex but in 

general, lipoproteins with high apoC-III seem to be highly atherogenic
2,15,16

. 

ApoC-III has multiple actions on lipid metabolism as well as on proinflammatory and atherogenic 

processes
12-14

. It is well known as an inhibitor of lipoprotein lipase (LPL), the rate-limiting enzyme in 

the lipolytic process
17-19

, and more recent data indicate that it also impairs the uptake of lipoprotein 

remnants by the liver
20-23

. We have earlier reported that plasma triglyceride concentrations in 

abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly 

dependent on apoC-III concentration 
24

. In addition, overexpression of apoC-III has been reported to 

promote VLDL assembly and secretion in hepatocytes in vitro and in genetically modified mice
25,26

; 

however, it is not known if this also occurs in humans. 

Promoter analysis of APOC3 identified binding sites for transcription factors including the 

carbohydrate response element binding protein (ChREBP)
27

, which led to the proposal that glucose and 

plasma triglyceride metabolism are linked via the regulation of APOC3 expression
12

. APOC3 

expression is upregulated by glucose and downregulated by insulin, and it has been suggested that the 

glucose-mediated expression of APOC3 may contribute to lower lipolysis and to an increase in 

peripheral glucose handling
27-30

. In addition, the inhibitory effect of insulin on APOC3 expression is 

lost when insulin signaling is impaired, which may explain why apoC-III concentrations are high in 
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insulin-resistant states such as obesity, the metabolic syndrome, type 2 diabetes, and 

hypertriglyceridemia
15,27,31

. 

Glucagon-like peptide-1 (GLP-1) agonists have been shown to improve postprandial lipid 

metabolism.
32,33

 In line, we reported that liraglutide therapy for 16 weeks improved multiple 

cardiometabolic risk factors, inducing a reduction in plasma apoC-III
34

. It was estimated, that the 

decrease in fasting and postprandial levels of apoC-III during liragutide therapy explained about 50% 

of the observed reduction in postprandial triglyceride, RLP-cholesterol and TRL-cholesterol. These 

observations prompted us to perform apoC-III kinetic studies before and after liraglutide therapy  

In this study, we investigated for the first time how the dynamics of apoC-III metabolism are altered 

in subjects with type 2 diabetes, and focused on whether plasma triglyceride concentrations are 

determined by the secretion rate or the removal rate of apoC-III. Second, we investigated whether 

improvement of glycemic control using GLP-1 analogue liraglutide for 16 weeks modifies apoC-III 

dynamics. 

METHODS 

Study cohort The current study is an extension of a previously reported intervention protocol to 

examine the effects of the GLP-1 analogue liraglutide 1.8 g daily for 16 weeks on glycaemia, ectopic 

fat depots and cardiometabolic risk factors
34

. Details of the recruitment of subjects are previously 

reported
34

. Here we analyzed whether improved glycemic control in subjects with type 2 diabetes 

effects apoC-III kinetics. We included 14 obese men [waist >92 cm, body mass index (BMI) 27–40 

kg/m
2
] with type 2 diabetes who had HbA1c 42–75 mmol/l (6–9%) and who completed the 

intervention period with liraglutide. To explore the effect of type 2 diabetes on apoC-III kinetics, we 

were able to identify from our previous kinetic studies
35

 11 obese men without type 2 diabetes 

matched for age and BMI as non-diabetic comparators for 11 (out of the 14) subjects with type 2 

diabetes. Additional inclusion criteria were age 30–75 years, triglycerides 1.0–4.0 mmol/l and LDL-

cholesterol <4.5 mmol/l. All those with type 2 diabetes used stable daily doses of metformin (between 

1.0–3.0 g/ day) and statin throughout the study period
34

. Exclusion criteria for all subjects were: age 

<30 years or >75 years, smoking, alcohol consumption over 2 units/day (i.e., 20 g pure alcohol), 

cardiovascular disease, hormonal therapy, use of fibrates and fish oils, hepatic and renal diseases, 

eGFR <60 ml/min, gastroenterological, thyroid or hematological abnormalities, and any chronic 

disease requiring medication except for controlled hypertension. The study protocol was approved by 

the ethics committees of Helsinki University Hospital and the national Agency of Medicines, 

Helsinki, Finland (Eudra CT 2013-005075-40, Clinical Trials NCT 92765399). Each subject gave 
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written informed consent before participation in the study. All studies were performed in accordance 

with the Declaration of Helsinki for clinical trials.  

