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1 Introdu
tion

Nonlinear e
onometri
 modeling has heavily been based on regime swit
hing me
h-

anisms allowing for parameter 
oe�
ients to swit
h between di�erent states of the

world (e.g., business 
y
le re
essions and expansions, bear and bull sto
k markets,

monetary poli
y regimes and also some rare events su
h as �nan
ial 
rises). The

previous literature on multivariate models has adopted several di�erent regime

swit
hing spe
i�
ations in
luding Sola and Dri�ll (1994), Krolzig (1997), Ang and

Bekaert (2002a,b), Guidolin and Timmermann (2006), Dueker et al. (2011) and

Henkel et al. (2011), among others. In this literature, the regime swit
hing me
ha-

nism is typi
ally spe
i�ed as a latent (unobserved) pro
ess with underlying regime

probabilities whi
h may be fun
tions of the lagged endogenous or exogenous vari-

ables determining the e
onomi
 for
es driving the regime swit
hes. However, in

line with nonlinear models in general, the out-of-sample fore
asting performan
es

of these models have often been found disappointing (see, e.g., the dis
ussion in

Da

o and Sat
hell (1999) and Clements et al. (2004)).

In this study, we 
onsider a regime swit
hing ve
tor autoregressive (VAR)

model, where the regime is determined by an observed qualitative response (QR)

variable predi
ted simultaneously with the variables subje
t to regime swit
hes

and, hen
e, permitting the method implementable in real time fore
asting. The

joint model is, for simpli
ity, referred to the QR-VAR model. The use of the

qualitative response model yields time-varying regime probabilities between the

observed regimes making the QR-VAR model mu
h easier to work with and, in

parti
ular, 
onstru
t fore
asts than the multivariate regime swit
hing models with

latent regimes. Following the large majority of the previous studies, we restri
t

ourselves to the two regime 
ase, that is the qualitative variable is binary through-

out this paper. In our empiri
al appli
ation, the binary variable is the state of the

U.S. business 
y
le measured in terms of the o�
ial NBER business 
y
le turning

points. A multinomial 
ase (i.e. multiple regimes) is a straightforward extension

to our model, provided that the observed qualitative time series determining the
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regimes is available.

The dependen
e on the observed qualitative dependent variable distinguishes

the QR-VAR model from the 
ommonly used Markov swit
hing VAR and related

models, whi
h, of 
ourse, have their own advantages. They are more general in a

sense that the latent regimes are extra
ted based on statisti
al grounds while in

our approa
h the dynami
s are driven by the observed qualitative variable. How-

ever, as long as the obje
tive is to link the latent regime dynami
s dire
tly to

some well-established regimes su
h as the NBER business 
y
le periods, whi
h

has typi
ally been the 
ase in various appli
ations of Markov swit
hing models,

the QR-VAR model o�ers a mu
h simpler way to estimate the parameters and


onstru
t multiperiod fore
asts. This is due to the fa
t that the resulting 
on-

ditional probabilities of the regimes 
an be 
onstru
ted with a binary response

model simplifying parameter estimation 
arried out with the method of maximum

likelihood. This approa
h 
ir
umvents the di�
ulties reported in the parameter

estimation of various previous models (see, e.g., Gray, 1996; Simpson et al., 2001;

Ang and Bekaert, 2002a,b) where estimation requires the �ltration of the latent

regimes (see also the dis
ussion in Filardo and Gordon, 1998).

In general, if the values of a qualitative dependent variable, su
h as the state

of the business 
y
le, are predi
table, then so are the regime swit
hes in the QR-

VAR model. This should lead to superior fore
ast performan
e 
ompared with the

single-regime VAR model (provided there are regime swit
hes in the VAR pro
ess).

The QR-VAR model is designed to produ
e dynami
 iterative fore
asts 
onstru
ted

sequentially for the binary (qualitative) and 
ontinuous variables. We propose a

simulation-based method to obtain multiperiod fore
asts as 
losed-form fore
ast-

ing formulae are generally not available. The examined Monte Carlo fore
asting

experiments show that the proposed method is not, however, 
omputationally bur-

densome and it leads fore
asting gains over the single-regime VAR model. An im-

portant advantage of our model is that it fa
ilitates multistep fore
asting while in

the previous univariate and multivariate regime swit
hing models, with dependen
e

on latent regimes and time-varying transition probabilities, only one-period-ahead
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fore
asts have been 
onsidered so far (see, e.g., Filardo, 1994; Perez-Quiros and

Timmermann, 2000; Simpson et al., 2001; Ang and Bekaert, 2002a).

In addition to the regime swit
hing perspe
tive emphasized above, the QR-VAR

model adds to very s
ant literature on models where 
ontinuous real-valued and

qualitative dependent time series are modeled jointly (see the related models with a

similar stru
ture in Hamilton and Jordà (2002) and Nyberg (2012)). Dueker (2005)

and Fornari and Lemke (2010) are two rare ex
eptions where the VAR model is

augmented with a latent variable determining the values of the 
onsidered binary

time series. Our model di�ers from their models in various ways: In parti
ular,

Dueker (2005) and Fornari and Lemke (2010) do not allow a regime swit
hes in

their VAR models, and the latter also employs a 
ommonly used stati
 probit

model for the binary variable. In line with the univariate models of Rydberg and

Shephard (2003), Benjamin et al. (2003) and Kauppi and Saikkonen (2008), we

use a dynami
 binary response model as a part of the model leading to the model

spe
i�
ation where estimation and fore
asting is easier than in the dynami
 model

of Dueker (2005).

We apply the QR-VAR model to fore
ast the U.S. interest rates and the state

of the business 
y
le in real time. As an example, Ang and Piazzesi (2003), Bansal

et al. (2004) and Huse (2011) have shown that ma
roe
onomi
 fa
tors measuring

real e
onomi
 a
tivity 
an help to predi
t future movements in the yield 
urve.

In 
ontrast, Estrella and Mishkin (1998) and Rudebus
h and Williams (2009),

among others, have found that the term spread between the long-term and short-

term interest rates is the main leading indi
ator of the future state of the business


y
le. Interestingly, almost all previous studies have 
on
entrated on these one-way

linkages while, e.g., Estrella (2005) and Diebold et al. (2006) are supportive for a

bidire
tional relationship, without allowing for regime swit
hes in the interest rates.

In this study, instead of using the ex post observations of the U.S. business 
y
le

regimes, the regimes are predi
ted simultaneously with the interest rate variables.

To the best of our knowledge, this type of regime swit
hing fore
asting approa
h

has not been 
onsidered before in the literature.
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Our empiri
al results provide several interesting insights. In parti
ular, strong

eviden
e of business 
y
le-spe
i�
 e�e
ts in the bivariate system of the U.S. short-

term interest rate and the term spread is obtained. The dynami
s of the short rate

are 
losely dependent on the NBER expansion and re
ession periods of the U.S.

e
onomy whereas the lags of interest rate variables predi
t the state of the business


y
le. Furthermore, and most importantly, due to the obtained predi
tability of

business 
y
le turning points in real time, the out-of-sample fore
asts of the QR-

VAR model outperform those of the single-regime VAR model for the term spread

and, espe
ially, the short-term interest rate. That is also the 
ase when 
omparing

the fore
asting performan
e to the existing regime swit
hing models, in
luding the

Markov swit
hing VAR model.

The rest of the paper is organized as follows. Se
tion 2 introdu
es our regime

swit
hing VAR model. Parameter estimation and 
omputation of fore
asts, in
lud-

ing the proposed simulation-based fore
asting method, are 
onsidered in Se
tion 3.

The fore
asting results 
ontaining analyses on the bidire
tional predi
tive linkages

and feedba
k me
hanisms between the U.S. interest rates and business 
y
le are

reported in Se
tion 4. Finally, Se
tion 5 
on
ludes.

2 Model

Consider the observable time series st and yt, t = 1, 2, ..., T , where st is a qualitative

response variable and yt = [y1t, . . . , yKt]
′

is a K × 1 random ve
tor of real-valued


ontinuous variables. Thus, for simpli
ity, we refer our model as the Qualitative

Response Ve
tor AutoRegressive (QR-VAR) model. Throughout this paper, we


on
entrate on the 
ase where st is binary taking values 0 or 1 (i.e. two regimes), but

a multinomial (multiple regime) dependent variable is a straightforward extension

to this 
ase.

For notational 
onvenien
e, the variables are 
olle
ted to the ve
tor

zt = [st y
′

t]
′

. (1)
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The novel idea is to 
onstru
t a regime swit
hing VAR model where the regimes

are determined by the observable binary variable st. The regime swit
hing VAR

model 
an be written as

yt = st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1− st

)(
w0 +

p0∑

i=1

Ai,0yt−i + e0t

)
, (2)

where depending on whether st takes the value 0 or 1, yt follows a di�erent VAR

model. In other words, if st = 1, we are in the regime 1 and otherwise (st = 0)

in the regime 0. The 
onstant terms wj , 
oe�
ient matri
es Ai,j , i = 1, . . . , pj,

and the error terms ejt, j = 0, 1, are all regime-spe
i�
 allowing for �exible and

di�erent dynami
s in two regimes. Model (2) en
ompasses the 
onventional VAR(p)

model when p0 = p1, e0t = e1t and all the 
orresponding parameters are the same

irrespe
tive of the regime st.

