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1 Introdution

Nonlinear eonometri modeling has heavily been based on regime swithing meh-

anisms allowing for parameter oe�ients to swith between di�erent states of the

world (e.g., business yle reessions and expansions, bear and bull stok markets,

monetary poliy regimes and also some rare events suh as �nanial rises). The

previous literature on multivariate models has adopted several di�erent regime

swithing spei�ations inluding Sola and Dri�ll (1994), Krolzig (1997), Ang and

Bekaert (2002a,b), Guidolin and Timmermann (2006), Dueker et al. (2011) and

Henkel et al. (2011), among others. In this literature, the regime swithing meha-

nism is typially spei�ed as a latent (unobserved) proess with underlying regime

probabilities whih may be funtions of the lagged endogenous or exogenous vari-

ables determining the eonomi fores driving the regime swithes. However, in

line with nonlinear models in general, the out-of-sample foreasting performanes

of these models have often been found disappointing (see, e.g., the disussion in

Dao and Sathell (1999) and Clements et al. (2004)).

In this study, we onsider a regime swithing vetor autoregressive (VAR)

model, where the regime is determined by an observed qualitative response (QR)

variable predited simultaneously with the variables subjet to regime swithes

and, hene, permitting the method implementable in real time foreasting. The

joint model is, for simpliity, referred to the QR-VAR model. The use of the

qualitative response model yields time-varying regime probabilities between the

observed regimes making the QR-VAR model muh easier to work with and, in

partiular, onstrut foreasts than the multivariate regime swithing models with

latent regimes. Following the large majority of the previous studies, we restrit

ourselves to the two regime ase, that is the qualitative variable is binary through-

out this paper. In our empirial appliation, the binary variable is the state of the

U.S. business yle measured in terms of the o�ial NBER business yle turning

points. A multinomial ase (i.e. multiple regimes) is a straightforward extension

to our model, provided that the observed qualitative time series determining the
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regimes is available.

The dependene on the observed qualitative dependent variable distinguishes

the QR-VAR model from the ommonly used Markov swithing VAR and related

models, whih, of ourse, have their own advantages. They are more general in a

sense that the latent regimes are extrated based on statistial grounds while in

our approah the dynamis are driven by the observed qualitative variable. How-

ever, as long as the objetive is to link the latent regime dynamis diretly to

some well-established regimes suh as the NBER business yle periods, whih

has typially been the ase in various appliations of Markov swithing models,

the QR-VAR model o�ers a muh simpler way to estimate the parameters and

onstrut multiperiod foreasts. This is due to the fat that the resulting on-

ditional probabilities of the regimes an be onstruted with a binary response

model simplifying parameter estimation arried out with the method of maximum

likelihood. This approah irumvents the di�ulties reported in the parameter

estimation of various previous models (see, e.g., Gray, 1996; Simpson et al., 2001;

Ang and Bekaert, 2002a,b) where estimation requires the �ltration of the latent

regimes (see also the disussion in Filardo and Gordon, 1998).

In general, if the values of a qualitative dependent variable, suh as the state

of the business yle, are preditable, then so are the regime swithes in the QR-

VAR model. This should lead to superior foreast performane ompared with the

single-regime VAR model (provided there are regime swithes in the VAR proess).

The QR-VAR model is designed to produe dynami iterative foreasts onstruted

sequentially for the binary (qualitative) and ontinuous variables. We propose a

simulation-based method to obtain multiperiod foreasts as losed-form foreast-

ing formulae are generally not available. The examined Monte Carlo foreasting

experiments show that the proposed method is not, however, omputationally bur-

densome and it leads foreasting gains over the single-regime VAR model. An im-

portant advantage of our model is that it failitates multistep foreasting while in

the previous univariate and multivariate regime swithing models, with dependene

on latent regimes and time-varying transition probabilities, only one-period-ahead
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foreasts have been onsidered so far (see, e.g., Filardo, 1994; Perez-Quiros and

Timmermann, 2000; Simpson et al., 2001; Ang and Bekaert, 2002a).

In addition to the regime swithing perspetive emphasized above, the QR-VAR

model adds to very sant literature on models where ontinuous real-valued and

qualitative dependent time series are modeled jointly (see the related models with a

similar struture in Hamilton and Jordà (2002) and Nyberg (2012)). Dueker (2005)

and Fornari and Lemke (2010) are two rare exeptions where the VAR model is

augmented with a latent variable determining the values of the onsidered binary

time series. Our model di�ers from their models in various ways: In partiular,

Dueker (2005) and Fornari and Lemke (2010) do not allow a regime swithes in

their VAR models, and the latter also employs a ommonly used stati probit

model for the binary variable. In line with the univariate models of Rydberg and

Shephard (2003), Benjamin et al. (2003) and Kauppi and Saikkonen (2008), we

use a dynami binary response model as a part of the model leading to the model

spei�ation where estimation and foreasting is easier than in the dynami model

of Dueker (2005).

We apply the QR-VAR model to foreast the U.S. interest rates and the state

of the business yle in real time. As an example, Ang and Piazzesi (2003), Bansal

et al. (2004) and Huse (2011) have shown that maroeonomi fators measuring

real eonomi ativity an help to predit future movements in the yield urve.

In ontrast, Estrella and Mishkin (1998) and Rudebush and Williams (2009),

among others, have found that the term spread between the long-term and short-

term interest rates is the main leading indiator of the future state of the business

yle. Interestingly, almost all previous studies have onentrated on these one-way

linkages while, e.g., Estrella (2005) and Diebold et al. (2006) are supportive for a

bidiretional relationship, without allowing for regime swithes in the interest rates.

In this study, instead of using the ex post observations of the U.S. business yle

regimes, the regimes are predited simultaneously with the interest rate variables.

To the best of our knowledge, this type of regime swithing foreasting approah

has not been onsidered before in the literature.
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Our empirial results provide several interesting insights. In partiular, strong

evidene of business yle-spei� e�ets in the bivariate system of the U.S. short-

term interest rate and the term spread is obtained. The dynamis of the short rate

are losely dependent on the NBER expansion and reession periods of the U.S.

eonomy whereas the lags of interest rate variables predit the state of the business

yle. Furthermore, and most importantly, due to the obtained preditability of

business yle turning points in real time, the out-of-sample foreasts of the QR-

VAR model outperform those of the single-regime VAR model for the term spread

and, espeially, the short-term interest rate. That is also the ase when omparing

the foreasting performane to the existing regime swithing models, inluding the

Markov swithing VAR model.

The rest of the paper is organized as follows. Setion 2 introdues our regime

swithing VAR model. Parameter estimation and omputation of foreasts, inlud-

ing the proposed simulation-based foreasting method, are onsidered in Setion 3.

The foreasting results ontaining analyses on the bidiretional preditive linkages

and feedbak mehanisms between the U.S. interest rates and business yle are

reported in Setion 4. Finally, Setion 5 onludes.

2 Model

Consider the observable time series st and yt, t = 1, 2, ..., T , where st is a qualitative

response variable and yt = [y1t, . . . , yKt]
′

is a K × 1 random vetor of real-valued

ontinuous variables. Thus, for simpliity, we refer our model as the Qualitative

Response Vetor AutoRegressive (QR-VAR) model. Throughout this paper, we

onentrate on the ase where st is binary taking values 0 or 1 (i.e. two regimes), but

a multinomial (multiple regime) dependent variable is a straightforward extension

to this ase.

For notational onveniene, the variables are olleted to the vetor

zt = [st y
′

t]
′

. (1)
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The novel idea is to onstrut a regime swithing VAR model where the regimes

are determined by the observable binary variable st. The regime swithing VAR

model an be written as

yt = st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1− st

)(
w0 +

p0∑

i=1

Ai,0yt−i + e0t

)
, (2)

where depending on whether st takes the value 0 or 1, yt follows a di�erent VAR

model. In other words, if st = 1, we are in the regime 1 and otherwise (st = 0)

in the regime 0. The onstant terms wj , oe�ient matries Ai,j , i = 1, . . . , pj,

and the error terms ejt, j = 0, 1, are all regime-spei� allowing for �exible and

di�erent dynamis in two regimes. Model (2) enompasses the onventional VAR(p)

model when p0 = p1, e0t = e1t and all the orresponding parameters are the same

irrespetive of the regime st.