Study design—The actual protocol included two separate visits within a 1-week period: (1) a 

postprandial apoC-III kinetic study using stable isotopes, and (2) determination of abdominal fat 

depots and liver fat content. These tests were repeated in the liraglutide intervention group after 16 

weeks liraglutide treatment. 

Postprandial kinetic study: The subjects were admitted at 7:30 am after an overnight fast and baseline 

blood samples were taken. At 8:00 am, a bolus injection of [5,5,5-
2
H3]leucine [7 mg/kg] was given 

and blood was drawn during the 2 h after the injection as described previously
36

.Two hours after the 

bolus injection, the subjects received a fat-rich meal served with a cocoa-fat rich emulsion containing 

40 g of olive oil (Amway, Firenze). The meal consisted of bread, cheese, ham, boiled eggs, fresh red 

pepper, low-fat (1%) milk, orange juice and tea or coffee. Altogether, the meal contained 63 g 

carbohydrate, 69 g fat and 40 g protein, and was consumed within 10 min. Blood samples were taken 

at 0.5, 1, 2, 3, 4, 6, 8 and 10 hrs. after the meal. Water was allowed ad libitum and the subjects 

remained physically inactive. 

Determination of intra-abdominal fat depots: Proton magnetic resonance spectroscopy was performed 

using a 1.5-T whole-body device to determine liver fat content
37,38

, as well as subcutaneous 

abdominal and intra-abdominal fat
39

. All analyses of the imaging results were performed by one 

person (AH). Subjects were advised to fast for 4 h before imaging.  

Analysis of hepatic de novo lipogenesis (DNL)—The DNL analyzed at 0 h and was calculated from 

enrichment of deuterated water ingested during the kinetic study at the specified time points 
40

. 

Isolation of lipoprotein fractions—Lipoprotein fractions [chylomicrons (Sf >400), large VLDL1 

particles (Sf 60–400) and smaller VLDL2 particles (Sf 20–60)] from all serum samples drawn during 

the postprandial apoC-III kinetic study, were separated by density gradient ultracentrifugation
41

. 

Biochemical analysis—Triglyceride and cholesterol concentrations in total plasma and lipoprotein 

fractions as well as in triglyceride-rich lipoprotein (TRL) cholesterol and remnant-lipoprotein (RLP) 

cholesterol were analyzed using assays (Denka Seiken, Tokyo, Japan) and the Konelab 60i analyzer 

(Thermo Fisher, USA). RLP-C captures lipoproteins not binding with anti-apoA-I and anti-apoB-100 

as remnant lipoproteins
42

. The TRL-C quantifies cholesterol in both chylomicron remnants, and 

VLDL-IDL particles. Fasting and postprandial apoB48 levels in total plasma were measured by 

ELISA (Shibayagi, Shibukawa, Japan). Concentrations of plasma glucose and insulin were measured 

with hexokinase method (Roche Diagnostic Gluco-quant, Germany) and electrochemiluminescence 

(Roche sandwich immunoassay on a Cobas autoanalyzer), respectively. Plasma levels of apoC-III 
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were measured immunoturbidometrically (Kamiya Biomedical Company, Seattle, WA) and β-

hydroxybutyrate concentrations were measured by an enzymatic method with β-hydroxybutyrate FS 

kit (DiaSys Diagnostic Systems, Holzheim, Germany) on a Konelab 60i analyzer.  

Calculation of estimated GFR (eGFR)—Estimated Glomerular filtration rate (eGFR) was estimated 

using the revised Lund-Malmö equations based on age, gender and creatinine
43

. 

Kinetic analysis—Tracer kinetics ([5,5,5-
2
H3]leucine) of apoC-III was modelled using an established 

model including a four compartment system for free leucine kinetics coupled to a delay compartment 

representing synthesis and secretion of apoC-III
44

 (see details in on-line Supplementary information). 

The kinetic model was implemented as a population kinetic model in Monolix (version 2016R1. 

Antony, France: Lixoft SAS, 2018). All model parameters were assumed to be log-normally 

distributed. Individual parameters were calculated using conditional means using Monolix. Further 

details of the implementation are given in the on-line Supplementary information. 