In model (2), the error terms e0t and e1t are assumed to follow multivariate

normal distributions with zero means and possibly di�erent 
ovarian
e matri
es

Σ0 and Σ1 depending on the regime. Thus, we write

ejt = Σ
1/2
j et, j = 0, 1, et ∼ NID(0, IK), (3)

and assume that et and Ωt−1 are independent with Ωt−1 = {zt−1,zt−2, . . . ,z1}

denoting the information set 
ontaining the lags of yt and st (see (1)) at time t−1.

Furthermore, et and st are assumed to be independent 
onditional on Ωt−1.

Throughout this paper, we assume that in (2) the 
ontemporaneous value of st

has an e�e
t on yt, but not vi
e versa (
f. the model of Nyberg, 2012). Although

the main interest is in the regime swit
hing VAR model (2), a model for the

binary variable st is also needed to fore
ast the future values of yt (see Se
tion 3).

Conditional on the information set Ωt−1, st follows a Bernoulli distribution

st|Ωt−1 ∼ B(pt). (4)

In this expression, pt is the 
onditional expe
tation of st (denoted by Et−1(st))
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or equivalently the 
onditional probability of the out
ome st = 1 (denoted by

Pt−1(st = 1))

pt = Et−1(st) = Pt−1(st = 1) = Φ(πt), (5)

where Φ(·) is a standard normal 
umulative distribution fun
tion leading to the

probit model and πt is a linear fun
tion of variables in
luded in the information set

Ωt−1. An alternative to the probit model, a logit model, is obtained by repla
ing

Φ(·) in (5) with the logisti
 fun
tion.

To 
omplete the model for the binary variable st, we spe
ify

πt = ν + aπt−1 + x
′

t−1b, (6)

where |a| < 1 and ν is a 
onstant term. This model was suggested by Kauppi and

Saikkonen (2008) in the 
ontext of univariate binary time series models (see also

Rydberg and Shephard, 2003; Benjamin et al., 2003). For simpli
ity, we restri
t

ourselves to the 
ase where the predi
tors in
luded in the ve
tor xt−1 are the lagged

values of yt. For example, if K = 2, then we set xt−1 = [y1,t−k1 y2,t−k2 ]
′

with k1

and k2 ≥ 1. By re
ursive substitutions, and assuming |a| < 1, πt will depend on

the whole lagged history of the predi
tive variables:

πt =

∞∑

i=1

ai−1(ν + x
′

t−ib). (7)

The univariate probit model is obtained when the predi
tors in xt−1 are treated

as exogenous predi
tive variables. In the previous business 
y
le re
ession fore
ast-

ing literature, dynami
 univariate models, su
h as model (6) (see, e.g., Kauppi and

Saikkonen, 2008, Nyberg, 2010), have been found to outperform the usual stati


model obtained when a = 0 in (6) (see, e.g., Estrella and Mishkin, 1998; Sensier

et al., 2004; Wright, 2006).

The expressions (2), (3), (5) and (6) de�ne together the QR-VAR(p0, p1) model,

where p0 and p1 denote the lag lengths of yt in the regimes of model (2). Equation

(2) shows the regime swit
hing me
hanism of the model but in fore
ast 
ompu-
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tation in Se
tion 3, we need the 
onditional expe
tation of yt given Ωt−1. This

results in

Et−1(yt) = Et−1

[
st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1− st

)(
w0 +

p0∑

i=1

Ai,0yt−i + e0t

)]

= ptµ1t +
(
1− pt

)
µ0t, (8)

where µjt = wj +
∑pj

i=1Ai,jyt−i, j = 0, 1, and the law of iterated expe
tations

and the assumptions made in (3) imply

Et−1(stejt) = Et−1[E(stejt|st,Ωt−1)]

= Et−1[stE(ejt|st,Ωt−1)] = 0, j = 0, 1. (9)

Thus, the 
onditional expe
tation of yt, and one-period-ahead fore
ast, is a weighted

average of the 
onditional expe
tations of the VAR regimes where the weight

pt = Et−1(st) is given in (5). All in all, in 
ontrast to expressions (8) and (9), a

simulation-based method is generally needed to obtain multiperiod fore
asts (see

Se
tion 3.2).

3 Estimation and fore
asting

3.1 ML estimation

The parameters of the QR-VAR model des
ribed in Se
tion 2 
an 
onveniently

be estimated by the method of maximum likelihood (ML). The di�
ulties in the

estimation of many previously 
onsidered (univariate and multivariate) regime

swit
hing models are typi
ally related to the determination of the (unobserved)

regimes and their 
onditional probabilities (see, e.g., Gray, 1996; Simpson et al.,

2001; Ang and Bekaert, 2002a,b). In our approa
h, parameter estimation greatly

simpli�es be
ause an observable binary time series determines the regime.

Conditional on the information set Ωt−1, the density fun
tion of zt (see (1)) is
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hara
terized by

gt−1(zt;θ) = f(yt|st,Ωt−1;θ)P (st|Ωt−1;θ), (10)

where f(yt|st,Ωt−1;θ) is the 
onditional density fun
tion of the random ve
tor yt


onditional on the value of the binary variable st and P (st|Ωt−1;θ) is the 
ondi-

tional probability mass fun
tion of st. The ve
tor of parameters θ 
ontains all the

parameters of the model. Assume that θ = [θ
′

1 θ
′

2]
′

, where θ1 and θ2 
ontain

the parameters related to the regime swit
hing VAR model (2) and to the model

for the binary variable, respe
tively. The density fun
tion (10) 
an therefore be

written as

gt−1(zt;θ) = f(yt|st,Ωt−1;θ1)P (st|Ωt−1;θ2). (11)

Under the normality assumption of ejt, j = 0, 1 (see (3)), the 
onditional density

fun
tion of model (2) is

f(yt|st,Ωt−1;θ1) = (2π)−K/2 det(Σst)
−1/2 exp

(
−

1

2
e
′

st,tΣ
−1
st est,t

)
, st = 0, 1.

(12)

In the 
ase of binary variable st, the 
onditional probability mass fun
tion is

P (st|Ωt−1;θ2) =
(
Φ(πt)

)st(
1− Φ(πt)

)1−st
, st = 0, 1, (13)

where πt is spe
i�ed as in (6).

Assume that we have observed the time series yt and st, t = 1, 2, ..., T , with the

initial values treated as �xed 
onstants. Based on the 
onditional density fun
tion

(11) of zt, the log-likelihood fun
tion over the whole sample, given the initial

values, is

lT (θ) =

T∑

t=1

lt(θ) =

T∑

t=1

log f(yt|st,Ωt−1;θ1) +

T∑

t=1

logP (st|Ωt−1;θ2), (14)

where the two fa
tors of gt−1(zt;θ) in (11) are de�ned in (12) and (13). Thus,

θ1 and θ2 
an be estimated separately and the maximum likelihood estimate θ̂ is
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obtained by maximizing (14) by numeri
al methods (see the models with a similar

stru
ture as (14), e.g., in Hamilton and Jordà (2002) and Nyberg (2012)).

3.2 Computing multiperiod fore
asts

After an adequate des
ription of the joint dynami
s of the variables st and yt has

been obtained, the QR-VAR model 
an be used to fore
ast the future values of the

time series. An advantage of the QR-VAR model over the fore
ast horizon-spe
i�


binary response (see, e.g., Estrella and Mishkin, 1998; Kauppi and Saikkonen, 2008;

Nyberg, 2010) and VARmodels is that it leads to the dynami
 iterative multiperiod

fore
asting approa
h (
f. the 
onventional VAR and the models of Dueker (2005)

and Fornari and Lemke (2010)), without a need to spe
ify a new model for every

fore
ast horizon h (i.e. the dire
t multiperiod fore
asting approa
h).

As we 
on
entrate on iterative multiperiod fore
asting approa
h throughout

this study, fore
asts for the 
ontinuous dependent variables yt are also needed to


onstru
t multiperiod fore
asts for the binary variable st. Our model provides a

simple and 
omputationally feasible approa
h to obtain multiperiod fore
asts of

the variables in
luded in yt, whi
h is not the 
ase for many regime swit
hing models


onsidered in the previous resear
h with a dependen
e on the latent regimes and

time-varying transition probabilities (
f. Se
tion 3.1). In fa
t, in this multivariate


ase, to the best of our knowledge, multiperiod fore
asting has not been 
onsidered

when allowing for time-varying transition probabilities between the regimes, as in

this study.