In model (2), the error terms e0t and e1t are assumed to follow multivariate

normal distributions with zero means and possibly di�erent ovariane matries

Σ0 and Σ1 depending on the regime. Thus, we write

ejt = Σ
1/2
j et, j = 0, 1, et ∼ NID(0, IK), (3)

and assume that et and Ωt−1 are independent with Ωt−1 = {zt−1,zt−2, . . . ,z1}

denoting the information set ontaining the lags of yt and st (see (1)) at time t−1.

Furthermore, et and st are assumed to be independent onditional on Ωt−1.

Throughout this paper, we assume that in (2) the ontemporaneous value of st

has an e�et on yt, but not vie versa (f. the model of Nyberg, 2012). Although

the main interest is in the regime swithing VAR model (2), a model for the

binary variable st is also needed to foreast the future values of yt (see Setion 3).

Conditional on the information set Ωt−1, st follows a Bernoulli distribution

st|Ωt−1 ∼ B(pt). (4)

In this expression, pt is the onditional expetation of st (denoted by Et−1(st))
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or equivalently the onditional probability of the outome st = 1 (denoted by

Pt−1(st = 1))

pt = Et−1(st) = Pt−1(st = 1) = Φ(πt), (5)

where Φ(·) is a standard normal umulative distribution funtion leading to the

probit model and πt is a linear funtion of variables inluded in the information set

Ωt−1. An alternative to the probit model, a logit model, is obtained by replaing

Φ(·) in (5) with the logisti funtion.

To omplete the model for the binary variable st, we speify

πt = ν + aπt−1 + x
′

t−1b, (6)

where |a| < 1 and ν is a onstant term. This model was suggested by Kauppi and

Saikkonen (2008) in the ontext of univariate binary time series models (see also

Rydberg and Shephard, 2003; Benjamin et al., 2003). For simpliity, we restrit

ourselves to the ase where the preditors inluded in the vetor xt−1 are the lagged

values of yt. For example, if K = 2, then we set xt−1 = [y1,t−k1 y2,t−k2 ]
′

with k1

and k2 ≥ 1. By reursive substitutions, and assuming |a| < 1, πt will depend on

the whole lagged history of the preditive variables:

πt =

∞∑

i=1

ai−1(ν + x
′

t−ib). (7)

The univariate probit model is obtained when the preditors in xt−1 are treated

as exogenous preditive variables. In the previous business yle reession foreast-

ing literature, dynami univariate models, suh as model (6) (see, e.g., Kauppi and

Saikkonen, 2008, Nyberg, 2010), have been found to outperform the usual stati

model obtained when a = 0 in (6) (see, e.g., Estrella and Mishkin, 1998; Sensier

et al., 2004; Wright, 2006).

The expressions (2), (3), (5) and (6) de�ne together the QR-VAR(p0, p1) model,

where p0 and p1 denote the lag lengths of yt in the regimes of model (2). Equation

(2) shows the regime swithing mehanism of the model but in foreast ompu-
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tation in Setion 3, we need the onditional expetation of yt given Ωt−1. This

results in

Et−1(yt) = Et−1

[
st

(
w1 +

p1∑

i=1

Ai,1yt−i + e1t

)
+

(
1− st

)(
w0 +

p0∑

i=1

Ai,0yt−i + e0t

)]

= ptµ1t +
(
1− pt

)
µ0t, (8)

where µjt = wj +
∑pj

i=1Ai,jyt−i, j = 0, 1, and the law of iterated expetations

and the assumptions made in (3) imply

Et−1(stejt) = Et−1[E(stejt|st,Ωt−1)]

= Et−1[stE(ejt|st,Ωt−1)] = 0, j = 0, 1. (9)

Thus, the onditional expetation of yt, and one-period-ahead foreast, is a weighted

average of the onditional expetations of the VAR regimes where the weight

pt = Et−1(st) is given in (5). All in all, in ontrast to expressions (8) and (9), a

simulation-based method is generally needed to obtain multiperiod foreasts (see

Setion 3.2).

3 Estimation and foreasting

3.1 ML estimation

The parameters of the QR-VAR model desribed in Setion 2 an onveniently

be estimated by the method of maximum likelihood (ML). The di�ulties in the

estimation of many previously onsidered (univariate and multivariate) regime

swithing models are typially related to the determination of the (unobserved)

regimes and their onditional probabilities (see, e.g., Gray, 1996; Simpson et al.,

2001; Ang and Bekaert, 2002a,b). In our approah, parameter estimation greatly

simpli�es beause an observable binary time series determines the regime.

Conditional on the information set Ωt−1, the density funtion of zt (see (1)) is
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haraterized by

gt−1(zt;θ) = f(yt|st,Ωt−1;θ)P (st|Ωt−1;θ), (10)

where f(yt|st,Ωt−1;θ) is the onditional density funtion of the random vetor yt

onditional on the value of the binary variable st and P (st|Ωt−1;θ) is the ondi-

tional probability mass funtion of st. The vetor of parameters θ ontains all the

parameters of the model. Assume that θ = [θ
′

1 θ
′

2]
′

, where θ1 and θ2 ontain

the parameters related to the regime swithing VAR model (2) and to the model

for the binary variable, respetively. The density funtion (10) an therefore be

written as

gt−1(zt;θ) = f(yt|st,Ωt−1;θ1)P (st|Ωt−1;θ2). (11)

Under the normality assumption of ejt, j = 0, 1 (see (3)), the onditional density

funtion of model (2) is

f(yt|st,Ωt−1;θ1) = (2π)−K/2 det(Σst)
−1/2 exp

(
−

1

2
e
′

st,tΣ
−1
st est,t

)
, st = 0, 1.

(12)

In the ase of binary variable st, the onditional probability mass funtion is

P (st|Ωt−1;θ2) =
(
Φ(πt)

)st(
1− Φ(πt)

)1−st
, st = 0, 1, (13)

where πt is spei�ed as in (6).

Assume that we have observed the time series yt and st, t = 1, 2, ..., T , with the

initial values treated as �xed onstants. Based on the onditional density funtion

(11) of zt, the log-likelihood funtion over the whole sample, given the initial

values, is

lT (θ) =

T∑

t=1

lt(θ) =

T∑

t=1

log f(yt|st,Ωt−1;θ1) +

T∑

t=1

logP (st|Ωt−1;θ2), (14)

where the two fators of gt−1(zt;θ) in (11) are de�ned in (12) and (13). Thus,

θ1 and θ2 an be estimated separately and the maximum likelihood estimate θ̂ is
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obtained by maximizing (14) by numerial methods (see the models with a similar

struture as (14), e.g., in Hamilton and Jordà (2002) and Nyberg (2012)).

3.2 Computing multiperiod foreasts

After an adequate desription of the joint dynamis of the variables st and yt has

been obtained, the QR-VAR model an be used to foreast the future values of the

time series. An advantage of the QR-VAR model over the foreast horizon-spei�

binary response (see, e.g., Estrella and Mishkin, 1998; Kauppi and Saikkonen, 2008;

Nyberg, 2010) and VARmodels is that it leads to the dynami iterative multiperiod

foreasting approah (f. the onventional VAR and the models of Dueker (2005)

and Fornari and Lemke (2010)), without a need to speify a new model for every

foreast horizon h (i.e. the diret multiperiod foreasting approah).

As we onentrate on iterative multiperiod foreasting approah throughout

this study, foreasts for the ontinuous dependent variables yt are also needed to

onstrut multiperiod foreasts for the binary variable st. Our model provides a

simple and omputationally feasible approah to obtain multiperiod foreasts of

the variables inluded in yt, whih is not the ase for many regime swithing models

onsidered in the previous researh with a dependene on the latent regimes and

time-varying transition probabilities (f. Setion 3.1). In fat, in this multivariate

ase, to the best of our knowledge, multiperiod foreasting has not been onsidered

when allowing for time-varying transition probabilities between the regimes, as in

this study.

