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1 Introduction

Nonlinear econometric modeling has heavily been based on regime switching mech-
anisms allowing for parameter coefficients to switch between different states of the
world (e.g., business cycle recessions and expansions, bear and bull stock markets,
monetary policy regimes and also some rare events such as financial crises). The
previous literature on multivariate models has adopted several different regime
switching specifications including Sola and Driffill (1994), Krolzig (1997), Ang and
Bekaert (2002a,b), Guidolin and Timmermann (2006), Dueker et al. (2011) and
Henkel et al. (2011), among others. In this literature, the regime switching mecha-
nism is typically specified as a latent (unobserved) process with underlying regime
probabilities which may be functions of the lagged endogenous or exogenous vari-
ables determining the economic forces driving the regime switches. However, in
line with nonlinear models in general, the out-of-sample forecasting performances
of these models have often been found disappointing (see, e.g., the discussion in
Dacco and Satchell (1999) and Clements et al. (2004)).

In this study, we consider a regime switching vector autoregressive (VAR)
model, where the regime is determined by an observed qualitative response (QR)
variable predicted simultaneously with the variables subject to regime switches
and, hence, permitting the method implementable in real time forecasting. The
joint model is, for simplicity, referred to the QR-VAR model. The use of the
qualitative response model yields time-varying regime probabilities between the
observed regimes making the QR-VAR model much easier to work with and, in
particular, construct forecasts than the multivariate regime switching models with
latent regimes. Following the large majority of the previous studies, we restrict
ourselves to the two regime case, that is the qualitative variable is binary through-
out this paper. In our empirical application, the binary variable is the state of the
U.S. business cycle measured in terms of the official NBER business cycle turning
points. A multinomial case (i.e. multiple regimes) is a straightforward extension

to our model, provided that the observed qualitative time series determining the



regimes is available.

The dependence on the observed qualitative dependent variable distinguishes
the QR-VAR model from the commonly used Markov switching VAR and related
models, which, of course, have their own advantages. They are more general in a
sense that the latent regimes are extracted based on statistical grounds while in
our approach the dynamics are driven by the observed qualitative variable. How-
ever, as long as the objective is to link the latent regime dynamics directly to
some well-established regimes such as the NBER business cycle periods, which
has typically been the case in various applications of Markov switching models,
the QR-VAR model offers a much simpler way to estimate the parameters and
construct multiperiod forecasts. This is due to the fact that the resulting con-
ditional probabilities of the regimes can be constructed with a binary response
model simplifying parameter estimation carried out with the method of maximum
likelihood. This approach circumvents the difficulties reported in the parameter
estimation of various previous models (see, e.g., Gray, 1996; Simpson et al., 2001;
Ang and Bekaert, 2002a,b) where estimation requires the filtration of the latent
regimes (see also the discussion in Filardo and Gordon, 1998).

In general, if the values of a qualitative dependent variable, such as the state
of the business cycle, are predictable, then so are the regime switches in the QR-
VAR model. This should lead to superior forecast performance compared with the
single-regime VAR model (provided there are regime switches in the VAR process).
The QR-VAR model is designed to produce dynamic iterative forecasts constructed
sequentially for the binary (qualitative) and continuous variables. We propose a
simulation-based method to obtain multiperiod forecasts as closed-form forecast-
ing formulae are generally not available. The examined Monte Carlo forecasting
experiments show that the proposed method is not, however, computationally bur-
densome and it leads forecasting gains over the single-regime VAR model. An im-
portant advantage of our model is that it facilitates multistep forecasting while in
the previous univariate and multivariate regime switching models, with dependence

on latent regimes and time-varying transition probabilities, only one-period-ahead



forecasts have been considered so far (see, e.g., Filardo, 1994; Perez-Quiros and
Timmermann, 2000; Simpson et al., 2001; Ang and Bekaert, 2002a).