Based on the information set at time T , the optimal h-period-ahead fore
ast

of zT+h (in the mean-square sense) is the 
onditional expe
tation

ET (zT+h) = E(zT+h|ΩT ) =
[
ET (sT+h) ET (yT+h)

]′

, (15)

where the information set ΩT in
ludes the history of the time series zt up to time

T . Due to the re
ursive stru
ture of the QR-VAR model, fore
asts for the binary

variable st are 
onstru
ted �rst.
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The one-period fore
ast of sT+1 (
f. (5)) is given by

pT+1 = ET (sT+1) = PT (sT+1 = 1) = Φ(πT+1). (16)

In the 
ase of model (6), the linear fun
tion πT+1 = ν+aπT +y
′

Tb depends only on

the information available at time T and, thus, the fore
ast (16) 
an be 
onstru
ted

straightforwardly. Following (8), the one-period fore
ast of yT+1 is the 
onditional

expe
tation

ET (yT+1) = pT+1µ1,T+1 +
(
1− pT+1

)
µ0,T+1, (17)

where µj,T+1 = wj +
∑pj

i=1Ai,jyT−i+1, j = 0, 1, and pT+1 is the one-period-ahead

fore
ast of sT+1 given in (16).

When the fore
ast horizon is longer than one period (h > 1), fore
ast 
ompu-

tation be
omes mu
h more 
ompli
ated. As an example, let us 
onsider two-period

fore
asts (h = 2). As in (16), the fore
ast of sT+2 is the 
onditional expe
tation

pT+2 = ET (sT+2) = PT (sT+2 = 1) = ET

(
Φ(πT+2)

)
, (18)

where following (7), we 
an write

πT+2 = ν + aπT+1 + y
′

T+1b

= ν + a2πT + a
(
ν + y

′

Tb
)
+ y

′

T+1b.

Thus, (18) depends nonlinearly, via the fun
tion Φ(·), on the value yT+1 whi
h

is unknown at time T . In parti
ular, the 
onditional expe
tation (18) is not, in

general, equal to the 
onditional probability of out
ome sT+2 = 1 evaluated at the

expe
ted value of yT+1 given in (17). De
omposing yT+1 into an expe
ted 
om-

ponent ET (yT+1) and the innovation yT+1 −ET (yT+1)
def
= e+j,T+1, the 
onditional

expe
tation (18) 
an be expressed as

pT+2 =

∫
∞

−∞

Φ
(
ν + a2πT + a(ν + y

′

Tb) + (ET (yT+1) + e+j,T+1)
′

b
)
ϕ(e+j,T+1) de

+
j,T+1,
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where ϕ(e+j,T+1) is the density fun
tion of e+j,T+1. As this density fun
tion is in-

tra
table (espe
ially at longer fore
ast horizons) and the integral above does not

have a 
losed form solution, we 
annot 
onstru
t the fore
ast for sT+2 using an

expli
it formula (
f. the one-period fore
ast (16)).

The two-period fore
ast of yT+2 
an be expressed as

ET (yT+2) = ET

[
sT+2

(
w1 +A1,1yT+1 + . . . +Ap1,1yT−p1+2 + e1,T+2

)
+

(1− sT+2)
(
w0 +A1,0yT+1 + . . .+Ap0,0yT−p0+2 + e0,T+2

)]
.(19)

In 
omparison to (17), as ET (sT+2yT+1) 6= ET (sT+2)ET (yT+1), we 
annot take

the 
onditional expe
tations of sT+2 and the VAR regimes separately. The situa-

tion is similar when the fore
ast horizon h lengthens. Thus, the expressions (18)

and (19) demonstrate that there are no 
losed-form fore
asting formulae (
f. the


onventional VAR model) to 
onstru
t multiperiod fore
asts for yT+h, h ≥ 2, and

we have to resort to simulation-based fore
asting te
hniques. The Monte Carlo

fore
asting pro
edure des
ribed below is, however, quite easy to implement and


omputationally feasible. It has some similarities to the fore
asting methods em-

ployed for other (mainly univariate) nonlinear models (see, e.g., Teräsvirta et al.,

2010, Chapter 14).

The essential idea is to simulate re
ursively a large number of independent re-

alizations of the variables sT+1,yT+1, sT+2,yT+2, . . . Fore
asts of sT+h and yT+h

for a given fore
ast horizon h are then obtained as averages of the independently

simulated realizations s
(i)
T+h and y

(i)
T+h, i = 1, . . . , N . The fore
ast horizon h varies

between 1 and h̄ with h̄ the maximum fore
ast horizon 
onsidered. Furthermore, for

h ≥ 2, let z
(i)
T+h−1 (
f. (1)) signify the ve
tor 
ontaining the ith simulated realiza-

tions s
(i)
T+1,y

(i)
T+1, . . . , s

(i)
T+h−1,y

(i)
T+h−1 up to the fore
ast horizon h−1. Throughout

it is assumed that the unknown values of the parameters, whi
h in pra
ti
e are

repla
ed by their estimates, are known.

The fore
ast re
ursion for fore
ast horizons h = 1, 2, . . . , h̄ pro
eeds as follows:

Step 1: Initialize π
(i)
T ≡ πT and y

(i)
T−j ≡ yT−j , j ≥ 0. Start the re
ursion with
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one-period fore
ast horizon i.e. set h = 1 in Steps 2�5.

Step 2: Compute

(
π
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1

)
= ν + aπ

(i)
T+h−1 + x

′ (i)
T+h−1b, where, e.g.,

if K = 2 then x
(i)
T+h−1 =

[
y
(i)
1,T+h−k1

y
(i)
2,T+h−k2

]′

for some k1 and k2 ≥ 1.

Step 3: Draw

(
s
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1

)
∼ B(Φ(π

(i)
T+h)), where B(·) denotes the

Bernoulli distribution and π
(i)
T+h is given in Step 2 (see (4)).

Step 4: Draw (e
(i)
j,T+h|s

(i)
T+h = j) ∼ N(0,Σj), j = 0, 1.

Step 5: Compute

(
y
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1, s

(i)
t+h = j

)
= s

(i)
T+h

(
w1+A1,1y

(i)
T+h−1+. . .

+Ap1,1y
(i)
T+h−p1

)
+ (1− s

(i)
T+h)

(
w0 +A1,0y

(i)
T+h−1 + . . .+Ap0,0y

(i)
T+h−p0

)
+ e

(i)
j,T+h.

Step 6: Go to Step 2 and repeat Steps 3�5 starting from h = 2 up to h = h̄.

Step 7: Repeat Steps 2�6 independently N times (i = 1, . . . , N).

The idea in the above re
ursion is �rst to use the horizon h = 1 to obtain real-

izations π
(1)
T+1, s

(1)
T+1,y

(1)
T+1. Next, the re
ursion is repeated for h = 2, 
onditional

on z
(i)
T+h−1, to obtain π

(1)
T+2, s

(1)
T+2,y

(1)
T+2. This is 
ontinued up to h = h̄. Finally,

fore
asts for sT+h and yT+h, ET (sT+h) and ET (yT+h), h = 1, . . . , h̄, are obtained

by 
omputing the averages (
f. equation (15))

p̂T+h =
1

N

N∑

i=1

s
(i)
T+h, (20)

and

ŷT+h =
1

N

N∑

i=1

y
(i)
T+h, (21)

where N is large. Note that the one-period fore
asts (h = 1) obtained with (20)

and (21) will be asymptoti
ally equivalent to (16) and (17) but the above fore
ast

re
ursion should a

ommodate also this horizon to start the re
ursion. In addition

to point fore
asts, the expressions (20) and (21) 
an straightforwardly be used to


onstru
t possibly asymmetri
 interval and density fore
asts.

The a

ura
y of the proposed fore
asting method depends on the 
hoi
e of the

number of repli
ations N . For a good approximation, N should be large enough.

On the other hand, the larger the number of repli
ations the more 
omputationally

burdensome the method is although simulation in Steps 3�4 is straightforward and

not time 
onsuming. The simulation results reported more detail in the Appendix

12



suggest that the proposed method is a

urate even for relative small values of N

(su
h as N=10 000).

4 Appli
ation: Fore
asting U.S. interest rates

and business 
y
le

4.1 Ba
kground and data set

In our empiri
al appli
ation, we examine the bidire
tional predi
tive linkages be-

tween the U.S. interest rates and the state of the business 
y
le measured in terms

of re
ession and expansion periods. We are, in parti
ular, interested in whether

superior out-of-sample interest rate fore
asts 
an be obtained with the proposed

QR-VAR model over the single-regime VAR and alternative nonlinear VAR mod-

els, in
luding the Markov swit
hing and ve
tor threshold VAR models.

We 
onsider a monthly U.S. data set from January 1972 to De
ember 2010.

The starting point of the sample (i.e. the beginning of the 1970s) is 
onsistent

with many previous studies (see, e.g., Ang and Bekaert, 2002a,b; Huse, 2011).