Based on the information set at time T , the optimal h-period-ahead foreast

of zT+h (in the mean-square sense) is the onditional expetation

ET (zT+h) = E(zT+h|ΩT ) =
[
ET (sT+h) ET (yT+h)

]′

, (15)

where the information set ΩT inludes the history of the time series zt up to time

T . Due to the reursive struture of the QR-VAR model, foreasts for the binary

variable st are onstruted �rst.
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The one-period foreast of sT+1 (f. (5)) is given by

pT+1 = ET (sT+1) = PT (sT+1 = 1) = Φ(πT+1). (16)

In the ase of model (6), the linear funtion πT+1 = ν+aπT +y
′

Tb depends only on

the information available at time T and, thus, the foreast (16) an be onstruted

straightforwardly. Following (8), the one-period foreast of yT+1 is the onditional

expetation

ET (yT+1) = pT+1µ1,T+1 +
(
1− pT+1

)
µ0,T+1, (17)

where µj,T+1 = wj +
∑pj

i=1Ai,jyT−i+1, j = 0, 1, and pT+1 is the one-period-ahead

foreast of sT+1 given in (16).

When the foreast horizon is longer than one period (h > 1), foreast ompu-

tation beomes muh more ompliated. As an example, let us onsider two-period

foreasts (h = 2). As in (16), the foreast of sT+2 is the onditional expetation

pT+2 = ET (sT+2) = PT (sT+2 = 1) = ET

(
Φ(πT+2)

)
, (18)

where following (7), we an write

πT+2 = ν + aπT+1 + y
′

T+1b

= ν + a2πT + a
(
ν + y

′

Tb
)
+ y

′

T+1b.

Thus, (18) depends nonlinearly, via the funtion Φ(·), on the value yT+1 whih

is unknown at time T . In partiular, the onditional expetation (18) is not, in

general, equal to the onditional probability of outome sT+2 = 1 evaluated at the

expeted value of yT+1 given in (17). Deomposing yT+1 into an expeted om-

ponent ET (yT+1) and the innovation yT+1 −ET (yT+1)
def
= e+j,T+1, the onditional

expetation (18) an be expressed as

pT+2 =

∫
∞

−∞

Φ
(
ν + a2πT + a(ν + y

′

Tb) + (ET (yT+1) + e+j,T+1)
′

b
)
ϕ(e+j,T+1) de

+
j,T+1,
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where ϕ(e+j,T+1) is the density funtion of e+j,T+1. As this density funtion is in-

tratable (espeially at longer foreast horizons) and the integral above does not

have a losed form solution, we annot onstrut the foreast for sT+2 using an

expliit formula (f. the one-period foreast (16)).

The two-period foreast of yT+2 an be expressed as

ET (yT+2) = ET

[
sT+2

(
w1 +A1,1yT+1 + . . . +Ap1,1yT−p1+2 + e1,T+2

)
+

(1− sT+2)
(
w0 +A1,0yT+1 + . . .+Ap0,0yT−p0+2 + e0,T+2

)]
.(19)

In omparison to (17), as ET (sT+2yT+1) 6= ET (sT+2)ET (yT+1), we annot take

the onditional expetations of sT+2 and the VAR regimes separately. The situa-

tion is similar when the foreast horizon h lengthens. Thus, the expressions (18)

and (19) demonstrate that there are no losed-form foreasting formulae (f. the

onventional VAR model) to onstrut multiperiod foreasts for yT+h, h ≥ 2, and

we have to resort to simulation-based foreasting tehniques. The Monte Carlo

foreasting proedure desribed below is, however, quite easy to implement and

omputationally feasible. It has some similarities to the foreasting methods em-

ployed for other (mainly univariate) nonlinear models (see, e.g., Teräsvirta et al.,

2010, Chapter 14).

The essential idea is to simulate reursively a large number of independent re-

alizations of the variables sT+1,yT+1, sT+2,yT+2, . . . Foreasts of sT+h and yT+h

for a given foreast horizon h are then obtained as averages of the independently

simulated realizations s
(i)
T+h and y

(i)
T+h, i = 1, . . . , N . The foreast horizon h varies

between 1 and h̄ with h̄ the maximum foreast horizon onsidered. Furthermore, for

h ≥ 2, let z
(i)
T+h−1 (f. (1)) signify the vetor ontaining the ith simulated realiza-

tions s
(i)
T+1,y

(i)
T+1, . . . , s

(i)
T+h−1,y

(i)
T+h−1 up to the foreast horizon h−1. Throughout

it is assumed that the unknown values of the parameters, whih in pratie are

replaed by their estimates, are known.

The foreast reursion for foreast horizons h = 1, 2, . . . , h̄ proeeds as follows:

Step 1: Initialize π
(i)
T ≡ πT and y

(i)
T−j ≡ yT−j , j ≥ 0. Start the reursion with
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one-period foreast horizon i.e. set h = 1 in Steps 2�5.

Step 2: Compute

(
π
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1

)
= ν + aπ

(i)
T+h−1 + x

′ (i)
T+h−1b, where, e.g.,

if K = 2 then x
(i)
T+h−1 =

[
y
(i)
1,T+h−k1

y
(i)
2,T+h−k2

]′

for some k1 and k2 ≥ 1.

Step 3: Draw

(
s
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1

)
∼ B(Φ(π

(i)
T+h)), where B(·) denotes the

Bernoulli distribution and π
(i)
T+h is given in Step 2 (see (4)).

Step 4: Draw (e
(i)
j,T+h|s

(i)
T+h = j) ∼ N(0,Σj), j = 0, 1.

Step 5: Compute

(
y
(i)
T+h

∣∣∣ΩT ,z
(i)
T+h−1, s

(i)
t+h = j

)
= s

(i)
T+h

(
w1+A1,1y

(i)
T+h−1+. . .

+Ap1,1y
(i)
T+h−p1

)
+ (1− s

(i)
T+h)

(
w0 +A1,0y

(i)
T+h−1 + . . .+Ap0,0y

(i)
T+h−p0

)
+ e

(i)
j,T+h.

Step 6: Go to Step 2 and repeat Steps 3�5 starting from h = 2 up to h = h̄.

Step 7: Repeat Steps 2�6 independently N times (i = 1, . . . , N).

The idea in the above reursion is �rst to use the horizon h = 1 to obtain real-

izations π
(1)
T+1, s

(1)
T+1,y

(1)
T+1. Next, the reursion is repeated for h = 2, onditional

on z
(i)
T+h−1, to obtain π

(1)
T+2, s

(1)
T+2,y

(1)
T+2. This is ontinued up to h = h̄. Finally,

foreasts for sT+h and yT+h, ET (sT+h) and ET (yT+h), h = 1, . . . , h̄, are obtained

by omputing the averages (f. equation (15))

p̂T+h =
1

N

N∑

i=1

s
(i)
T+h, (20)

and

ŷT+h =
1

N

N∑

i=1

y
(i)
T+h, (21)

where N is large. Note that the one-period foreasts (h = 1) obtained with (20)

and (21) will be asymptotially equivalent to (16) and (17) but the above foreast

reursion should aommodate also this horizon to start the reursion. In addition

to point foreasts, the expressions (20) and (21) an straightforwardly be used to

onstrut possibly asymmetri interval and density foreasts.

The auray of the proposed foreasting method depends on the hoie of the

number of repliations N . For a good approximation, N should be large enough.

On the other hand, the larger the number of repliations the more omputationally

burdensome the method is although simulation in Steps 3�4 is straightforward and

not time onsuming. The simulation results reported more detail in the Appendix
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suggest that the proposed method is aurate even for relative small values of N

(suh as N=10 000).

4 Appliation: Foreasting U.S. interest rates

and business yle

4.1 Bakground and data set

In our empirial appliation, we examine the bidiretional preditive linkages be-

tween the U.S. interest rates and the state of the business yle measured in terms

of reession and expansion periods. We are, in partiular, interested in whether

superior out-of-sample interest rate foreasts an be obtained with the proposed

QR-VAR model over the single-regime VAR and alternative nonlinear VAR mod-

els, inluding the Markov swithing and vetor threshold VAR models.

We onsider a monthly U.S. data set from January 1972 to Deember 2010.