In addition to the regime switching perspective emphasized above, the QR-VAR
model adds to very scant literature on models where continuous real-valued and
qualitative dependent time series are modeled jointly (see the related models with a
similar structure in Hamilton and Jorda (2002) and Nyberg (2012)). Dueker (2005)
and Fornari and Lemke (2010) are two rare exceptions where the VAR model is
augmented with a latent variable determining the values of the considered binary
time series. Our model differs from their models in various ways: In particular,
Dueker (2005) and Fornari and Lemke (2010) do not allow a regime switches in
their VAR models, and the latter also employs a commonly used static probit
model for the binary variable. In line with the univariate models of Rydberg and
Shephard (2003), Benjamin et al. (2003) and Kauppi and Saikkonen (2008), we
use a dynamic binary response model as a part of the model leading to the model
specification where estimation and forecasting is easier than in the dynamic model
of Dueker (2005).

We apply the QR-VAR model to forecast the U.S. interest rates and the state
of the business cycle in real time. As an example, Ang and Piazzesi (2003), Bansal
et al. (2004) and Huse (2011) have shown that macroeconomic factors measuring
real economic activity can help to predict future movements in the yield curve.
In contrast, Estrella and Mishkin (1998) and Rudebusch and Williams (2009),
among others, have found that the term spread between the long-term and short-
term interest rates is the main leading indicator of the future state of the business
cycle. Interestingly, almost all previous studies have concentrated on these one-way
linkages while, e.g., Estrella (2005) and Diebold et al. (2006) are supportive for a
bidirectional relationship, without allowing for regime switches in the interest rates.
In this study, instead of using the ex post observations of the U.S. business cycle
regimes, the regimes are predicted simultaneously with the interest rate variables.
To the best of our knowledge, this type of regime switching forecasting approach

has not been considered before in the literature.



Our empirical results provide several interesting insights. In particular, strong
evidence of business cycle-specific effects in the bivariate system of the U.S. short-
term interest rate and the term spread is obtained. The dynamics of the short rate
are closely dependent on the NBER expansion and recession periods of the U.S.
economy whereas the lags of interest rate variables predict the state of the business
cycle. Furthermore, and most importantly, due to the obtained predictability of
business cycle turning points in real time, the out-of-sample forecasts of the QR-
VAR model outperform those of the single-regime VAR model for the term spread
and, especially, the short-term interest rate. That is also the case when comparing
the forecasting performance to the existing regime switching models, including the
Markov switching VAR model.

The rest of the paper is organized as follows. Section 2 introduces our regime
switching VAR model. Parameter estimation and computation of forecasts, includ-
ing the proposed simulation-based forecasting method, are considered in Section 3.
The forecasting results containing analyses on the bidirectional predictive linkages
and feedback mechanisms between the U.S. interest rates and business cycle are

reported in Section 4. Finally, Section 5 concludes.

2 Model

Consider the observable time series s; and y,, ¢t = 1,2, ..., T, where s; is a qualitative
response variable and y; = [y1s,...,yx¢] is a K x 1 random vector of real-valued
continuous variables. Thus, for simplicity, we refer our model as the Qualitative
Response Vector AutoRegressive (QR-VAR) model. Throughout this paper, we
concentrate on the case where s; is binary taking values 0 or 1 (i.e. two regimes), but
a multinomial (multiple regime) dependent variable is a straightforward extension
to this case.

For notational convenience, the variables are collected to the vector
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The novel idea is to construct a regime switching VAR model where the regimes
are determined by the observable binary variable s;. The regime switching VAR

model can be written as

p1 Ppo

Yi =St (wl +) Ay, + elt) + (1 - 5t> (wo + > Aoy + GOt), (2)

i=1 i=1

where depending on whether s; takes the value 0 or 1, y, follows a different VAR
model. In other words, if s; = 1, we are in the regime 1 and otherwise (s; = 0)
in the regime 0. The constant terms wj, coefficient matrices A;;, ¢ = 1,...,p;,
and the error terms ej;, j = 0,1, are all regime-specific allowing for flexible and
different dynamics in two regimes. Model (2) encompasses the conventional VAR (p)
model when pg = p1, eps = ey and all the corresponding parameters are the same
irrespective of the regime s;.