The state of the e
onomy st is determined by the National Bureau of E
onomi


Resear
h (NBER) business 
y
le turning points. That is in the binary time series

st the value st = 1 indi
ates a re
ession and st = 0 an expansion. The term spread

(TSt) is the di�eren
e between the long-term (10-year government bond) and the

short-term it (three-month Treasury Bill rate) interest rates. The sour
e of all

data is the Federal Reserve Bank of St. Louis databank (FRED). Following the

expe
tations hypothesis of the term stru
ture of interest rates, the dynami
s of

the interest rates 
an be 
onsidered by using a bivariate model of yt 
ontaining

the term spread (TSt) and the �rst-di�eren
e of the short rate (∆it) (see, e.g,

Campbell and Shiller, 1991; Sola and Dri�ll, 1994). We are hen
e, for example,

interested in knowing whether the term spread predi
ts the 
hanges in the short

rate (see, e.g., Ang and Bekeart, 2002a; Bansal et al., 2004) when the business


y
le regime is taken into a

ount.
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The main interest throughout this paper is in out-of-sample fore
asts for the

short-term interest rate. The short-term interest rate is of parti
ular interest as it

is a fundamental building blo
k of many ma
roe
onomi
 and �nan
ial models (see,

e.g., the term stru
ture (yield 
urve) models of Ang and Piazzesi (2003), Bansal

et al. (2004), Diebold et al. (2006) and Huse (2011) in
orporating ma
roe
onomi


variables or 
onstru
ted fa
tors).

1

Here we propose an alternative to the examined

e
onometri
 regime swit
hing models for the short rate where the obtained regime

probabilities for the latent regimes are often interpreted to des
ribe regimes in

real e
onomi
 a
tivity and 
ompared with the NBER business 
y
le periods (see

Filardo, 1994; Ang and Bekaert, 2002a).

Based on the stru
ture of the QR-VAR model, the lags of yt (i.e., the lags of the

term spread and short rate) are used to predi
t the state of the business 
y
le st.

Mu
h of the previous resear
h lends support, espe
ially, to the term spread being

a useful leading indi
ator of future real a
tivity (see, e.g., Estrella and Mishkin,

1998; Estrella, 2005; Rudebus
h and Williams, 2009). Ang et al. (2006) and Wright

(2006) �nd that the short rate has also some additional predi
tive power.

Figure 1 lends support to the regime swit
hing approa
h as the U.S. interest

rate dynami
s appears to be 
losely dependent on the state of the e
onomy. The

short rate has typi
ally been in
reasing (de
reasing) during the expansion (re
es-

sion) periods while during the re
essions (expansions) the term spread (yield 
urve)

is generally upward (downward) sloping. All of the re
ession periods are pre
eded

by a low, or even negative, value of the term spread, explaining why it has been

found a useful leading indi
ator of the re
ession periods. Re
ession periods have

also been 
hara
terized by a high short rate 
ompared with its re
ent past just

before the beginning of re
ession.

1

In this study, we 
on
entrate on the out-of-sample fore
asting power of (nonlinear) e
onometri


models. Yield 
urve (term stru
ture) models provide an alternative 
lass of models. Some attention has

been paid on their out-of-sample fore
asting ability, and so far the reported performan
es have often

been rather disappointing (see Du�ee (2002) and Diebold and Li (2006), and the referen
es therein)


ompared with, e.g., the random walk examined in Se
tion 4.4.
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4.2 Estimation and model sele
tion results

In this se
tion, we brie�y dis
uss the estimation results of the QR-VAR model and

examine the possible two-way linkage between the variables before pro
eeding to

out-of-sample fore
asting in Se
tions 4.3�4.4. A subsample period up to 1992:12

is used to sele
t the models whi
h are subsequently employed in out-of-sample

fore
asting for the period 1993:1�2010:12. Due to the re
ursive stru
ture of the

QR-VAR model, a model for the U.S. business 
y
le is spe
i�ed �rst and treated

independently of the regime swit
hing VAR 
omponent (2).

Model sele
tion results (available upon request) suggest that the third lag of the

term spread (TSt−3) and the �rst lag of the di�eren
ed short rate (∆it−1) are the

best predi
tors of the state of the business 
y
le. The detailed estimation results of

model (6) (based on the entire sample period), where xt−1 = [TSt−3 ∆it−1]
′

, are

presented in Table 1. Due to the negative and statisti
ally signi�
ant 
oe�
ients,

a low value of the term spread and de
reasing short rate in
rease the probability of

re
ession (st = 1). The values of the statisti
al goodness-of-�t measures, su
h as the

pseudo-R2
of Estrella (1998) and the area under the ROC 
urve (AUC) (see, e.g.,

Berge and Jordà (2011) and Lahiri and Yang (2013), and the referen
es therein),

and the probability of re
ession depi
ted in Figure 2 show that the sele
ted model

predi
ts the state of the U.S. business 
y
le a

urately. The probability of re
ession

is high during the re
essions and 
lose to zero in the expansion periods ex
ept for

a few short ex
eptions. A

ording to the test of Pesaran and Timmermann (2009)

allowing for serial 
orrelation in st, the model is able to predi
t the state of the

business 
y
le at the 5% signi�
an
e level.

Overall, the model mat
hes the U.S. business 
y
le regimes a

urately whi
h

has not always been the 
ase in the previous regime swit
hing models when aiming

to obtain a 
orresponden
e with the NBER business 
y
le periods.

2

In fa
t, the

obtained transition probabilities for the unobserved regimes have not been found

2

Of 
ourse the regimes 
an also be di
tated by some other fa
tors than real a
tivity su
h as the

stan
e of monetary poli
y (see, e.g., Sims and Zha, 2006; Bikbov and Chernov, 2013), but in this study

we link the regimes to the NBER business 
y
les.
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to ne
essarily des
ribe business 
y
le re
ession and expansion periods. Instead,

Filardo (1994) and Henkel et al. (2011), among others, interpret the transition

probabilities to des
ribe low and high growth rate regimes in the real GDP whi
h

des
ribe more general 
ontra
tion and expansion periods in real a
tivity than busi-

ness 
y
les whi
h are due to the stru
ture of the model expli
itly used in our

analysis.

Next we turn our interest to the estimation results of the regime swit
hing

VAR model (2). So far, we have assumed that the lag lengths p0 and p1 in the

QR-VAR(p0, p1) model are known. In the previous resear
h, Ang and Bekaert

(2002a,b) and Henkel et al. (2011), among others, have restri
ted themselves to

the parsimonious �rst-order regime swit
hing VAR models (p0 = p1 = 1). This

is also a reasonable ben
hmark in this study. A

ording to our estimation sample

period 1972:1�1992:12, the Bayesian information 
riterion favors the QR-VAR(1,1)

and linear VAR(3) models while the Akaike 
riterion suggests the maximum sixth-

order models. A sequential testing pro
edure, where the Likelihood ratio (LR) test

is applied sequentially when the order of the model in
reases until the �rst non-

reje
tion, sele
ts the QR-VAR(4,3) and VAR(3) models. Irrespe
tive of the sele
ted

QR-VAR or VAR models, there is some eviden
e of remaining auto
orrelation in

the equation of the short rate and 
onditional heteroskedasti
ity in both variables,

but among the examined spe
i�
ations, the QR-VAR(4,3) model seems the best

sele
tion also in terms of the diagnosti
 
he
ks.

In Table 2, we illustrate, for simpli
ity, the estimation results of the parsimo-

nious QR-VAR(1,1) and VAR(1) models. Above the model sele
tion was 
arried

out using the sample period 1972:1�1992:12, but the estimation results in Table 2

are, for illustrative purposes, presented for the full sample period 1972:1�2010:12

to in
lude more re
ession periods to the sample. The results of the QR-VAR(4,3)

and VAR(3) models are available upon request. In the QR-VAR(1,1) model, the

parameter estimates, espe
ially the 
onstant terms, are di�erent a
ross the busi-

ness 
y
le regimes and from the ones of the VAR(1) model. In line with Figure

1, the 
onstant term for the �rst-di�eren
e of the short rate is negative in the
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re
ession regime. The term spread is a useful predi
tor of the short rate mainly

in the re
ession regime. Interestingly, the persisten
e in the term spread appears

mu
h higher in the expansion regime. Furthermore, the higher standard errors of

estimated parameter 
oe�
ients in the re
ession regime are most likely resulting

from the small number of observations in the re
ession regime.

Overall, irrespe
tive of the lag length sele
tion (results not reported), the QR-

VAR model outperforms the VAR model as we 
an strongly reje
t the hypothesis

of equal parameter 
oe�
ients in the expansion and re
ession regimes at all tra-

ditional signi�
an
e levels. Thus, there appears to exist a bidire
tional in-sample

predi
tive linkage between the variables: The lags of the term spread and short rate

predi
t the state of the business 
y
le (see Table 1). On the other hand, the VAR

dynami
s are strongly dependent on the business 
y
le regime (see Table 2). The

estimated 
ovarian
e matri
es Σ0 and Σ1 are also di�erent in two business 
y
le

regimes. In parti
ular, the diagonal elements are 
learly higher in the re
ession

regime implying higher volatility.