The starting point of the sample (i.e. the beginning of the 1970s) is onsistent

with many previous studies (see, e.g., Ang and Bekaert, 2002a,b; Huse, 2011).

The state of the eonomy st is determined by the National Bureau of Eonomi

Researh (NBER) business yle turning points. That is in the binary time series

st the value st = 1 indiates a reession and st = 0 an expansion. The term spread

(TSt) is the di�erene between the long-term (10-year government bond) and the

short-term it (three-month Treasury Bill rate) interest rates. The soure of all

data is the Federal Reserve Bank of St. Louis databank (FRED). Following the

expetations hypothesis of the term struture of interest rates, the dynamis of

the interest rates an be onsidered by using a bivariate model of yt ontaining

the term spread (TSt) and the �rst-di�erene of the short rate (∆it) (see, e.g,

Campbell and Shiller, 1991; Sola and Dri�ll, 1994). We are hene, for example,

interested in knowing whether the term spread predits the hanges in the short

rate (see, e.g., Ang and Bekeart, 2002a; Bansal et al., 2004) when the business

yle regime is taken into aount.
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The main interest throughout this paper is in out-of-sample foreasts for the

short-term interest rate. The short-term interest rate is of partiular interest as it

is a fundamental building blok of many maroeonomi and �nanial models (see,

e.g., the term struture (yield urve) models of Ang and Piazzesi (2003), Bansal

et al. (2004), Diebold et al. (2006) and Huse (2011) inorporating maroeonomi

variables or onstruted fators).

1

Here we propose an alternative to the examined

eonometri regime swithing models for the short rate where the obtained regime

probabilities for the latent regimes are often interpreted to desribe regimes in

real eonomi ativity and ompared with the NBER business yle periods (see

Filardo, 1994; Ang and Bekaert, 2002a).

Based on the struture of the QR-VAR model, the lags of yt (i.e., the lags of the

term spread and short rate) are used to predit the state of the business yle st.

Muh of the previous researh lends support, espeially, to the term spread being

a useful leading indiator of future real ativity (see, e.g., Estrella and Mishkin,

1998; Estrella, 2005; Rudebush and Williams, 2009). Ang et al. (2006) and Wright

(2006) �nd that the short rate has also some additional preditive power.

Figure 1 lends support to the regime swithing approah as the U.S. interest

rate dynamis appears to be losely dependent on the state of the eonomy. The

short rate has typially been inreasing (dereasing) during the expansion (rees-

sion) periods while during the reessions (expansions) the term spread (yield urve)

is generally upward (downward) sloping. All of the reession periods are preeded

by a low, or even negative, value of the term spread, explaining why it has been

found a useful leading indiator of the reession periods. Reession periods have

also been haraterized by a high short rate ompared with its reent past just

before the beginning of reession.

1

In this study, we onentrate on the out-of-sample foreasting power of (nonlinear) eonometri

models. Yield urve (term struture) models provide an alternative lass of models. Some attention has

been paid on their out-of-sample foreasting ability, and so far the reported performanes have often

been rather disappointing (see Du�ee (2002) and Diebold and Li (2006), and the referenes therein)

ompared with, e.g., the random walk examined in Setion 4.4.
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4.2 Estimation and model seletion results

In this setion, we brie�y disuss the estimation results of the QR-VAR model and

examine the possible two-way linkage between the variables before proeeding to

out-of-sample foreasting in Setions 4.3�4.4. A subsample period up to 1992:12

is used to selet the models whih are subsequently employed in out-of-sample

foreasting for the period 1993:1�2010:12. Due to the reursive struture of the

QR-VAR model, a model for the U.S. business yle is spei�ed �rst and treated

independently of the regime swithing VAR omponent (2).

Model seletion results (available upon request) suggest that the third lag of the

term spread (TSt−3) and the �rst lag of the di�erened short rate (∆it−1) are the

best preditors of the state of the business yle. The detailed estimation results of

model (6) (based on the entire sample period), where xt−1 = [TSt−3 ∆it−1]
′

, are

presented in Table 1. Due to the negative and statistially signi�ant oe�ients,

a low value of the term spread and dereasing short rate inrease the probability of

reession (st = 1). The values of the statistial goodness-of-�t measures, suh as the

pseudo-R2
of Estrella (1998) and the area under the ROC urve (AUC) (see, e.g.,

Berge and Jordà (2011) and Lahiri and Yang (2013), and the referenes therein),

and the probability of reession depited in Figure 2 show that the seleted model

predits the state of the U.S. business yle aurately. The probability of reession

is high during the reessions and lose to zero in the expansion periods exept for

a few short exeptions. Aording to the test of Pesaran and Timmermann (2009)

allowing for serial orrelation in st, the model is able to predit the state of the

business yle at the 5% signi�ane level.

Overall, the model mathes the U.S. business yle regimes aurately whih

has not always been the ase in the previous regime swithing models when aiming

to obtain a orrespondene with the NBER business yle periods.

2

In fat, the

obtained transition probabilities for the unobserved regimes have not been found

2

Of ourse the regimes an also be ditated by some other fators than real ativity suh as the

stane of monetary poliy (see, e.g., Sims and Zha, 2006; Bikbov and Chernov, 2013), but in this study

we link the regimes to the NBER business yles.
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to neessarily desribe business yle reession and expansion periods. Instead,

Filardo (1994) and Henkel et al. (2011), among others, interpret the transition

probabilities to desribe low and high growth rate regimes in the real GDP whih

desribe more general ontration and expansion periods in real ativity than busi-

ness yles whih are due to the struture of the model expliitly used in our

analysis.

Next we turn our interest to the estimation results of the regime swithing

VAR model (2). So far, we have assumed that the lag lengths p0 and p1 in the

QR-VAR(p0, p1) model are known. In the previous researh, Ang and Bekaert

(2002a,b) and Henkel et al. (2011), among others, have restrited themselves to

the parsimonious �rst-order regime swithing VAR models (p0 = p1 = 1). This

is also a reasonable benhmark in this study. Aording to our estimation sample

period 1972:1�1992:12, the Bayesian information riterion favors the QR-VAR(1,1)

and linear VAR(3) models while the Akaike riterion suggests the maximum sixth-

order models. A sequential testing proedure, where the Likelihood ratio (LR) test

is applied sequentially when the order of the model inreases until the �rst non-

rejetion, selets the QR-VAR(4,3) and VAR(3) models. Irrespetive of the seleted

QR-VAR or VAR models, there is some evidene of remaining autoorrelation in

the equation of the short rate and onditional heteroskedastiity in both variables,

but among the examined spei�ations, the QR-VAR(4,3) model seems the best

seletion also in terms of the diagnosti heks.

In Table 2, we illustrate, for simpliity, the estimation results of the parsimo-

nious QR-VAR(1,1) and VAR(1) models. Above the model seletion was arried

out using the sample period 1972:1�1992:12, but the estimation results in Table 2

are, for illustrative purposes, presented for the full sample period 1972:1�2010:12

to inlude more reession periods to the sample. The results of the QR-VAR(4,3)

and VAR(3) models are available upon request. In the QR-VAR(1,1) model, the

parameter estimates, espeially the onstant terms, are di�erent aross the busi-

ness yle regimes and from the ones of the VAR(1) model. In line with Figure

1, the onstant term for the �rst-di�erene of the short rate is negative in the

16



reession regime. The term spread is a useful preditor of the short rate mainly

in the reession regime. Interestingly, the persistene in the term spread appears

muh higher in the expansion regime. Furthermore, the higher standard errors of

estimated parameter oe�ients in the reession regime are most likely resulting

from the small number of observations in the reession regime.

Overall, irrespetive of the lag length seletion (results not reported), the QR-

VAR model outperforms the VAR model as we an strongly rejet the hypothesis

of equal parameter oe�ients in the expansion and reession regimes at all tra-

ditional signi�ane levels. Thus, there appears to exist a bidiretional in-sample

preditive linkage between the variables: The lags of the term spread and short rate

predit the state of the business yle (see Table 1). On the other hand, the VAR

dynamis are strongly dependent on the business yle regime (see Table 2). The

estimated ovariane matries Σ0 and Σ1 are also di�erent in two business yle

regimes. In partiular, the diagonal elements are learly higher in the reession

regime implying higher volatility.