Statistical analysis—Statistical analyses were performed with R (R Foundation for Statistical 

Programming, www.r-project.org) version 3.2.1 and GraphPad Prism version 7 (La Jolla, CA). Data 

are presented in tables as mean ± SD and in figures as mean ± SE. We calculated the area under the 

curve (AUC) using the trapezoidal rule between 0 and 8 hours after the meal. Subjects with and 

without type 2 diabetes were compared using Mann-Whitney U-test, unless stated otherwise. P-values 

<0.05 were considered statistically significant and were not adjusted for multiple testing. 

RESULTS  

Effects of liraglutide therapy on apoC-III metabolism  

We tested the hypothesis that improved glycemic control would affect apoC-III metabolism in type 2 

diabetic subjects. We have recently reported effects of liraglutide treatment on glycemic control, fat 

depots as well as fasting and postprandial lipids in type 2 diabetic subjects
34

. Characteristics of these 

14 individuals are summarized in Suppl. Table S1, and postprandial responses are summarized in 

Suppl. Table S2. Overall liraglutide therapy was associated with beneficial changes of atherogenic 

lipids/ lipoproteins and apoC-III level (Suppl. Table 1 and 2). Notably, apoC-III response 

(postprandial AUC) was reduced by 13% during liraglutide therapy. This raises the question what are 

the factors driving these changes. ApoC-III secretion rate and apoC-III plasma concentration, but not 

apoC-III fractional catabolic rate, correlated strongly with the plasma triglyceride concentration 

(Suppl. Figure 1).  The data suggest that the secretion rate of apoC-III is a major determinant for the 

concentration of plasma triglycerides. 

Treatment with liraglutide resulted in a significant decrease in fasting apoC-III concentration (-14%; 
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11.7±4.3 mg/ dl vs 10.0±3.8 mg/ dl, p<0.05). Examining the enrichment curves, it was observed that 

there was a similar decay rate for the tracer in apoC-III in both treatment periods (Suppl. Figure S2) 

and this was reflected in the lack of change in FCR (Figure 1 and Table 1). Accordingly, the 

decreased pool was attributable to a 13% decrease in apoC-III synthesis (6.6±1.7 mg/kg/day on 

placebo vs 5.8±2.0 mg/kg/day on liraglutide, p<0.05). Indeed, apoC-III SR turned out to be the major 

predictor of plasma apoC-III pool both before and after liraglutide therapy in these type 2 diabetic 

subjects (r>0.83; p<0.001). Further, changes of apoC-III secretion rate and apoC-III pool size 

correlated with those of plasma TG AUC (Figure 2 E and F). 

It was also noteworthy that there were significant associations during liraglutide therapy, between 

changes in parameters of glycemic control and apoC-III SR (r=0.67; p=0.009) and pool-size (r=0.75; 

p=0.002) in the Type 2 diabetic subjects (Figure 2). In contrast, there was no significant association 

between changes in parameters of glycemic control and apoC-III FCR (r=0.40; p=0.15) (Suppl. 

Figure 3).  

Effects of type 2 diabetes on apoC-III kinetics 

To explore the effect of type 2 diabetes on apoC-III kinetics, we were able to identify from our 

previous kinetic studies
35

 11 obese men without type 2 diabetes matched for age and BMI as non-

diabetic comparators for 11 (out of the 14) subjects with type 2 diabetes. Baseline data and 

biochemical measures of the 11 men with type 2 diabetes and the non-diabetic subjects are shown in 

Table 2. All were abdominally obese and the two groups were well matched for age, BMI and waist 

circumference. In the diabetic group duration of diabetes averaged 6.6 years while parameters of 

glycemic control (i.e., glucose and HbA1C) indicated that acceptable glycemic control had been 

achieved. Plasma triglyceride levels were not significantly higher in the men with type 2 diabetes. 

Total cholesterol, and LDL- and TRL-cholesterol concentrations were, as expected, lower in the men 

with type 2 diabetes since these subjects were all on statin therapy. The diabetic group had 2.6-fold 

higher liver fat content and 3.4-fold higher DNL than in the non-diabetic subjects; β-hydroxybutyrate, 

a surrogate marker of hepatic β-oxidation, was similar in the two groups (Table 2). 