In model (2), the error terms ep; and ej; are assumed to follow multivariate
normal distributions with zero means and possibly different covariance matrices

3o and X¥; depending on the regime. Thus, we write
/2 .
e =3""¢e,j=0,1, e~ NID(0,1k), (3)

and assume that e; and ;1 are independent with Q;—1 = {z;-1,21-2,...,21}
denoting the information set containing the lags of y, and s; (see (1)) at time ¢ —1.
Furthermore, e; and s; are assumed to be independent conditional on €;_1.
Throughout this paper, we assume that in (2) the contemporaneous value of s;
has an effect on y,, but not vice versa (cf. the model of Nyberg, 2012). Although
the main interest is in the regime switching VAR model (2), a model for the
binary variable s; is also needed to forecast the future values of y, (see Section 3).

Conditional on the information set €);_1, s; follows a Bernoulli distribution

$t|Q—1 ~ B(py). (4)

In this expression, p; is the conditional expectation of s; (denoted by Ej_i(st))



or equivalently the conditional probability of the outcome s; = 1 (denoted by
Ptfl(St = 1))

pe = Ei_1(st) = B1(sy = 1) = (), (5)

where ®(-) is a standard normal cumulative distribution function leading to the
probit model and 7 is a linear function of variables included in the information set
Q1. An alternative to the probit model, a logit model, is obtained by replacing
®(-) in (5) with the logistic function.

To complete the model for the binary variable s;, we specify
T =v+am_1 + X, b, (6)

where |a| < 1 and v is a constant term. This model was suggested by Kauppi and
Saikkonen (2008) in the context of univariate binary time series models (see also
Rydberg and Shephard, 2003; Benjamin et al., 2003). For simplicity, we restrict
ourselves to the case where the predictors included in the vector x;_; are the lagged
values of y,. For example, if K = 2, then we set x;—1 = [y1,+—#, y27t_k2], with k;
and ko > 1. By recursive substitutions, and assuming |a| < 1, m; will depend on

the whole lagged history of the predictive variables:

T = Z a (v +x;_;b). (7)
i=1

The univariate probit model is obtained when the predictors in x;_1 are treated
as exogenous predictive variables. In the previous business cycle recession forecast-
ing literature, dynamic univariate models, such as model (6) (see, e.g., Kauppi and
Saikkonen, 2008, Nyberg, 2010), have been found to outperform the usual static
model obtained when a = 0 in (6) (see, e.g., Estrella and Mishkin, 1998; Sensier
et al., 2004; Wright, 2006).

The expressions (2), (3), (5) and (6) define together the QR-VAR(pg, p1) model,
where py and p; denote the lag lengths of y, in the regimes of model (2). Equation

(2) shows the regime switching mechanism of the model but in forecast compu-



tation in Section 3, we need the conditional expectation of y, given €2;_;. This

results in
p1 Po
Ei1(y;) = Ei {St <w1 + Z Ay, + elt) + (1 — St) (’wo + Z Aoy + eOtﬂ
i—1 i=1
= DMy + (1 - pt)#om (8)

where p;; = w; + Zfil Ay, 7 = 0,1, and the law of iterated expectations

and the assumptions made in (3) imply

Ei_1(stejr) = Er1][E(steji|se, Q—1)]

= Et_l[StE(ethSt, Qt—l)] = 0, ] = O, 1. (9)

Thus, the conditional expectation of y,, and one-period-ahead forecast, is a weighted
average of the conditional expectations of the VAR regimes where the weight
pr = Ep_1(s¢) is given in (5). All in all, in contrast to expressions (8) and (9), a
simulation-based method is generally needed to obtain multiperiod forecasts (see

Section 3.2).

3 Estimation and forecasting

3.1 ML estimation

The parameters of the QR-VAR model described in Section 2 can conveniently
be estimated by the method of maximum likelihood (ML). The difficulties in the
estimation of many previously considered (univariate and multivariate) regime
switching models are typically related to the determination of the (unobserved)
regimes and their conditional probabilities (see, e.g., Gray, 1996; Simpson et al.,
2001; Ang and Bekaert, 2002a,b). In our approach, parameter estimation greatly
simplifies because an observable binary time series determines the regime.