4.3 Out-of-sample foreasting

We ompare the (real-time) out-of-sample foreasts obtained with the proposed

QR-VAR model and various alternative linear and regime swithing VAR models

for the period 1993:1�2010:12. The main interest is in interest rate foreasts (i.e. the

variables inluded in the VAR). We onentrate �rst on the omparison between

the QR-VAR and linear VAR models to examine the e�et of allowing for business

yle-spei� regimes in the VAR model. Later on in Setion 4.4, we will also

ompare the foreasting performane with, e.g., the Markov swithing model.

Foreasts are omputed using an expanding window approah where the esti-

mation sample period inreases in eah time when the parameters are re-estimated

until the end of the sample. Based on the Monte Carlo foreasting experiments pre-

sented in the Appendix, the number of simulated realizations N in the simulation-

based foreasting method is �xed to 10 000.
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Using the NBER reession dates naturally raises onerns on the real time

implementability of the QR-VAR model in foreasting as the business yle turning

points determining the values of st are not available in real time. This is, however,

taken into aount in various ways. First of all, as a part of the model we foreast

the values of st using only the information available in real time (see Steps 2 and 3

in Setion 3.2). Seond, we do not employ the lags of st in model (6) irumventing

ompliations related to their use as preditors (f. the models and disussion

in Kauppi and Saikkonen (2008) and Nyberg (2010)). Third, parameters are re-

estimated only when a omplete business yle from trough month to the next

trough has been ompleted (i.e. the business yle trough point is identi�ed in

real time) to failitate a fair omparison between the models. Therefore, the out-

of-sample foreasting period starts after the announement of the business yle

trough for Marh 1991 made by the NBER in Deember 1992.

In Table 3, following the previous literature on the regime swithing VAR mod-

els, we report the results of the �rst-order QR-VAR(1,1) model along with the

QR-VAR(4,3) model. The relative MSFE and QPS statistis are obtained relative

to the single-regime VAR(1) and VAR(4) models and the univariate autoregres-

sive probit (6) model. The VAR(4) model is used as a single-regime ounterpart

of the QR-VAR(4,3) model instead of the VAR(3) model (suggested by the BIC

and sequential model seletion proedure) as the VAR(3) (results available upon

request) leads to inferior out-of-sample foreast performane ompared with the

VAR(4). The foreast evaluation for the short rate is exeuted for its level whih is

of interest in many appliations and an easily be omputed from the foreasts of

the �rst-di�erene of it. Under the hypothesis of no business yle-spei� regimes

the QR-VAR model nests the VAR model as a speial ase. Thus, the test of

Clark and West (2007) is used to test the equal preditive performane between

the QR-VAR and VAR models. The QR-VAR and univariate foreast horizon-

spei� models for the binary variable are not (generally) nested and, thus, the

Diebold-Mariano (1995) and West (1996) test is employed in that ase.

Many interesting �ndings emerge. Let us �rst onsider foreasts for the short
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rate whih are of most interest in this analysis. It an be seen that the QR-VAR(1,1)

and QR-VAR(4,3) models learly outperform their orresponding single-regime

VAR(1) and VAR(4) models. Depending on the foreast horizon, the relative dif-

ferenes in the foreast auray typially range from 5% to even 20%. The �rst-

order (QR-VAR(1,1)) model seems to yield better foreasts than the QR-VAR(4,3)

model. Based on the test of Clark and West (2007), the di�erenes between the

QR-VAR and VAR models are statistially signi�ant at all the onventional sig-

ni�ane levels showing the superior preditive performane of the former model.

The results for the term spread are basially the same as for the short rate. In

this ase, the QR-VAR(4,3) model produes somewhat better foreasts than the

QR-VAR(1,1) model. However, in both ases, the QR-VAR models outperform the

VAR models by a lear margin. The relative MSFEs are throughout below unity

and the p-values of the Clark and West (2007) test are essentially zero.

As in Kauppi and Saikkonen (2008) and Nyberg (2010), the univariate autore-

gressive probit model (6) yields good foreasts for the state of the U.S. business

yle when the foreast horizon is relatively short. However, as expeted and on-

sistent with the simulation foreasting results presented in the Appendix, when

the foreast horizon lengthens towards the maximum 12-month horizon, the dy-

nami iterative foreasting approah employed in the QR-VAR model outperforms

the foreast horizon-spei� univariate model. Aording to the Diebold-Mariano

and West test the di�erenes are not, however, statistially signi�ant. All in all,

in possible future appliations, suh as impulse response analysis within the QR-

VAR model (f. Dueker, 2005, Fornari and Lemke, 2010), the dynami iterative

foreasting approah proposed in this study seems more appropriate.

It is also worth noting that the linear VAR an, in priniple, be estimated

reursively using real-time data observed at eah time t. Due to the dependene

on business yle regimes and thus the publiation lag in the values of st, this

is not the ase in the QR-VAR model in real time. This an be seen as a draw-

bak for the QR-VAR model. Hene, another omparison between models ould

be performed by allowing for all the non-QR-VAR models to be estimated using
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the entire information set available. How substantial is this drawbak? In fat, the

foreasting performane of the VAR model estimated at eah step yields slightly

inferior foreasts than the one reported in Table 3 (details available upon request).

Hene the main message of this and the next setion, the importane of taking the

preditable regimes into aount in foreast onstrution, remains intat.

To get more detailed information where the foreasting gains are oming, in

Table 4 we report the relative MSFEs separately for the business yle expansions

and reessions (Panel A). For the short rate the foreasting gains are larger in

expansions but also at reession periods the QR-VAR model outperforms the linear

VAR. For the term spread the foreasting gains are oming from expansions.

In Panel B of Table 4, the Area Under the ROC Curve (AUC) summarizes the

out-of-sample preditive power obtained for the state of the U.S. business yle.

As in in-sample estimation results (Table 1), following the testing proedure used,

for example, in Berge and Jordà (2011), the reported AUCs are all statistially

signi�antly higher than 0.5 at the onventional signi�ane levels.

3

In other words,

the proposed QR-VAR model is able to predit U.S. business yles out of sample,

providing the neessary ingredient to obtain superior preditive power also for

interest rate variables. It appears that the only notable exeption is approximately

the period between the years 1998�1999 where the probability of reession is falsely

somewhat high early in advane the reession started in 2001.

As a by-produt of the simulation-based foreasts in the proposed QR-VAR

model, we also obtain generally asymmetri density and interval foreasts. A more

extensive examination is left for the future researh but some general remarks an

already be made. As expeted, the interval foreasts (preditive densities) are gen-

erally somewhat wider when allowing for business yle regimes in the VAR (see,

e.g., the di�erenes in the diagonal elements of the ovariane matries reported

in Table 2). Due to wider foreast intervals, espeially during the unertain times

3

The (out-of-sample) AUC gets values between 0 and 1, with the values of 0.5 and 1 orresponding

a oin toss and perfet foreasts, respetively. In a growing number of eonomi appliations (see, e.g.,

Berge and Jordà, 2011; Lahiri and Yang, 2013; Berge, 2015; Nyberg and Pönkä, 2016), the AUC has

been used as a statistial goodness-of-�t measure for binary time series.
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around business yle turning points, the QR-VAR model ontains the observed

short rate more often than the linear VAR model.

As a whole, we an onlude that superior foreasts for the interest rate vari-

ables an be obtained by allowing for the business yle-spei� regimes and, in

partiular, utilizing the preditability of those regimes in foreasting. In the previ-

ous studies, the relative di�erenes between the single-regime and regime swithing

models have typially been smaller than in this study (see, e.g., Filardo, 1994, Ang

and Bekaert, 2002a). In this respet, the proposed model turns out to perform

really well. Dao and Sathell (1999) show that a regime-swithing model, based

on the latent regimes, may have poor foreasting performane relative to a linear

model as a result of mislassifying observations to wrong regimes. Clements et al.