Postprandial triglyceride responses to the test meal in plasma, chylomicrons, VLDL1 and VLDL2 

fractions were analyzed in the two groups (Suppl. Figure S4). Despite comparable triglyceride levels 

at baseline and at early time points after the meal in the two groups, the triglyceride values 8 h after 

the meal were markedly higher in the group with type 2 diabetes. Plasma fasting apoC-III showed a 

wide range in both groups (non-diabetic comparator group, 2.8–13.7 mg/dl; type 2 diabetes, 3.2–17.7 

mg/dl), and postprandial apoC-III concentrations showed a non-significant trend to be higher in the 

group with type 2 diabetes (Suppl. Figure S4).  
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Kinetic parameters (secretion rate and fractional catabolic rate) for plasma apoC-III (Table 1) were 

compared in the 2 groups. During the evaluation period apoC-III levels were in steady state (Suppl. 

Figure S4). Mean tracer enrichment curves exhibited a steeper rise and fall in the diabetic group 

(Suppl. Figure S2) than in non-diabetic comparator group, and this translated into a 39% higher 

apoC-III secretion rate and a 17% higher fractional catabolic rate in the former versus the latter 

subjects.  

Consequently, no significant difference was observed in the model-predicted apoC-III pool (Table 1). 

A strong positive correlation between the apoC-III secretion rate and circulating apoC-III pool existed 

across all subjects but there was no significant correlation between the apoC-III fractional catabolic 

rate and the apoC-III pool (Suppl. Figure 5). These results indicate that apoC-III secretion rate is an 

important determinant of plasma apoC-III concentration.  

Relationships between plasma apoC-III kinetics and metabolic parameters  

Strong positive correlations existed between fasting plasma triglycerides and both the apoC-III level 

(r= 0.83, p<0.001) and secretion rate (r=0.9, p<0.001) in the combined group of obese type 2 diabetic 

and non-diabetic subjects. However, no significant relationship was observed between the apoC-III 

fractional catabolic rate and plasma triglycerides (r=0.002; p=0.9), see Suppl. Figure S1. The data 

further reinforce that the secretion rate of apoC-III strongly associates with the concentration of 

plasma triglycerides. Interestingly, a positive correlation was observed between the apoC-III FCR rate 

and DNL in VLDL1 (r= 0.55, p<0.01). We also observed a positive correlation between HbA1c and 

DNL in VLDL1 (r=0.45, p< 0.05) and a negative correlation between insulin and DNL in VLDL1 (r= 

-0.56, p<0.01). Plasma fasting TRL-cholesterol concentrations correlated positively with plasma 

apoC-III concentrations (r=0.48, p<0.05), and plasma RLP-cholesterol concentration correlated with 

the apoC-III secretion rate and apoC-III concentrations (r=0.49, p<0.05 and r=0.54, p<0.01 

respectively). 

Significant correlations were also found between indices of glycemic control and apoC-III kinetic 

measures. HbA1C and fasting glucose correlated positively with apoC-III secretion rate (Figure 1 and 

Suppl. Figure 5). HbA1C (r=0.63, p<0.01), fasting glucose (r=0.47, p<0.05) and insulin (r=0.57, 

p<0.05), correlated also positively with apoC-III fractional catabolic rate (Figure 1 and Suppl. 

Figure 5). 

 

DISCUSSION 

Here, we report that apoC-III metabolism is significantly perturbed in subjects with type 2 diabetes. 

The apoC-III secretion rate was markedly higher in subjects with diabetes compared with BMI-
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matched non-diabetic subjects. Improved glycemic control with liraglutide therapy reduced 

significantly apoC-III secretion rate and, thereby, apoC-III levels in type 2 diabetic subjects. These 

findings suggest that glucose homeostasis is a regulator of apoC-III metabolism, and that the secretion 

rate of apoC-III seems to be an important driver for the elevation of TRLs in type 2 diabetes. 

Several investigators have reported elevation of plasma apoC-III in subjects with type 2 diabetes
12

, 

and we designed our study to gain insight into the dynamics of apoC-III metabolism in this condition. 