4.3 Out-of-sample fore
asting

We 
ompare the (real-time) out-of-sample fore
asts obtained with the proposed

QR-VAR model and various alternative linear and regime swit
hing VAR models

for the period 1993:1�2010:12. The main interest is in interest rate fore
asts (i.e. the

variables in
luded in the VAR). We 
on
entrate �rst on the 
omparison between

the QR-VAR and linear VAR models to examine the e�e
t of allowing for business


y
le-spe
i�
 regimes in the VAR model. Later on in Se
tion 4.4, we will also


ompare the fore
asting performan
e with, e.g., the Markov swit
hing model.

Fore
asts are 
omputed using an expanding window approa
h where the esti-

mation sample period in
reases in ea
h time when the parameters are re-estimated

until the end of the sample. Based on the Monte Carlo fore
asting experiments pre-

sented in the Appendix, the number of simulated realizations N in the simulation-

based fore
asting method is �xed to 10 000.

17



Using the NBER re
ession dates naturally raises 
on
erns on the real time

implementability of the QR-VAR model in fore
asting as the business 
y
le turning

points determining the values of st are not available in real time. This is, however,

taken into a

ount in various ways. First of all, as a part of the model we fore
ast

the values of st using only the information available in real time (see Steps 2 and 3

in Se
tion 3.2). Se
ond, we do not employ the lags of st in model (6) 
ir
umventing


ompli
ations related to their use as predi
tors (
f. the models and dis
ussion

in Kauppi and Saikkonen (2008) and Nyberg (2010)). Third, parameters are re-

estimated only when a 
omplete business 
y
le from trough month to the next

trough has been 
ompleted (i.e. the business 
y
le trough point is identi�ed in

real time) to fa
ilitate a fair 
omparison between the models. Therefore, the out-

of-sample fore
asting period starts after the announ
ement of the business 
y
le

trough for Mar
h 1991 made by the NBER in De
ember 1992.

In Table 3, following the previous literature on the regime swit
hing VAR mod-

els, we report the results of the �rst-order QR-VAR(1,1) model along with the

QR-VAR(4,3) model. The relative MSFE and QPS statisti
s are obtained relative

to the single-regime VAR(1) and VAR(4) models and the univariate autoregres-

sive probit (6) model. The VAR(4) model is used as a single-regime 
ounterpart

of the QR-VAR(4,3) model instead of the VAR(3) model (suggested by the BIC

and sequential model sele
tion pro
edure) as the VAR(3) (results available upon

request) leads to inferior out-of-sample fore
ast performan
e 
ompared with the

VAR(4). The fore
ast evaluation for the short rate is exe
uted for its level whi
h is

of interest in many appli
ations and 
an easily be 
omputed from the fore
asts of

the �rst-di�eren
e of it. Under the hypothesis of no business 
y
le-spe
i�
 regimes

the QR-VAR model nests the VAR model as a spe
ial 
ase. Thus, the test of

Clark and West (2007) is used to test the equal predi
tive performan
e between

the QR-VAR and VAR models. The QR-VAR and univariate fore
ast horizon-

spe
i�
 models for the binary variable are not (generally) nested and, thus, the

Diebold-Mariano (1995) and West (1996) test is employed in that 
ase.

Many interesting �ndings emerge. Let us �rst 
onsider fore
asts for the short
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rate whi
h are of most interest in this analysis. It 
an be seen that the QR-VAR(1,1)

and QR-VAR(4,3) models 
learly outperform their 
orresponding single-regime

VAR(1) and VAR(4) models. Depending on the fore
ast horizon, the relative dif-

feren
es in the fore
ast a

ura
y typi
ally range from 5% to even 20%. The �rst-

order (QR-VAR(1,1)) model seems to yield better fore
asts than the QR-VAR(4,3)

model. Based on the test of Clark and West (2007), the di�eren
es between the

QR-VAR and VAR models are statisti
ally signi�
ant at all the 
onventional sig-

ni�
an
e levels showing the superior predi
tive performan
e of the former model.

The results for the term spread are basi
ally the same as for the short rate. In

this 
ase, the QR-VAR(4,3) model produ
es somewhat better fore
asts than the

QR-VAR(1,1) model. However, in both 
ases, the QR-VAR models outperform the

VAR models by a 
lear margin. The relative MSFEs are throughout below unity

and the p-values of the Clark and West (2007) test are essentially zero.

As in Kauppi and Saikkonen (2008) and Nyberg (2010), the univariate autore-

gressive probit model (6) yields good fore
asts for the state of the U.S. business


y
le when the fore
ast horizon is relatively short. However, as expe
ted and 
on-

sistent with the simulation fore
asting results presented in the Appendix, when

the fore
ast horizon lengthens towards the maximum 12-month horizon, the dy-

nami
 iterative fore
asting approa
h employed in the QR-VAR model outperforms

the fore
ast horizon-spe
i�
 univariate model. A

ording to the Diebold-Mariano

and West test the di�eren
es are not, however, statisti
ally signi�
ant. All in all,

in possible future appli
ations, su
h as impulse response analysis within the QR-

VAR model (
f. Dueker, 2005, Fornari and Lemke, 2010), the dynami
 iterative

fore
asting approa
h proposed in this study seems more appropriate.

It is also worth noting that the linear VAR 
an, in prin
iple, be estimated

re
ursively using real-time data observed at ea
h time t. Due to the dependen
e

on business 
y
le regimes and thus the publi
ation lag in the values of st, this

is not the 
ase in the QR-VAR model in real time. This 
an be seen as a draw-

ba
k for the QR-VAR model. Hen
e, another 
omparison between models 
ould

be performed by allowing for all the non-QR-VAR models to be estimated using
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the entire information set available. How substantial is this drawba
k? In fa
t, the

fore
asting performan
e of the VAR model estimated at ea
h step yields slightly

inferior fore
asts than the one reported in Table 3 (details available upon request).

Hen
e the main message of this and the next se
tion, the importan
e of taking the

predi
table regimes into a

ount in fore
ast 
onstru
tion, remains inta
t.

To get more detailed information where the fore
asting gains are 
oming, in

Table 4 we report the relative MSFEs separately for the business 
y
le expansions

and re
essions (Panel A). For the short rate the fore
asting gains are larger in

expansions but also at re
ession periods the QR-VAR model outperforms the linear

VAR. For the term spread the fore
asting gains are 
oming from expansions.

In Panel B of Table 4, the Area Under the ROC Curve (AUC) summarizes the

out-of-sample predi
tive power obtained for the state of the U.S. business 
y
le.

As in in-sample estimation results (Table 1), following the testing pro
edure used,

for example, in Berge and Jordà (2011), the reported AUCs are all statisti
ally

signi�
antly higher than 0.5 at the 
onventional signi�
an
e levels.

3

In other words,

the proposed QR-VAR model is able to predi
t U.S. business 
y
les out of sample,

providing the ne
essary ingredient to obtain superior predi
tive power also for

interest rate variables. It appears that the only notable ex
eption is approximately

the period between the years 1998�1999 where the probability of re
ession is falsely

somewhat high early in advan
e the re
ession started in 2001.

As a by-produ
t of the simulation-based fore
asts in the proposed QR-VAR

model, we also obtain generally asymmetri
 density and interval fore
asts. A more

extensive examination is left for the future resear
h but some general remarks 
an

already be made. As expe
ted, the interval fore
asts (predi
tive densities) are gen-

erally somewhat wider when allowing for business 
y
le regimes in the VAR (see,

e.g., the di�eren
es in the diagonal elements of the 
ovarian
e matri
es reported

in Table 2). Due to wider fore
ast intervals, espe
ially during the un
ertain times

3

The (out-of-sample) AUC gets values between 0 and 1, with the values of 0.5 and 1 
orresponding

a 
oin toss and perfe
t fore
asts, respe
tively. In a growing number of e
onomi
 appli
ations (see, e.g.,

Berge and Jordà, 2011; Lahiri and Yang, 2013; Berge, 2015; Nyberg and Pönkä, 2016), the AUC has

been used as a statisti
al goodness-of-�t measure for binary time series.
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around business 
y
le turning points, the QR-VAR model 
ontains the observed

short rate more often than the linear VAR model.

As a whole, we 
an 
on
lude that superior fore
asts for the interest rate vari-

ables 
an be obtained by allowing for the business 
y
le-spe
i�
 regimes and, in

parti
ular, utilizing the predi
tability of those regimes in fore
asting. In the previ-

ous studies, the relative di�eren
es between the single-regime and regime swit
hing

models have typi
ally been smaller than in this study (see, e.g., Filardo, 1994, Ang

and Bekaert, 2002a). In this respe
t, the proposed model turns out to perform

really well. Da

o and Sat
hell (1999) show that a regime-swit
hing model, based

on the latent regimes, may have poor fore
asting performan
e relative to a linear

model as a result of mis
lassifying observations to wrong regimes. Clements et al.