(2004) have also emphasized that the relative performane of the regime swith-

ing model is expeted to improve when the regimes are persistent. The fat the

QR-VAR model is based on the observable and persistent NBER business yle

regimes helps in parameter estimation whih seems to lead subsequent foreasting

gains. This interpretation is still examined more detail in the next setion when

omparing the foreasting performane with, e.g., the Markov swithing model.

4.4 Additional out-of-sample foreasting heks

Instead of the bivariate linear VAR and QR-VAR models, in this setion we on-

sider several additional out-of-sample foreasting heks for the �ndings obtained

in Setion 4.3. In partiular, we examine augmented (three-variable) VAR and

QR-VAR models as well as the preditive performane of the random walk, whih

has often been found to yield superior foreasts over, for example, various yield

urve models (see, e.g., Du�ee, 2002). In addition, we assess the value added of

the QR-VAR model when omparing its out-of-sample foreasting performane

with the Markov swithing VAR and vetor threshold VAR models (whih is also

interpreted as a regime swithing model in this study).

An alternative approah to the QR-VAR model to explore the relationship
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between the interest rates and business yle an be based on an augmented lin-

ear VAR model by simply augmenting yt (inluding interest rate variables) by a

ontinuous variable measuring real eonomi ativity. In other words, instead of

using the binary variable determining the business yle regime, we an speify

a three-variable VAR model where in addition to the term spread (TSt) and the

�rst-di�erene of the short rate (∆it) a growth rate of industrial prodution (ipt)

or nonfarm payroll employment (emp) is also inluded in the model. Ultimately,

the omparison between this traditional and the QR-VAR-based regime swith-

ing approah is about what is the best way of foreasting interest rates and real

ativity (business yles) and their linkages.

Industrial prodution and employment have probably been the most ommonly

used monthly indiators of real ativity. Beause of real-time data availability

issues, we use the real-time data of industrial prodution and employment available

at the Federal Reserve Bank of Philadelphia website. In addition to data revisions,

we are also taking the one-month information lag of both variables into aount

in out-of-sample foreasting (f. the informational lag in the NBER business yle

turning points). Therefore, nowasts for their values at time T are onstruted �rst

with the same models whih are used to ompute foreasts for the future.

Similarly as in Table 3, we report the MSFEs (QPSs for the binary variable) of

di�erent models in Table 5. Following the results obtained in Table 3, parsimonious

models seem to overall produe slightly superior foreasts than the models with

longer lag lengths. Therefore, the models presented in Table 5 are seleted based

on the BIC inluding the QR-VAR(1,1) model (whih out-of-sample foreasting

performane is already presented in Table 3). It turns out that the QR-VAR(1,1)

model is generally the best model also in this omparison, espeially for the short-

term interest rate. In partiular, it outperforms the three-variable VAR models

inluding industrial prodution or employment as a third variable. In other words,

linking interest rates to real ativity in a nonlinear (business yle-spei�) regime

swithing fashion leads to superior out-of-sample foreasts ompared with the aug-

mented linear models. Furthermore, the examined QR-VAR models also outper-
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form the random walk (by a wide margin) irrespetive of the foreast horizon for

both variables (term spread and short rate).

For the term spread, the results are essentially similar as for the short rate.

The only exeption is the three-variable VAR(2) model inluding employment

(VAR(2)+emp). However, it is worth noting that its foreasting performane for

the short rate is learly inferior ompared with the QR-VAR models. It appears

that inluding the third ontinuous variable in the QR-VAR model (in the vetors

yt and xt−1) does not improve interest rate foreasts and does not have a sub-

stantial e�et on the foreasts for the state of the business yle (st) even though

for some foreast horizons the QPS statistis are slightly smaller than in the best

QR-VAR(1,1) model presented in Table 3.

As disussed in the Introdution, the QR-VAR model an be seen as an alter-

native to the Markov swithing VAR (MSVAR) model. Time-varying regime prob-

abilities obtained with the QR-VAR model would thus ideally lead to a omparison

between the MSVAR model with time-varying transition probabilities. However,

to the best of our knowledge, in the previous univariate and multivariate regime

swithing models with dependene on latent regimes and time-varying transition

probabilities (based on the lagged values of yt, as in model (6)), inluding MSVAR

models, only one-period-ahead foreasts (foreasting methods) have been onsid-

ered so far (see, e.g., Filardo, 1994; Perez-Quiros and Timmermann, 2000; Simpson

et al., 2001; Ang and Bekaert, 2002a). Beause we are espeially interested in mul-

tiperiod foreasting, this previous work is thus not diretly omparable to ours.

As the multistep foreasting proedures and their properties are unknown at the

moment, we use the MSVAR model with �xed transition probabilities where the

multiperiod foreasts an be obtained using analytial expressions (see details, e.g.,

in Teräsvirta et al., 2010, pp. 346�347).

In Table 6, we ompare the out-of-sample foreasting performane of the QR-

VAR model to the MSVAR model with onstant transition probabilities to get

evidene whether it is advantageous in terms of interest rate foreasts (variables

inluded in the VAR) to relate the regimes to the NBER periods ompared with
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latent regime approah. In the MSVAR model, the extrated regimes maximize

the statistial likelihood of a swithing model whih an be more relevant to the

interest rate variables and ditated by other eonomi fores than the business

yles suh as the stane of the monetary poliy (see, e.g., Sims and Zha, 2006;

Bibkov and Chernov, 2013).

4

Another foreasting omparison hek is made with a vetor threshold VAR

(VTVAR) model (see Teräsvirta et al., 2010, pp. 34�35). In the VTVAR model,

we assume that the �rst lag of the term spread is used as the threshold variable

for both VAR equations. For example, when the full sample period is used in

estimation, the threshold value between the regimes is 0.13 (f. the right panel of

Figure 1). As above in Table 5, the results of the VTVAR and MSVAR models are

based on the models where the lag lengths are seleted using the BIC.

Table 6 reports the relative MSFEs between the QR-VAR model and MSVAR

and VTVAR models, respetively. The entries below unity show the superiority of

the QR-VAR model. Overall, it turns out that the QR-VAR(1,1) model (seleted

based on the BIC as well) produes superior out-of-sample foreasts over the om-

peting models. Aording to the Diebold-Mariano and West test, the di�erenes

in the foreast auray are also statistially signi�ant at least at the 10%, in

many ases even at the 5%, signi�ane levels. This is, espeially, the ase when

the foreast horizon lengthens.

5 Conlusions

Regime swithing models provide an attrative lass of eonometri models to

apture regime hanges in the stohasti behavior of interest rates. In this study,

we suggest a new regime swithing VAR model, referred for simpliity to as the

QR-VAR model, whih an also be seen as a joint model between real-valued on-

tinuous and qualitative dependent variables. The model is easier to work with and

4

In the ase of the Markov swithing model, we employ the MS Regress pakage for Mat-

lab (see Perlin 2012: MS Regress - The MATLAB Pakage for Markov Regime Swithing Models

(http://ssrn.om/abstrat=1714016)).
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interpret than some previously onsidered multivariate regime swithing models

where the latent regimes are determined within the eonometri model. Although

a simulation-based foreasting method is required to onstrut multiperiod fore-

asts, the proposed method is not omputationally burdensome.

The QR-VAR model is applied to foreast the U.S. interest rates and the state

of the business yle. The empirial results show that there is a strong bidiretional

linkage between the U.S. business yle measured in terms of the NBER expansion

and reession periods and the bivariate system of the U.S. term spread and the

hanges in the short-term interest rate. The results an be interpreted as positive

evidene for a redued-form model for the short rate inorporating business yle

shifts as the term spread and the short rate help to predit the future business

yle regimes while the state of the business yle has also feedbak e�ets bak

to them. Most importantly, the ability of the QR-VAR model to foreast business

yle turning points leads to superior out-of-sample foreasting performane for the

interest rate variables ompared with the onventional single-regime VAR model

and previously onsidered nonlinear VAR models, inluding the Markov swithing

VAR model.

The QR-VAR model an be extended various ways. One possibility is to replae

the binary variable with other qualitative response variable, suh as a multinomial

variable allowing for more than two regimes. Another interesting extension ould be

to use the model in strutural maroeonomi analysis where the impulse response

funtions implied by the QR-VAR model, with alternating regimes, may lead to

di�erent onlusions than the VAR or other regime swithing models employed in

the previous literature. To failitate impulse response analysis, foreasts for the

future values of the variables are required and, therefore, the proposed simulation-

based iterative foreasting method, and subsequent results, are also of interest.