We recruited subjects who were treated with metformin only and had satisfactory glycemic control to 

avoid marked diabetic hypertriglyceridemia. Both groups of diabetic and non-diabetic men were 

obese with similar BMI and waist circumference, and plasma triglycerides and apoC-III levels only 

showed a trend to be elevated in the group with type 2 diabetes. However, in line with previous data
45

 

we observed a positive correlation between plasma triglycerides and apoC-III levels in the combined 

cohort as well as in the liraglutide intervention study. Likewise, the changes of triglycerides and TRL 

responses during OFTT correlated with the observed changes of apoC-III responses highlighting the 

role of apoC-III as a regulator of not only plasma triglycerides but also atherogenic remnants particles 

that are known to be increased in diabetic dyslipidemia
12,46

. Several studies have also reported a close 

correlation between VLDL triglycerides and VLDL apoC-III secretion rates
47-51

. Thus, the data are 

consistent with the previously observed close relationship between apoC-III and triglyceride and 

remnant levels at the population level in subjects both with and without type 2 diabetes
3,11,12,31,45,51,52

.  

One of the aims of our study was to investigate factors that regulate apoC-III secretion rate and/or 

fractional catabolic rate. Glucose, insulin and free fatty acids are reported to modulate apoC-III 

expression
13,30

. Carron et al reported that both glucose and insulin regulate apoC-III transcription but 

in opposite ways and they proposed that the dysregulation of apoC-III is a critical factor to explain the 

dyslipidemia in insulin-resistant states
27

. We observed some positive correlations between measures 

of glucose homeostasis and apoC-III secretion rate in the cross-sectional study. Furthermore, the 

changes of glycemic parameters during liraglutide therapy correlated with changes of apoC-III 

secretion reinforcing the role of glycemic control as a determinant of apoC-III secretion rate. Notably, 

the effect of glucose on apoC-III expression in hepatocytes has in vitro been shown to be mediated by 

carbohydrate responsive element binding protein and HNF4α genes
30

. Thus, the effects of liraglutide 

therapy seem to be linked to improved glycemic control. Direct effects of liraglutide on liver cells 

seem less likely since several studies have failed to confirm the expression of the canonical GLP-1R 

in hepatocytes
30,53,54

. Therefore, many actions by GLP-1 agonists are likely indirectly mediated, 

possibly through neural circuits. 

Unexpectedly, the apoC-III catabolic rate was also significantly higher in the men with type 2 

diabetes in our cross-sectional study. We cannot exclude the possibility that this effect was caused by 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 

the statin therapy leading to increased LDL receptor dependent removal of lipoproteins. However, 

liraglutide therapy did not influence apoC-III catabolic rate in our intervention study. This finding 

indicates that the effect of liraglutide on apoC-III secretion rate is probably not explained by statin 

treatment. Still, the effect of statins on apoC-III metabolism remains to be fully clarified in larger 

studies
55

.  

Interestingly, the measures of glycemic control correlated positively with apoC-III clearance rate. The 

major organ for apoC-III clearance seems to be the kidney, which is responsible for the removal of 

free (i.e. non-lipoprotein associated) apoC-III molecules
56

. We therefore estimated the glomerular 

filtration rate in subjects with and without type 2 diabetes but did not find any significant difference, 

which is not surprising since subjects with kidney disease, were excluded from the study. This raises 

the question why impaired glycemic control correlates with increased apoC-III clearance? One 

possibility could be that the different sialylated isoforms of apoC-III have different clearance 

pathways, as Mauger et al have reported different clearance kinetics of the apoC-III isoforms
57

. In 

line, changes in apoC-III glycoisoform ratios have been observed in kidney diseases
58,59

.  

The role of apoC-III in atherogenesis has attracted major interest during recent years. The finding that  

glucose regulates ApoC3 expression raises the role of apoC-III in cardiovascular risk in diabetes. 

Diabetic dyslipidemia is characterized by hypertriglyceridemia and accumulation of remnant 

particles, and apoC-III may aggravate the hypertriglyceridemia by impairing the lipolysis of 

triglyceride-rich lipoproteins. In addition, our results indicate that apoC-III also affect the removal of 

remnant particles, resulting in accumulation of atherogenic remnant particles
60,61

. This may explain 

the improved postprandial lipemia and robust reduction of surrogate markers of remnant particles 

during liraglutide therapy. Thus, our findings highlight the importance of optimal glycemic control in 

Type 2 diabetic subjects with dyslipidemia and high cardiovascular risk. 