(2004) have also emphasized that the relative performan
e of the regime swit
h-

ing model is expe
ted to improve when the regimes are persistent. The fa
t the

QR-VAR model is based on the observable and persistent NBER business 
y
le

regimes helps in parameter estimation whi
h seems to lead subsequent fore
asting

gains. This interpretation is still examined more detail in the next se
tion when


omparing the fore
asting performan
e with, e.g., the Markov swit
hing model.

4.4 Additional out-of-sample fore
asting 
he
ks

Instead of the bivariate linear VAR and QR-VAR models, in this se
tion we 
on-

sider several additional out-of-sample fore
asting 
he
ks for the �ndings obtained

in Se
tion 4.3. In parti
ular, we examine augmented (three-variable) VAR and

QR-VAR models as well as the predi
tive performan
e of the random walk, whi
h

has often been found to yield superior fore
asts over, for example, various yield


urve models (see, e.g., Du�ee, 2002). In addition, we assess the value added of

the QR-VAR model when 
omparing its out-of-sample fore
asting performan
e

with the Markov swit
hing VAR and ve
tor threshold VAR models (whi
h is also

interpreted as a regime swit
hing model in this study).

An alternative approa
h to the QR-VAR model to explore the relationship
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between the interest rates and business 
y
le 
an be based on an augmented lin-

ear VAR model by simply augmenting yt (in
luding interest rate variables) by a


ontinuous variable measuring real e
onomi
 a
tivity. In other words, instead of

using the binary variable determining the business 
y
le regime, we 
an spe
ify

a three-variable VAR model where in addition to the term spread (TSt) and the

�rst-di�eren
e of the short rate (∆it) a growth rate of industrial produ
tion (ipt)

or nonfarm payroll employment (emp) is also in
luded in the model. Ultimately,

the 
omparison between this traditional and the QR-VAR-based regime swit
h-

ing approa
h is about what is the best way of fore
asting interest rates and real

a
tivity (business 
y
les) and their linkages.

Industrial produ
tion and employment have probably been the most 
ommonly

used monthly indi
ators of real a
tivity. Be
ause of real-time data availability

issues, we use the real-time data of industrial produ
tion and employment available

at the Federal Reserve Bank of Philadelphia website. In addition to data revisions,

we are also taking the one-month information lag of both variables into a

ount

in out-of-sample fore
asting (
f. the informational lag in the NBER business 
y
le

turning points). Therefore, now
asts for their values at time T are 
onstru
ted �rst

with the same models whi
h are used to 
ompute fore
asts for the future.

Similarly as in Table 3, we report the MSFEs (QPSs for the binary variable) of

di�erent models in Table 5. Following the results obtained in Table 3, parsimonious

models seem to overall produ
e slightly superior fore
asts than the models with

longer lag lengths. Therefore, the models presented in Table 5 are sele
ted based

on the BIC in
luding the QR-VAR(1,1) model (whi
h out-of-sample fore
asting

performan
e is already presented in Table 3). It turns out that the QR-VAR(1,1)

model is generally the best model also in this 
omparison, espe
ially for the short-

term interest rate. In parti
ular, it outperforms the three-variable VAR models

in
luding industrial produ
tion or employment as a third variable. In other words,

linking interest rates to real a
tivity in a nonlinear (business 
y
le-spe
i�
) regime

swit
hing fashion leads to superior out-of-sample fore
asts 
ompared with the aug-

mented linear models. Furthermore, the examined QR-VAR models also outper-
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form the random walk (by a wide margin) irrespe
tive of the fore
ast horizon for

both variables (term spread and short rate).

For the term spread, the results are essentially similar as for the short rate.

The only ex
eption is the three-variable VAR(2) model in
luding employment

(VAR(2)+emp). However, it is worth noting that its fore
asting performan
e for

the short rate is 
learly inferior 
ompared with the QR-VAR models. It appears

that in
luding the third 
ontinuous variable in the QR-VAR model (in the ve
tors

yt and xt−1) does not improve interest rate fore
asts and does not have a sub-

stantial e�e
t on the fore
asts for the state of the business 
y
le (st) even though

for some fore
ast horizons the QPS statisti
s are slightly smaller than in the best

QR-VAR(1,1) model presented in Table 3.

As dis
ussed in the Introdu
tion, the QR-VAR model 
an be seen as an alter-

native to the Markov swit
hing VAR (MSVAR) model. Time-varying regime prob-

abilities obtained with the QR-VAR model would thus ideally lead to a 
omparison

between the MSVAR model with time-varying transition probabilities. However,

to the best of our knowledge, in the previous univariate and multivariate regime

swit
hing models with dependen
e on latent regimes and time-varying transition

probabilities (based on the lagged values of yt, as in model (6)), in
luding MSVAR

models, only one-period-ahead fore
asts (fore
asting methods) have been 
onsid-

ered so far (see, e.g., Filardo, 1994; Perez-Quiros and Timmermann, 2000; Simpson

et al., 2001; Ang and Bekaert, 2002a). Be
ause we are espe
ially interested in mul-

tiperiod fore
asting, this previous work is thus not dire
tly 
omparable to ours.

As the multistep fore
asting pro
edures and their properties are unknown at the

moment, we use the MSVAR model with �xed transition probabilities where the

multiperiod fore
asts 
an be obtained using analyti
al expressions (see details, e.g.,

in Teräsvirta et al., 2010, pp. 346�347).

In Table 6, we 
ompare the out-of-sample fore
asting performan
e of the QR-

VAR model to the MSVAR model with 
onstant transition probabilities to get

eviden
e whether it is advantageous in terms of interest rate fore
asts (variables

in
luded in the VAR) to relate the regimes to the NBER periods 
ompared with

23



latent regime approa
h. In the MSVAR model, the extra
ted regimes maximize

the statisti
al likelihood of a swit
hing model whi
h 
an be more relevant to the

interest rate variables and di
tated by other e
onomi
 for
es than the business


y
les su
h as the stan
e of the monetary poli
y (see, e.g., Sims and Zha, 2006;

Bibkov and Chernov, 2013).

4

Another fore
asting 
omparison 
he
k is made with a ve
tor threshold VAR

(VTVAR) model (see Teräsvirta et al., 2010, pp. 34�35). In the VTVAR model,

we assume that the �rst lag of the term spread is used as the threshold variable

for both VAR equations. For example, when the full sample period is used in

estimation, the threshold value between the regimes is 0.13 (
f. the right panel of

Figure 1). As above in Table 5, the results of the VTVAR and MSVAR models are

based on the models where the lag lengths are sele
ted using the BIC.

Table 6 reports the relative MSFEs between the QR-VAR model and MSVAR

and VTVAR models, respe
tively. The entries below unity show the superiority of

the QR-VAR model. Overall, it turns out that the QR-VAR(1,1) model (sele
ted

based on the BIC as well) produ
es superior out-of-sample fore
asts over the 
om-

peting models. A

ording to the Diebold-Mariano and West test, the di�eren
es

in the fore
ast a

ura
y are also statisti
ally signi�
ant at least at the 10%, in

many 
ases even at the 5%, signi�
an
e levels. This is, espe
ially, the 
ase when

the fore
ast horizon lengthens.

5 Con
lusions

Regime swit
hing models provide an attra
tive 
lass of e
onometri
 models to


apture regime 
hanges in the sto
hasti
 behavior of interest rates. In this study,

we suggest a new regime swit
hing VAR model, referred for simpli
ity to as the

QR-VAR model, whi
h 
an also be seen as a joint model between real-valued 
on-

tinuous and qualitative dependent variables. The model is easier to work with and

4

In the 
ase of the Markov swit
hing model, we employ the MS Regress pa
kage for Mat-

lab (see Perlin 2012: MS Regress - The MATLAB Pa
kage for Markov Regime Swit
hing Models

(http://ssrn.
om/abstra
t=1714016)).
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interpret than some previously 
onsidered multivariate regime swit
hing models

where the latent regimes are determined within the e
onometri
 model. Although

a simulation-based fore
asting method is required to 
onstru
t multiperiod fore-


asts, the proposed method is not 
omputationally burdensome.

The QR-VAR model is applied to fore
ast the U.S. interest rates and the state

of the business 
y
le. The empiri
al results show that there is a strong bidire
tional

linkage between the U.S. business 
y
le measured in terms of the NBER expansion

and re
ession periods and the bivariate system of the U.S. term spread and the


hanges in the short-term interest rate. The results 
an be interpreted as positive

eviden
e for a redu
ed-form model for the short rate in
orporating business 
y
le

shifts as the term spread and the short rate help to predi
t the future business


y
le regimes while the state of the business 
y
le has also feedba
k e�e
ts ba
k

to them. Most importantly, the ability of the QR-VAR model to fore
ast business


y
le turning points leads to superior out-of-sample fore
asting performan
e for the

interest rate variables 
ompared with the 
onventional single-regime VAR model

and previously 
onsidered nonlinear VAR models, in
luding the Markov swit
hing

VAR model.