Examining the interval and density foreasting performane of the proposed model

more detail in di�erent appliations might also be a worthwhile extension to this

study.
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Appendix: Monte Carlo foreasting experiment

As disussed in Setion 3.2, a simulation-based foreasting proedure is generally

required to onstrut multiperiod foreasts in the QR-VAR model. In the proposed

MC simulation method, the essential task is to speify the number of simulation

repliations N that a�ets the approximation error oming from the numerial

integration. Thus, we onsider a small-sale Monte Carlo simulation experiment in

order to speify the number of repliations N and illustrate the properties and the

usefulness of the foreasting method. The data generating proess (DGP) is based

on the QR-VAR(1,1) model presented in Tables 1�2.

We simulate 5 000 realizations of length T + 12 observations from the above-

mentioned DGP. Using the �rst T observations in eah realization, we estimate

the univariate probit model (6) and the VAR model along with the true QR-VAR

model. Foreasts are omputed for the foreast horizons from 1 to 12 periods. The

mean-squared foreast errors (MSFE) and the QPS statistis (Diebold and Rude-

bush, 1989) for the ontinuous and binary dependent variables are onstruted,

respetively. We experiment with two sample sizes (T=200 and T=500) and three

hoies of N (1 000, 10 000 and 50 000).

Table 7 presents the MSFE and QPS statistis of the QR-VAR model for dif-

ferent foreast horizons. The auray of foreasts for the binary variable appears

to inrease with the sample size T while this e�et is not so lear for the ontin-

uous variables. As far as the number of repliations is onerned, there is a slight

improvement when N inreases from 1 000 to 10 000, but basially no hanges

when N inreases from 10 000 to 50 000. Thus, in onlusion, N=10 000 appears

to be a su�ient seletion.

The relative MSFE and QPS statistis in Table 8 are obtained by dividing the

MSFE and the QPS statistis of the QR-VAR model reported in Table 7 by those

of the orresponding VAR(1) and univariate probit (6) models. Most of entries

are below unity for the variables y1t and y2t indiating the superiority of the true

QR-VAR spei�ation over the VAR model. The relative MSFEs in Table 7 are
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essentially the same with di�erent seletions of N . The relative QPS statistis for

the binary variable show that the QR-VAR model designed to onstrut dynami

iterative multiperiod foreasts outperforms the foreast horizon-spei� univariate

model when the foreast horizon lengthens. As pointed out in Setion 3.2, the

one-period foreasts from the QR-VAR and the univariate autoregressive probit

models are asymptotially equal.
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Tables and Figures

Table 1: Estimation results of the autoregressive binary response model (6).

πt ν a b1 b2
(πt−1) (TSt−3) (∆it−1)

0.066 0.935 -0.119 -0.319

(0.014) (0.009) (0.015) (0.074)

psR

2
0.419 QPS 0.152

CR50% 0.893 CR25% 0.849

PT50% 6.887 (0.009) PT25% 5.408 (0.020)

AUC 0.931

Notes: In the table, TSt−3 and ∆it−1 denote the third and �rst lags of the term spread and the �rst

di�erene of the short rate, respetively, inluded in xt−1 as preditors. The estimated oe�ients are

based on the full sample period (1972:1�2010:12) and their standard errors, based on the Hessian of

the log-likelihood funtion, are given in the parentheses. The pseudo-R2
of Estrella (1998) (psR

2
) and

the QPS statisti (Diebold and Rudebush, 1989) are the ounterparts of the oe�ient of

determination and the mean-square predition error used in linear models. CR50% and CR25% denote

the perentages of orret reession and expansion signal foreasts when the 50% and 25% thresholds

are used to onstrut signal foreasts from the probability of reession (see (5)). PT denotes the

Pesaran-Timmermann (2009) test statistis (p-values in the parentheses) for the null hypothesis that

the state of the business yle (st) is unpreditable. AUC is the area under the Reeiver Operating

harateristi Curve (ROC) used to evaluate the lassi�ation ability of the model (see, e.g., Berge

and Jordà, 2011, and Lahiri and Yang, 2013, and the referenes therein).
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Table 2: Estimation results of the QR-VAR(1,1) and VAR(1) models.

QR-VAR(1,1) VAR(1)

Expansion (st = 0) Reession (st = 1)
0.974 -0.251 0.779 -0.307 0.934 -0.274

A1,0 (0.012) (0.043) A1,1 (0.054) (0.083) A1 (0.014) (0.036)

0.010 0.315 0.183 0.363 0.048 0.347

(0.013) (0.049) (0.076) (0.117) (0.017) (0.045)

w0 0.023 0.005 w1 0.418 -0.411 w 0.114 -0.091

(0.026) (0.030) (0.098) (0.138) (0.029) (0.036)

0.088 -0.064 0.377 -0.438 0.146 -0.136

Σ0 (0.006) (0.006) Σ1 (0.063) (0.081) Σ (0.010) (0.011)

-0.064 0.113 -0.438 0.750 -0.136 0.227

(0.006) (0.008) (0.081) (0.125) (0.011) (0.015)

logL 605.529 logL 496.243

AIC -587.529 AIC -487.243

BIC -550.426 BIC -468.692

Notes: Estimation results are for the bivariate system inluding the term spread and the

�rst-di�erene of the short-term interest rate (i.e. yt = [TSt ∆it]
′

, the observations at period t). In

the QR-VAR model, the reported values of the log-likelihood funtion (logL) and the Akaike and

Shwarz information riteria (AIC and BIC) are based only on the VAR part of the model. In this

table, the full sample period (1972:1�2010:12) is used to estimate the parameters.
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Table 3: Out-of-sample foreasting performane of the QR-VAR and VAR models.

Model Foreast horizon (months)

1 2 3 6 9 12

MSFE, term spread (TSt)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982

VAR(1) 0.062 0.166 0.269 0.623 0.929 1.158

relative MSFE 0.944*** 0.909*** 0.868*** 0.826*** 0.819*** 0.848***

QR-VAR(4,3) 0.056 0.154 0.235 0.483 0.732 0.948

VAR(4) 0.061 0.172 0.267 0.592 0.894 1.138

relative MSFE 0.920*** 0.892*** 0.879*** 0.817*** 0.818*** 0.832***

MSFE, short rate (level, it)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375

VAR(1) 0.036 0.112 0.207 0.615 1.086 1.616

relative MSFE 0.907*** 0.842*** 0.801*** 0.801*** 0.821*** 0.851***

QR-VAR(4,3) 0.042 0.113 0.194 0.536 1.040 1.701

VAR(4) 0.051 0.143 0.236 0.628 1.154 1.770

relative MSFE 0.821*** 0.788*** 0.824*** 0.853*** 0.901*** 0.960***

QPS, business yle (st)

Univariate model (see (6)) 0.187 0.185 0.187 0.186 0.185 0.186

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177

relative QPS 1.001 1.039 1.054 1.025 0.957 0.950

QR-VAR(4,3) 0.188 0.189 0.192 0.182 0.171 0.171

relative QPS 1.003 1.025 1.023 0.977 0.921 0.921

Notes: The entries are the MSFE and QPS statistis of di�erent models. Relative MSFEs (QPS) are

obtained as dividing the MSFE (QPS) of the QR-VAR model by the MSFE (QPS) of the VAR

(univariate probit) model. The number of simulation repliations in the MC foreasting proedure is

N=10 000. In the table, ∗, ∗∗, ∗ ∗ ∗ denote the 10%, 5% and 1% level of signi�ane in the test of

Clark and West (2007) for equal preditive auray between the QR-VAR and the VAR model.
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Table 4: Regime-spei� out-of-sample foreast evaluation and business yle preditabil-

ity.