Our study has several strengths. First, the study-design enabled us for the first time to estimate kinetic 

parameters of apoC-III using stable isotopes in subjects with type 2 diabetes. Second, the quantification 

of apoC-III enrichment using PRM on a high resolution/accurate mass instrument resulted in high 

specificity and sensitivity. In earlier studies using stable isotopes to study apoC-III kinetics, only apoC-

III1 was investigated because of its greater concentration in plasma
44

. Notably, the observed 

correlations were demonstrated using both the cross-sectional cohorts and  in the intervention study 

where the relationship was  enforced by the correlations between changes of glycemic parameters and 

apoC-III secretion rate observed during liraglutide therapy that improved glycemic control.  

However, the study has also weaknesses. We examined a small number of study subjects because of 

the complex methodology for analyzing enrichment of apoC-III. Therefore, we analyzed correlations 

with the total plasma apoC-III instead of analyzing apoC-III in all lipoprotein fractions. This may be a 
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limitation given that apoC-III exchanges between different lipoprotein fractions, and this may result in 

different clearance rates
47

. However, the Mendelian randomization studies that demonstrated the link 

between apoC-III and CVD were performed using total plasma apoC-III levels
6,7

. In addition, this is a 

pilot study and the results are hypothesis generating and need to be validated in future studies. The 

subjects with type 2 diabetes received statin treatment during the study since ethical considerations 

prohibited us from statin withdrawal during the study. Critically, statin treatment was maintained 

constant during the study. Statin treatment has been shown to lower plasma apoC-III levels 
55,62

. Thus, 

statin treatment of the type 2 diabetic subjects would likely offset the real differences (i.e., it’s 

predictable that off statins the changes of apoC-III concentrations would have been more 

pronounced). 

In summary, the present study points toward a key role of glycemic control in the metabolism of apoC-

III and consequently in the pathophysiology of dyslipidemia in type 2 diabetic subjects. Future studies 

are important to verify the results and to test the concept that apoC-III synthesis may be an attractive 

therapeutic target to reduce the residual risk in particular in type 2 diabetic subjects with abnormal 

TRL metabolism to reduce the burden of CVD.  
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FIGURE LEGENDS 

Figure 1. Individual apoC-III kinetic parameters before and after liraglutide treatment. (A) apoC-III 

secretion rate was decreased, (B) apoC-III fractional catabolic rate was unchanged and, (C) the apoC-

III pool size was decreased (see Suppl. Table S1 for measured concentration). See Table 1 for mean 

and SD values. Secretion rate, SR; fractional catabolic rate, FCR. 
a
estimated average apoC-III 

concentration. 

Figure 2. Relation between changes in kinetic parameters and changes in glucose and glucose control. 

(A) apoC-III SR vs plasma glucose, (B) apoC-III pool vs plasma glucose, (C) apoC-III SR vs HbA1c, 

(D) apoC-III pool vs HbA1C, (E) apoC-III SR vs plasma TG AUC, and (F) apoC-III pool vs plasma 

TG AUC. Secretion rate, SR; fractional catabolic rate, FCR. 
a
estimated average apoC-III 

concentration. Linear regressions are represented by solid lines. Dashed lines represent 95% CI for 

regression. SR, Secretion rate; FCR, fractional catabolic rate; AUC, area under the curve; TG, plasma 

triglycerides. 

Figure 3. Correlations between (A) apoC-III secretions rate and (B) apoC-III fractional catabolic rate 

and apoC-III plasma concentration. Correlations between HbA1c and (C) apoC-III secretions rate and 

(D) apoC-III fractional catabolic rate in subjects without () and with type 2 diabetes (). Linear 

regressions are represented by solid lines. Dashed lines represent 95% CI for regression. SR, 

Secretion rate; FCR, fractional catabolic rate. 
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Table 1. ApoC-III kinetics in the postprandial period in subjects with type 2 diabetes before and after 

treatment with liraglutide 

 

 

Before liraglutide 
intervention 

During liraglutide 
intervention 

Change 
 

Kinetic parameters mean SD Range mean SD Range % 
p-

value 

ApoC-III SR (mg/kg/day) 6.6 1.7 3.9–10.1 5.8 2.0 2.7–10.8 -12.0 0.030 

ApoC-III SR (mg/day) 652 196 380–1045 561 198 245–1091 -14 0.022 

ApoC-III FCR (pools/day) 1.2 0.1 1.1–1.5 1.2 0.2 1.0–1.5 2.2 0.397 

ApoC-III (mg/dl)a 12.4 3.7 6.0–18.7 10.7 3.7 3.9–18.1 -13.1 0.030 

 
a
 Estimated average apoC-III concentration; Secretion rate, SR; fractional catabolic rate, FCR. 
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Table 2. Biochemical measures and apoC-III kinetic parameters in non-diabetic subjects and subjects 

with type 2 diabetes 
 

 