Conditional on the information set 2;_1, the density function of z; (see (1)) is



characterized by

Gt—1(24:0) = f(yylse, Qe—1;0)P(s¢|%—1;0), (10)

where f(y;|st, Qt—1;0) is the conditional density function of the random vector y,
conditional on the value of the binary variable s; and P(s;|;—1;6) is the condi-
tional probability mass function of s;. The vector of parameters 6 contains all the
parameters of the model. Assume that 8 = [0} 5], where 8; and 6, contain
the parameters related to the regime switching VAR model (2) and to the model
for the binary variable, respectively. The density function (10) can therefore be

written as

Gt—1(2;0) = f(yilst, Q—1;601)P(s5¢|Q—1;602). (11)

Under the normality assumption of ej;, j = 0,1 (see (3)), the conditional density

function of model (2) is

_ _ 1 _
F(yilse, Q_1:01) = (2m) K2 det(x,,) " 1/? exp( - §est,t25t195z,t)a st =0,1.
(12)
In the case of binary variable s;, the conditional probability mass function is
St 1—s¢
P -1:62) = (o(m)) " (1= ®(m)) ", s =0.1, (13)

where 7; is specified as in (6).

Assume that we have observed the time series y, and s¢, t = 1,2, ..., T, with the
initial values treated as fixed constants. Based on the conditional density function
(11) of z¢, the log-likelihood function over the whole sample, given the initial

values, is
T T T
I7(0) =) 1,(8) = log f(yilse, U-1301) + > log P(se|Q_1305),  (14)
t=1 t=1 t=1

where the two factors of ¢;—1(2¢;6) in (11) are defined in (12) and (13). Thus,

01 and 6, can be estimated separately and the maximum likelihood estimate 0 is



obtained by maximizing (14) by numerical methods (see the models with a similar

structure as (14), e.g., in Hamilton and Jorda (2002) and Nyberg (2012)).

3.2 Computing multiperiod forecasts

After an adequate description of the joint dynamics of the variables s; and y, has
been obtained, the QR-VAR model can be used to forecast the future values of the
time series. An advantage of the QR-VAR model over the forecast horizon-specific
binary response (see, e.g., Estrella and Mishkin, 1998; Kauppi and Saikkonen, 2008;
Nyberg, 2010) and VAR models is that it leads to the dynamic iterative multiperiod
forecasting approach (cf. the conventional VAR and the models of Dueker (2005)
and Fornari and Lemke (2010)), without a need to specify a new model for every
forecast horizon h (i.e. the direct multiperiod forecasting approach).

As we concentrate on iterative multiperiod forecasting approach throughout
this study, forecasts for the continuous dependent variables y, are also needed to
construct multiperiod forecasts for the binary variable s;. Our model provides a
simple and computationally feasible approach to obtain multiperiod forecasts of
the variables included in y,, which is not the case for many regime switching models
considered in the previous research with a dependence on the latent regimes and
time-varying transition probabilities (cf. Section 3.1). In fact, in this multivariate
case, to the best of our knowledge, multiperiod forecasting has not been considered
when allowing for time-varying transition probabilities between the regimes, as in
this study.

Based on the information set at time 7', the optimal h-period-ahead forecast

of zpyp (in the mean-square sense) is the conditional expectation

’

Br(zrsn) = Blzrsal®r) = |Br(stan)  Er(yron)] (15)

where the information set {27 includes the history of the time series z; up to time
T. Due to the recursive structure of the QR-VAR model, forecasts for the binary

variable s; are constructed first.