Model Foreast horizon (months)

1 2 3 6 9 12

Panel A: Relative MSFE, onditional on the business yle regime

Term spread (TSt)

Expansion (st = 0)

QR-VAR(1,1)/VAR(1) 0.910 0.862 0.809 0.762 0.760 0.800

QR-VAR(4,3)/VAR(4) 0.881 0.863 0.857 0.782 0.773 0.784

Reession (st = 1)

QR-VAR(1,1)/VAR(1) 1.038 1.049 1.084 1.252 1.234 1.243

QR-VAR(4,3)/VAR(4) 1.027 0.991 0.945 0.974 1.047 1.136

Short rate (level, it)

Expansion (st = 0)

QR-VAR(1,1)/VAR(1) 0.882 0.787 0.730 0.767 0.801 0.840

QR-VAR(4,3)/VAR(4) 0.757 0.748 0.826 0.895 0.924 0.973

Reession (st = 1)

QR-VAR(1,1)/VAR(1) 0.961 0.929 0.907 0.870 0.865 0.880

QR-VAR(4,3)/VAR(4) 0.971 0.855 0.822 0.794 0.866 0.938

Panel B: AUC, business yle foreasts (st)

Univariate model (see (6)) 0.814 0.817 0.811 0.800 0.803 0.812

QR-VAR(1,1) 0.814 0.811 0.797 0.802 0.838 0.859

QR-VAR(4,3) 0.814 0.813 0.805 0.818 0.849 0.866

Notes: In Panel A, the entries are the relative MSFEs between the QR-VAR and VAR models

separately for expansion and reession states where the values under unity signify the superiority of

the former model. In Panel B, the (out-of-sample) AUCs (Area Under the ROC urve) measure the

preditability of the state of the business yle. Details on the AUC, see, e.g., Berge and Jordà (2011)

and Lahiri and Yang (2013).
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Table 5: Out-of-sample foreasting performane of the augmented models and the ran-

dom walk.

Model Foreast horizon (months)

1 2 3 6 9 12

MSFE, term spread (TSt)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982

VAR(2)+ipt 0.057 0.158 0.248 0.549 0.851 1.092

QR-VAR(1,1)+ipt 0.060 0.156 0.246 0.559 0.828 1.054

VAR(2)+emp 0.058 0.155 0.228 0.465 0.712 0.931

QR-VAR(1,1)+emp 0.063** 0.166 0.266 0.648** 0.975* 1.210

RW 0.063* 0.163** 0.258** 0.620* 1.076** 1.558**

MSFE, short rate (level, it)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375

VAR(2)+ipt 0.045*** 0.127*** 0.212** 0.595 1.111 1.740

QR-VAR(1,1)+ipt 0.035 0.102 0.189 0.600 1.108 1.678

VAR(2)+emp 0.049*** 0.151*** 0.265*** 0.680*** 1.171** 1.788*

QR-VAR(1,1)+emp 0.041** 0.119* 0.229* 0.774** 1.429** 2.111**

RW 0.044** 0.128** 0.236** 0.702* 1.356* 2.161*

QPS, business yle (st)

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177

QR-VAR(1,1)+ipt 0.183 0.188 0.193 0.190 0.177 0.173

QR-VAR(1,1)+emp 0.183 0.186 0.191 0.191 0.176 0.168

Notes: The entries are the MSFE and QPS statistis in di�erent models. The results of the

QR-VAR(1,1) model given in the �rst row for eah variable are already reported in Table 3. In the

table, ipt (industrial prodution) and emp (employment) denote the third variable inluded in yt (in

addition to the term spread and the �rst-di�erene of the short-term interest rate) while RW denotes

random walk foreasts. In the table. ∗, ∗∗, ∗ ∗ ∗ denote the 10%, 5% and 1% level of signi�ane in the

Diebold-Mariano (1995) and West (1996) test of equal preditive auray between the QR-VAR(1,1)

and the model given in the �rst olumn (if denoted signi�ant, the QR-VAR outperforms statistially

the latter model).

Table 6: Out-of-sample foreasting performane of the MSVAR and VTVAR models

(relative MSFEs).

Foreast horizon

1 2 3 6 9 12

Term spread (TSt)

MSVAR(1) 0.996 0.987 0.983* 0.841** 0.685** 0.567**

VTVAR(2) 0.975 0.806*** 0.749*** 0.764** 0.675** 0.634**

Short rate (level, it)

MSVAR(1) 0.929 0.875* 0.833* 0.789* 0.731* 0.701*

VTVAR(2) 0.669** 0.502** 0.453** 0.477** 0.413** 0.390**

Notes: The entries are the relative MSFEs obtained as dividing the MSFE of the QR-VAR(1,1) model

by the MSFE of the MSVAR(1) and VTVAR(2) model, respetively. In the table. ∗, ∗∗, ∗ ∗ ∗ denote

the 10%, 5% and 1% level of signi�ane in the Diebold-Mariano (1995) and West (1996) test of equal

preditive auray between the QR-VAR(1,1) and the model given in the �rst olumn (if denoted

signi�ant, the QR-VAR outperforms statistially the latter model). Foreasts in the VTVAR model

are obtained following the bootstrap-based foreasting method introdued more detail in Teräsvirta et

al. (2010, pp. 347�349).
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Table 7: MSFE and QPS statistis of the QR-VAR(1,1) model where the Data Gener-

ating Proess (DGP) is the QR-VAR(1,1) given in Tables 1 and 2.

MSFE, y1t MSFE, y2t QPS, st
N 1 000 10 000 50 000 1 000 10 000 50 000 1 000 10 000 50 000

Foreast horizon T = 200
1 0.158 0.158 0.158 0.261 0.261 0.261 0.207 0.206 0.206

2 0.400 0.399 0.399 0.277 0.276 0.276 0.200 0.199 0.199

3 0.671 0.668 0.668 0.265 0.263 0.263 0.218 0.217 0.217

6 1.234 1.228 1.228 0.270 0.269 0.269 0.240 0.238 0.238

9 1.535 1.530 1.529 0.278 0.276 0.276 0.257 0.257 0.257

12 1.770 1.765 1.764 0.293 0.292 0.292 0.267 0.265 0.265

T = 500
1 0.171 0.170 0.170 0.253 0.251 0.251 0.204 0.203 0.203

2 0.444 0.442 0.442 0.277 0.276 0.276 0.205 0.204 0.204

3 0.739 0.735 0.735 0.263 0.262 0.262 0.210 0.209 0.208

6 1.455 1.447 1.447 0.264 0.262 0.262 0.219 0.217 0.217

9 2.070 2.061 2.060 0.265 0.264 0.264 0.225 0.224 0.224

12 2.723 2.710 2.709 0.283 0.282 0.282 0.236 0.235 0.235

Notes: The entries are based on 5 000 realizations. The sample size is 200 or 500 observations (T=200

or T=500) and the number of simulation repliations in foreast omputation is denoted by N where

N=1 000, 10 000 or 50 000. In simulations from the DGP, following the business yle periods

determined by the NBER, an additional ensoring rule is imposed guaranteeing that the sequenes of

zeros and ones of the values of st are at least six-period long.

Table 8: The relative MSFE and QPS statistis of the QR-VAR(1,1) relative to the

VAR(1) model and the univariate autoregressive probit model (6).

Foreast horizon

T 1 2 3 6 9 12

T = 200 MSFE, y1t 0.971 0.930 0.884 0.773 0.704 0.641

MSFE, y2t 0.986 0.987 0.983 0.994 1.020 1.058

QPS, st 1.000 0.939 0.940 0.906 0.941 0.915

T = 500 MSFE, y1t 0.964 0.947 0.931 0.899 0.850 0.832

MSFE, y2t 0.997 0.985 0.978 1.006 0.997 0.998

QPS, st 1.000 1.007 1.000 0.961 0.938 0.950

Notes: The number of simulated realizations is 5 000 and the number of repliations in the foreast

omputation of the QR-VAR model is N=10 000. See also the notes to Table 7.
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Figure 1: In the left panel, the U.S. short-term interest rate (it) and its �rst di�erene

(∆it, dashed line) are depited with the U.S. reession (st = 1, shaded areas) and

expansion periods. The right panel shows the term spread (TSt).
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Figure 2: Estimated (in-sample) probability of reession (st = 1) of the model presented

in Table 1.
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