 

Non-diabetic  
(n=11) 

Type 2 diabetes  
(n=11)  

 
mean SD Range mean SD Range p-value 

Age, years 58.7 5.6 46–65 60.5 6.1 47–68 0.533 
Diabetes duration, years 

  
 6.6 4.0 2–15 – 

Weight, kg 102.5 11.8 90.6–124.2 100.3 10.5 81.4–114.4 0.818 

Waist, cm 111.5 7.1 101.0–124.5 114.1 7.7 102.5–130.5 0.577 

BMI, kg/m2 30.4 2.8 26.7–33.9 31.9 3.7 26.8–37.8 0.309 

Liver fat, % 6.06 5.13 0.6–16.7 15.49 7.77 3.7–32.8 0.004 

Intra–abdominal fat, cm3 3174 955 1877–4944 3454 1065 2612–6372 0.376 

Subcutaneous fat, cm3 3783 1025 1820–5541 3933 1172 2399–5972 0.670 

eGFR, ml/min/1,73 m2 69.9 3.2 66.3–76.9 68.9 3.5 64.5–76–4 0.224 

3–OHB, mg/dl 1.17 0.70 0.6–2.5 1.40 1.30 0.5–4.9 0.718 

DNL, µmol/l 5.6 5.3 0–15.7 19.0 8.4 5.8–30.6 p<0.001 

Glucose homeostasis        

P–glucose, mmol/l 5.66 0.36 5.1–6.3 9.35 2.52 6.5–13.5 p<0.001 

P–insulin, μIU/mL 10.7 6.5 4.3–25.2 19.2 9.1 10.7–43.6 p<0.001 

HbA1C, % 5.55 0.25 5.0–5.9 6.89 0.73 6.0–8.3 p<0.001 

HbA1C, mmol/mol 37.0 2.7 31.0–40.9 52.8 8.0 42.0–67.3 p<0.001 

Matsuda index 4.6 2.3 2.1–10.4 2.28 140 1.05–5.9 0.003 

HOMA2‐IR 1.41 0.86 0.58–3.36 2.34 0.73 1.06–3.42 0.02 

Lipids and lipoproteins        

Triglycerides, mmol/l 1.48 0.54 0.7–2.4 1.90 0.73 0.9–3.0 0.200 

Cholesterol, mmol/l 5.19 0.68 3.7–6.2 3.89 0.79 2.7–5.5 0.002 

LDL-C, mmol/l 3.59 0.64 2.6–4.5 2.13 0.79 0.8–3.5 p<0.001 

HDL-C, mmol/l 1.10 0.41 0.6–2.1 1.13 0.24 0.7–1.5 0.577 

TRL-cholesterol, mg/dl 33.5 12.2 12.6–55.0 22.5 8.3 7.4–36.4 0.023 

RLP-cholesterol, mg/dl 9.1 6.0 2.5–25.1 8.3 3.0 2.3–16.4 0.818 

ApoAI, mg/dl 138.6 30.1 86–190 122.4 13.7 99.8–146 0.139 

ApoC-III, mg/dla 10.29 2.97 3.5–13.5 11.79 4.70 3.2–17.7 0.140 

Kinetic parameters        

ApoC-III SR (mg/kg/day) 4.87 1.34 2.6–6.6 6.75 1.91 3.8–9.7 0.007 

ApoC-III SR (mg/day) 505 174 266–806 676 208 382–1114 0.042 

ApoC-III FCR (pools/day) 1.05 0.17 0.76–1.33 1.23 0.16 1.04–1.46 0.019 

ApoC-III (mg/dl)b 10.47 2.80 4.76–14.7 12.58 4.24 5.8–18.6 0.10 

 

Biochemical measures were analyzed in fasting samples, and the apoC-III kinetics in the postprandial 

period. 
a
 measured apoC-III concentration at baseline; 

b
 estimated average apoC-III concentration; 

Secretion rate, SR; fractional catabolic rate, FCR.  
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Figure 1 
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Figure 3 
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