The one-period forecast of spi1 (cf. (5)) is given by

pr+1 = Er(sr41) = Pr(sr41 = 1) = ®(mry1). (16)

In the case of model (6), the linear function 741 = v+any —i—y/Tb depends only on
the information available at time 7" and, thus, the forecast (16) can be constructed
straightforwardly. Following (8), the one-period forecast of y ., is the conditional

expectation

Er(yri1) = prei by ryr + (1 - pT—l—l)H'O,T-i-la (17)

where p; i = w; —1—2?11 A;;iyr_iv1, 7= 0,1, and pr4q is the one-period-ahead
forecast of s741 given in (16).

When the forecast horizon is longer than one period (h > 1), forecast compu-
tation becomes much more complicated. As an example, let us consider two-period

forecasts (h = 2). As in (16), the forecast of spy9 is the conditional expectation

pri2 = Er(sry2) = Pr(sri2 =1) = Er (‘P(WT+2)>7 (18)

where following (7), we can write

/
Trye = V+anryr +yri b

= v+adinr+ CL(Z/ + y/Tb> + y:[_Hb.

Thus, (18) depends nonlinearly, via the function ®(-), on the value yp,; which

is unknown at time 7. In particular, the conditional expectation (18) is not, in

general, equal to the conditional probability of outcome s7o = 1 evaluated at the

expected value of yr,; given in (17). Decomposing yr,; into an expected com-
def

ponent Ep(yr,,) and the innovation y;,; — Er(yryq) = e;L,TH’ the conditional

expectation (18) can be expressed as

o0
Pri2 = / ‘I’<V +a*rr +a(v +yrb) + (Er(yryr) + €11 b)‘P(e;L,TH) dej .y,

—0o0
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+

where p(e] 7,

) is the density function of ej’T 41+ As this density function is in-
tractable (especially at longer forecast horizons) and the integral above does not
have a closed form solution, we cannot construct the forecast for srio using an

explicit formula (cf. the one-period forecast (16)).

The two-period forecast of y, o can be expressed as

Er(yrys) = Er |:5T+2 <w1 + A1yt T Ap Y2t e1,T+2> +

(1= s742) (wo + A0y o Apg oY T—pota T eo,T+2>} (19)

In comparison to (17), as Er(styoyri1) # Er(sr42)Er(yr,1), we cannot take
the conditional expectations of spio and the VAR regimes separately. The situa-
tion is similar when the forecast horizon h lengthens. Thus, the expressions (18)
and (19) demonstrate that there are no closed-form forecasting formulae (cf. the
conventional VAR model) to construct multiperiod forecasts for y,,,,h > 2, and
we have to resort to simulation-based forecasting techniques. The Monte Carlo
forecasting procedure described below is, however, quite easy to implement and
computationally feasible. It has some similarities to the forecasting methods em-
ployed for other (mainly univariate) nonlinear models (see, e.g., Terasvirta et al.,
2010, Chapter 14).

The essential idea is to simulate recursively a large number of independent re-
alizations of the variables s7y1,y7.1,5712, Y7149, .. Forecasts of sy, and yr,p
for a given forecast horizon h are then obtained as averages of the independently

(4) (4)

simulated realizations sTi 4, and y:,f 4nt=1,..., N. The forecast horizon h varies
between 1 and h with i the maximum forecast horizon considered. Furthermore, for
h > 2, let E’Elf)th—l (cf. (1)) signify the vector containing the ith simulated realiza-
tions sgz)ﬂ, ygll, ... ,sglhil, ygf)HFl up to the forecast horizon h—1. Throughout
it is assumed that the unknown values of the parameters, which in practice are
replaced by their estimates, are known.

The forecast recursion for forecast horizons h = 1,2, ..., h proceeds as follows:

Step 1: Initialize m}i) = mp and yg)_j = yr—j,J = 0. Start the recursion with

11



one-period forecast horizon i.e. set h = 1 in Steps 2-5.

Step 2: Compute (wéflh QT’égfzrhq) =v+ ‘”Téflhfl + x. (?hflb, where, e.g.,

if K =2 then ng‘lrhil = [yﬁurh—kl ygurhsz} for some ky and ko > 1.