The QR-VAR model 
an be extended various ways. One possibility is to repla
e

the binary variable with other qualitative response variable, su
h as a multinomial

variable allowing for more than two regimes. Another interesting extension 
ould be

to use the model in stru
tural ma
roe
onomi
 analysis where the impulse response

fun
tions implied by the QR-VAR model, with alternating regimes, may lead to

di�erent 
on
lusions than the VAR or other regime swit
hing models employed in

the previous literature. To fa
ilitate impulse response analysis, fore
asts for the

future values of the variables are required and, therefore, the proposed simulation-

based iterative fore
asting method, and subsequent results, are also of interest.

Examining the interval and density fore
asting performan
e of the proposed model

more detail in di�erent appli
ations might also be a worthwhile extension to this

study.

25



Appendix: Monte Carlo fore
asting experiment

As dis
ussed in Se
tion 3.2, a simulation-based fore
asting pro
edure is generally

required to 
onstru
t multiperiod fore
asts in the QR-VAR model. In the proposed

MC simulation method, the essential task is to spe
ify the number of simulation

repli
ations N that a�e
ts the approximation error 
oming from the numeri
al

integration. Thus, we 
onsider a small-s
ale Monte Carlo simulation experiment in

order to spe
ify the number of repli
ations N and illustrate the properties and the

usefulness of the fore
asting method. The data generating pro
ess (DGP) is based

on the QR-VAR(1,1) model presented in Tables 1�2.

We simulate 5 000 realizations of length T + 12 observations from the above-

mentioned DGP. Using the �rst T observations in ea
h realization, we estimate

the univariate probit model (6) and the VAR model along with the true QR-VAR

model. Fore
asts are 
omputed for the fore
ast horizons from 1 to 12 periods. The

mean-squared fore
ast errors (MSFE) and the QPS statisti
s (Diebold and Rude-

bus
h, 1989) for the 
ontinuous and binary dependent variables are 
onstru
ted,

respe
tively. We experiment with two sample sizes (T=200 and T=500) and three


hoi
es of N (1 000, 10 000 and 50 000).

Table 7 presents the MSFE and QPS statisti
s of the QR-VAR model for dif-

ferent fore
ast horizons. The a

ura
y of fore
asts for the binary variable appears

to in
rease with the sample size T while this e�e
t is not so 
lear for the 
ontin-

uous variables. As far as the number of repli
ations is 
on
erned, there is a slight

improvement when N in
reases from 1 000 to 10 000, but basi
ally no 
hanges

when N in
reases from 10 000 to 50 000. Thus, in 
on
lusion, N=10 000 appears

to be a su�
ient sele
tion.

The relative MSFE and QPS statisti
s in Table 8 are obtained by dividing the

MSFE and the QPS statisti
s of the QR-VAR model reported in Table 7 by those

of the 
orresponding VAR(1) and univariate probit (6) models. Most of entries

are below unity for the variables y1t and y2t indi
ating the superiority of the true

QR-VAR spe
i�
ation over the VAR model. The relative MSFEs in Table 7 are
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essentially the same with di�erent sele
tions of N . The relative QPS statisti
s for

the binary variable show that the QR-VAR model designed to 
onstru
t dynami


iterative multiperiod fore
asts outperforms the fore
ast horizon-spe
i�
 univariate

model when the fore
ast horizon lengthens. As pointed out in Se
tion 3.2, the

one-period fore
asts from the QR-VAR and the univariate autoregressive probit

models are asymptoti
ally equal.
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Tables and Figures

Table 1: Estimation results of the autoregressive binary response model (6).

πt ν a b1 b2
(πt−1) (TSt−3) (∆it−1)

0.066 0.935 -0.119 -0.319

(0.014) (0.009) (0.015) (0.074)

psR

2
0.419 QPS 0.152

CR50% 0.893 CR25% 0.849

PT50% 6.887 (0.009) PT25% 5.408 (0.020)

AUC 0.931

Notes: In the table, TSt−3 and ∆it−1 denote the third and �rst lags of the term spread and the �rst

di�eren
e of the short rate, respe
tively, in
luded in xt−1 as predi
tors. The estimated 
oe�
ients are

based on the full sample period (1972:1�2010:12) and their standard errors, based on the Hessian of

the log-likelihood fun
tion, are given in the parentheses. The pseudo-R2
of Estrella (1998) (psR

2
) and

the QPS statisti
 (Diebold and Rudebus
h, 1989) are the 
ounterparts of the 
oe�
ient of

determination and the mean-square predi
tion error used in linear models. CR50% and CR25% denote

the per
entages of 
orre
t re
ession and expansion signal fore
asts when the 50% and 25% thresholds

are used to 
onstru
t signal fore
asts from the probability of re
ession (see (5)). PT denotes the

Pesaran-Timmermann (2009) test statisti
s (p-values in the parentheses) for the null hypothesis that

the state of the business 
y
le (st) is unpredi
table. AUC is the area under the Re
eiver Operating


hara
teristi
 Curve (ROC) used to evaluate the 
lassi�
ation ability of the model (see, e.g., Berge

and Jordà, 2011, and Lahiri and Yang, 2013, and the referen
es therein).
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Table 2: Estimation results of the QR-VAR(1,1) and VAR(1) models.

QR-VAR(1,1) VAR(1)

Expansion (st = 0) Re
ession (st = 1)
0.974 -0.251 0.779 -0.307 0.934 -0.274

A1,0 (0.012) (0.043) A1,1 (0.054) (0.083) A1 (0.014) (0.036)

0.010 0.315 0.183 0.363 0.048 0.347

(0.013) (0.049) (0.076) (0.117) (0.017) (0.045)

w0 0.023 0.005 w1 0.418 -0.411 w 0.114 -0.091

(0.026) (0.030) (0.098) (0.138) (0.029) (0.036)

0.088 -0.064 0.377 -0.438 0.146 -0.136

Σ0 (0.006) (0.006) Σ1 (0.063) (0.081) Σ (0.010) (0.011)

-0.064 0.113 -0.438 0.750 -0.136 0.227

(0.006) (0.008) (0.081) (0.125) (0.011) (0.015)

logL 605.529 logL 496.243

AIC -587.529 AIC -487.243

BIC -550.426 BIC -468.692

Notes: Estimation results are for the bivariate system in
luding the term spread and the

�rst-di�eren
e of the short-term interest rate (i.e. yt = [TSt ∆it]
′

, the observations at period t). In

the QR-VAR model, the reported values of the log-likelihood fun
tion (logL) and the Akaike and

S
hwarz information 
riteria (AIC and BIC) are based only on the VAR part of the model. In this

table, the full sample period (1972:1�2010:12) is used to estimate the parameters.
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Table 3: Out-of-sample fore
asting performan
e of the QR-VAR and VAR models.

Model Fore
ast horizon (months)

1 2 3 6 9 12

MSFE, term spread (TSt)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982

VAR(1) 0.062 0.166 0.269 0.623 0.929 1.158

relative MSFE 0.944*** 0.909*** 0.868*** 0.826*** 0.819*** 0.848***

QR-VAR(4,3) 0.056 0.154 0.235 0.483 0.732 0.948

VAR(4) 0.061 0.172 0.267 0.592 0.894 1.138

relative MSFE 0.920*** 0.892*** 0.879*** 0.817*** 0.818*** 0.832***

MSFE, short rate (level, it)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375

VAR(1) 0.036 0.112 0.207 0.615 1.086 1.616

relative MSFE 0.907*** 0.842*** 0.801*** 0.801*** 0.821*** 0.851***

QR-VAR(4,3) 0.042 0.113 0.194 0.536 1.040 1.701

VAR(4) 0.051 0.143 0.236 0.628 1.154 1.770

relative MSFE 0.821*** 0.788*** 0.824*** 0.853*** 0.901*** 0.960***

QPS, business 
y
le (st)

Univariate model (see (6)) 0.187 0.185 0.187 0.186 0.185 0.186

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177

relative QPS 1.001 1.039 1.054 1.025 0.957 0.950

QR-VAR(4,3) 0.188 0.189 0.192 0.182 0.171 0.171

relative QPS 1.003 1.025 1.023 0.977 0.921 0.921

Notes: The entries are the MSFE and QPS statisti
s of di�erent models. Relative MSFEs (QPS) are

obtained as dividing the MSFE (QPS) of the QR-VAR model by the MSFE (QPS) of the VAR

(univariate probit) model. The number of simulation repli
ations in the MC fore
asting pro
edure is

N=10 000. In the table, ∗, ∗∗, ∗ ∗ ∗ denote the 10%, 5% and 1% level of signi�
an
e in the test of

Clark and West (2007) for equal predi
tive a

ura
y between the QR-VAR and the VAR model.
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Table 4: Regime-spe
i�
 out-of-sample fore
ast evaluation and business 
y
le predi
tabil-

ity.