Step 3: Draw (Sgil-h‘QT’égil-h—l) ~ B((I)(W(Tilh))a where B(:) denotes the

Bernoulli distribution and Wéfzrh is given in Step 2 (see (4)).

Step 4: Draw (e(f)T+h|5’Elé)+h =j)~N(0,%;),j=0,1.

J
Step 5: Compute (yglh‘QT,gglhil,sgh = ) = sgflrh (wl—i—Al,lyg)thfl—i-. ..

+Ap1,1ygfzyh—p1) +(1— 3’53)+h) <w0 + Al,Oyth—l +..t APOyoygil-h—pO> + eE‘?ﬁLh'

Step 6: Go to Step 2 and repeat Steps 3-5 starting from h =2 up to h = h.
Step 7: Repeat Steps 2-6 independently N times (i = 1,...,N).
The idea in the above recursion is first to use the horizon A = 1 to obtain real-

izations ﬂé}ll, s(le)Ll,y(le)Ll. Next, the recursion is repeated for h = 2, conditional

on ggl_h_l, to obtain W(T1l2,s§}}r2,y§}i2. This is continued up to h = h. Finally,
forecasts for sy, and ypp, Er(sren) and Ex(ypip), h =1,..., h, are obtained

by computing the averages (cf. equation (15))

N
. 1 ;
Pran =10 D S (20)
=1
and
1 )
o~ KA
Yr+4n = N ZyTJrh’ (21)
=1

where N is large. Note that the one-period forecasts (h = 1) obtained with (20)
and (21) will be asymptotically equivalent to (16) and (17) but the above forecast
recursion should accommodate also this horizon to start the recursion. In addition
to point forecasts, the expressions (20) and (21) can straightforwardly be used to
construct possibly asymmetric interval and density forecasts.

The accuracy of the proposed forecasting method depends on the choice of the
number of replications N. For a good approximation, N should be large enough.
On the other hand, the larger the number of replications the more computationally
burdensome the method is although simulation in Steps 3-4 is straightforward and

not time consuming. The simulation results reported more detail in the Appendix

12



suggest that the proposed method is accurate even for relative small values of N

(such as N=10 000).

4 Application: Forecasting U.S. interest rates

and business cycle

4.1 Background and data set

In our empirical application, we examine the bidirectional predictive linkages be-
tween the U.S. interest rates and the state of the business cycle measured in terms
of recession and expansion periods. We are, in particular, interested in whether
superior out-of-sample interest rate forecasts can be obtained with the proposed
QR-VAR model over the single-regime VAR and alternative nonlinear VAR mod-
els, including the Markov switching and vector threshold VAR models.

We consider a monthly U.S. data set from January 1972 to December 2010.
The starting point of the sample (i.e. the beginning of the 1970s) is consistent
with many previous studies (see, e.g., Ang and Bekaert, 2002a,b; Huse, 2011).
The state of the economy s; is determined by the National Bureau of Economic
Research (NBER) business cycle turning points. That is in the binary time series
s¢ the value s; = 1 indicates a recession and s; = 0 an expansion. The term spread
(T'S;) is the difference between the long-term (10-year government bond) and the
short-term ; (three-month Treasury Bill rate) interest rates. The source of all
data is the Federal Reserve Bank of St. Louis databank (FRED). Following the
expectations hypothesis of the term structure of interest rates, the dynamics of
the interest rates can be considered by using a bivariate model of y, containing
the term spread (7'S;) and the first-difference of the short rate (Ad;) (see, e.g,
Campbell and Shiller, 1991; Sola and Driffill, 1994). We are hence, for example,
interested in knowing whether the term spread predicts the changes in the short
rate (see, e.g., Ang and Bekeart, 2002a; Bansal et al., 2004) when the business

cycle regime is taken into account.
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The main interest throughout this paper is in out-of-sample forecasts for the
short-term interest rate. The short-term interest rate is of particular interest as it
is a fundamental building block of many macroeconomic and financial models (see,
e.g., the term structure (yield curve) models of Ang and Piazzesi (2003), Bansal
et al. (2004), Diebold et al. (2006) and Huse (2011) incorporating macroeconomic
variables or constructed factors).! Here we propose an alternative to the examined
econometric regime switching models for the short rate where the obtained regime
probabilities for the latent regimes are often interpreted to describe regimes in
real economic activity and compared with the NBER business cycle periods (see
Filardo, 1994; Ang and Bekaert, 2002a).