Model Fore
ast horizon (months)

1 2 3 6 9 12

Panel A: Relative MSFE, 
onditional on the business 
y
le regime

Term spread (TSt)

Expansion (st = 0)

QR-VAR(1,1)/VAR(1) 0.910 0.862 0.809 0.762 0.760 0.800

QR-VAR(4,3)/VAR(4) 0.881 0.863 0.857 0.782 0.773 0.784

Re
ession (st = 1)

QR-VAR(1,1)/VAR(1) 1.038 1.049 1.084 1.252 1.234 1.243

QR-VAR(4,3)/VAR(4) 1.027 0.991 0.945 0.974 1.047 1.136

Short rate (level, it)

Expansion (st = 0)

QR-VAR(1,1)/VAR(1) 0.882 0.787 0.730 0.767 0.801 0.840

QR-VAR(4,3)/VAR(4) 0.757 0.748 0.826 0.895 0.924 0.973

Re
ession (st = 1)

QR-VAR(1,1)/VAR(1) 0.961 0.929 0.907 0.870 0.865 0.880

QR-VAR(4,3)/VAR(4) 0.971 0.855 0.822 0.794 0.866 0.938

Panel B: AUC, business 
y
le fore
asts (st)

Univariate model (see (6)) 0.814 0.817 0.811 0.800 0.803 0.812

QR-VAR(1,1) 0.814 0.811 0.797 0.802 0.838 0.859

QR-VAR(4,3) 0.814 0.813 0.805 0.818 0.849 0.866

Notes: In Panel A, the entries are the relative MSFEs between the QR-VAR and VAR models

separately for expansion and re
ession states where the values under unity signify the superiority of

the former model. In Panel B, the (out-of-sample) AUCs (Area Under the ROC 
urve) measure the

predi
tability of the state of the business 
y
le. Details on the AUC, see, e.g., Berge and Jordà (2011)

and Lahiri and Yang (2013).
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Table 5: Out-of-sample fore
asting performan
e of the augmented models and the ran-

dom walk.

Model Fore
ast horizon (months)

1 2 3 6 9 12

MSFE, term spread (TSt)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982

VAR(2)+ipt 0.057 0.158 0.248 0.549 0.851 1.092

QR-VAR(1,1)+ipt 0.060 0.156 0.246 0.559 0.828 1.054

VAR(2)+emp 0.058 0.155 0.228 0.465 0.712 0.931

QR-VAR(1,1)+emp 0.063** 0.166 0.266 0.648** 0.975* 1.210

RW 0.063* 0.163** 0.258** 0.620* 1.076** 1.558**

MSFE, short rate (level, it)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375

VAR(2)+ipt 0.045*** 0.127*** 0.212** 0.595 1.111 1.740

QR-VAR(1,1)+ipt 0.035 0.102 0.189 0.600 1.108 1.678

VAR(2)+emp 0.049*** 0.151*** 0.265*** 0.680*** 1.171** 1.788*

QR-VAR(1,1)+emp 0.041** 0.119* 0.229* 0.774** 1.429** 2.111**

RW 0.044** 0.128** 0.236** 0.702* 1.356* 2.161*

QPS, business 
y
le (st)

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177

QR-VAR(1,1)+ipt 0.183 0.188 0.193 0.190 0.177 0.173

QR-VAR(1,1)+emp 0.183 0.186 0.191 0.191 0.176 0.168

Notes: The entries are the MSFE and QPS statisti
s in di�erent models. The results of the

QR-VAR(1,1) model given in the �rst row for ea
h variable are already reported in Table 3. In the

table, ipt (industrial produ
tion) and emp (employment) denote the third variable in
luded in yt (in

addition to the term spread and the �rst-di�eren
e of the short-term interest rate) while RW denotes

random walk fore
asts. In the table. ∗, ∗∗, ∗ ∗ ∗ denote the 10%, 5% and 1% level of signi�
an
e in the

Diebold-Mariano (1995) and West (1996) test of equal predi
tive a

ura
y between the QR-VAR(1,1)

and the model given in the �rst 
olumn (if denoted signi�
ant, the QR-VAR outperforms statisti
ally

the latter model).

Table 6: Out-of-sample fore
asting performan
e of the MSVAR and VTVAR models

(relative MSFEs).

Fore
ast horizon

1 2 3 6 9 12

Term spread (TSt)

MSVAR(1) 0.996 0.987 0.983* 0.841** 0.685** 0.567**

VTVAR(2) 0.975 0.806*** 0.749*** 0.764** 0.675** 0.634**

Short rate (level, it)

MSVAR(1) 0.929 0.875* 0.833* 0.789* 0.731* 0.701*

VTVAR(2) 0.669** 0.502** 0.453** 0.477** 0.413** 0.390**

Notes: The entries are the relative MSFEs obtained as dividing the MSFE of the QR-VAR(1,1) model

by the MSFE of the MSVAR(1) and VTVAR(2) model, respe
tively. In the table. ∗, ∗∗, ∗ ∗ ∗ denote

the 10%, 5% and 1% level of signi�
an
e in the Diebold-Mariano (1995) and West (1996) test of equal

predi
tive a

ura
y between the QR-VAR(1,1) and the model given in the �rst 
olumn (if denoted

signi�
ant, the QR-VAR outperforms statisti
ally the latter model). Fore
asts in the VTVAR model

are obtained following the bootstrap-based fore
asting method introdu
ed more detail in Teräsvirta et

al. (2010, pp. 347�349).
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Table 7: MSFE and QPS statisti
s of the QR-VAR(1,1) model where the Data Gener-

ating Pro
ess (DGP) is the QR-VAR(1,1) given in Tables 1 and 2.

MSFE, y1t MSFE, y2t QPS, st
N 1 000 10 000 50 000 1 000 10 000 50 000 1 000 10 000 50 000

Fore
ast horizon T = 200
1 0.158 0.158 0.158 0.261 0.261 0.261 0.207 0.206 0.206

2 0.400 0.399 0.399 0.277 0.276 0.276 0.200 0.199 0.199

3 0.671 0.668 0.668 0.265 0.263 0.263 0.218 0.217 0.217

6 1.234 1.228 1.228 0.270 0.269 0.269 0.240 0.238 0.238

9 1.535 1.530 1.529 0.278 0.276 0.276 0.257 0.257 0.257

12 1.770 1.765 1.764 0.293 0.292 0.292 0.267 0.265 0.265

T = 500
1 0.171 0.170 0.170 0.253 0.251 0.251 0.204 0.203 0.203

2 0.444 0.442 0.442 0.277 0.276 0.276 0.205 0.204 0.204

3 0.739 0.735 0.735 0.263 0.262 0.262 0.210 0.209 0.208

6 1.455 1.447 1.447 0.264 0.262 0.262 0.219 0.217 0.217

9 2.070 2.061 2.060 0.265 0.264 0.264 0.225 0.224 0.224

12 2.723 2.710 2.709 0.283 0.282 0.282 0.236 0.235 0.235

Notes: The entries are based on 5 000 realizations. The sample size is 200 or 500 observations (T=200

or T=500) and the number of simulation repli
ations in fore
ast 
omputation is denoted by N where

N=1 000, 10 000 or 50 000. In simulations from the DGP, following the business 
y
le periods

determined by the NBER, an additional 
ensoring rule is imposed guaranteeing that the sequen
es of

zeros and ones of the values of st are at least six-period long.

Table 8: The relative MSFE and QPS statisti
s of the QR-VAR(1,1) relative to the

VAR(1) model and the univariate autoregressive probit model (6).

Fore
ast horizon

T 1 2 3 6 9 12

T = 200 MSFE, y1t 0.971 0.930 0.884 0.773 0.704 0.641

MSFE, y2t 0.986 0.987 0.983 0.994 1.020 1.058

QPS, st 1.000 0.939 0.940 0.906 0.941 0.915

T = 500 MSFE, y1t 0.964 0.947 0.931 0.899 0.850 0.832

MSFE, y2t 0.997 0.985 0.978 1.006 0.997 0.998

QPS, st 1.000 1.007 1.000 0.961 0.938 0.950

Notes: The number of simulated realizations is 5 000 and the number of repli
ations in the fore
ast


omputation of the QR-VAR model is N=10 000. See also the notes to Table 7.
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Figure 1: In the left panel, the U.S. short-term interest rate (it) and its �rst di�eren
e

(∆it, dashed line) are depi
ted with the U.S. re
ession (st = 1, shaded areas) and

expansion periods. The right panel shows the term spread (TSt).
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Figure 2: Estimated (in-sample) probability of re
ession (st = 1) of the model presented

in Table 1.
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