Based on the structure of the QR-VAR model, the lags of y, (i.e., the lags of the
term spread and short rate) are used to predict the state of the business cycle s;.
Much of the previous research lends support, especially, to the term spread being
a useful leading indicator of future real activity (see, e.g., Estrella and Mishkin,
1998; Estrella, 2005; Rudebusch and Williams, 2009). Ang et al. (2006) and Wright
(2006) find that the short rate has also some additional predictive power.

Figure 1 lends support to the regime switching approach as the U.S. interest
rate dynamics appears to be closely dependent on the state of the economy. The
short rate has typically been increasing (decreasing) during the expansion (reces-
sion) periods while during the recessions (expansions) the term spread (yield curve)
is generally upward (downward) sloping. All of the recession periods are preceded
by a low, or even negative, value of the term spread, explaining why it has been
found a useful leading indicator of the recession periods. Recession periods have
also been characterized by a high short rate compared with its recent past just

before the beginning of recession.

L In this study, we concentrate on the out-of-sample forecasting power of (nonlinear) econometric
models. Yield curve (term structure) models provide an alternative class of models. Some attention has
been paid on their out-of-sample forecasting ability, and so far the reported performances have often
been rather disappointing (see Duffee (2002) and Diebold and Li (2006), and the references therein)
compared with, e.g., the random walk examined in Section 4.4.

14



4.2 FEstimation and model selection results

In this section, we briefly discuss the estimation results of the QR-VAR model and
examine the possible two-way linkage between the variables before proceeding to
out-of-sample forecasting in Sections 4.3—4.4. A subsample period up to 1992:12
is used to select the models which are subsequently employed in out-of-sample
forecasting for the period 1993:1-2010:12. Due to the recursive structure of the
QR-VAR model, a model for the U.S. business cycle is specified first and treated
independently of the regime switching VAR component (2).

Model selection results (available upon request) suggest that the third lag of the
term spread (7'S;—3) and the first lag of the differenced short rate (Ad;_;) are the
best predictors of the state of the business cycle. The detailed estimation results of
model (6) (based on the entire sample period), where x;_1 = [T'S;_3 Aé;_1] , are
presented in Table 1. Due to the negative and statistically significant coefficients,
a low value of the term spread and decreasing short rate increase the probability of
recession (s; = 1). The values of the statistical goodness-of-fit measures, such as the
pseudo-R? of Estrella (1998) and the area under the ROC curve (AUC) (see, e.g.,
Berge and Jorda (2011) and Lahiri and Yang (2013), and the references therein),
and the probability of recession depicted in Figure 2 show that the selected model
predicts the state of the U.S. business cycle accurately. The probability of recession
is high during the recessions and close to zero in the expansion periods except for
a few short exceptions. According to the test of Pesaran and Timmermann (2009)
allowing for serial correlation in s;, the model is able to predict the state of the
business cycle at the 5% significance level.

Overall, the model matches the U.S. business cycle regimes accurately which
has not always been the case in the previous regime switching models when aiming
to obtain a correspondence with the NBER business cycle periods.? In fact, the

obtained transition probabilities for the unobserved regimes have not been found

2 Of course the regimes can also be dictated by some other factors than real activity such as the
stance of monetary policy (see, e.g., Sims and Zha, 2006; Bikbov and Chernov, 2013), but in this study
we link the regimes to the NBER business cycles.
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to necessarily describe business cycle recession and expansion periods. Instead,
Filardo (1994) and Henkel et al. (2011), among others, interpret the transition
probabilities to describe low and high growth rate regimes in the real GDP which
describe more general contraction and expansion periods in real activity than busi-
ness cycles which are due to the structure of the model explicitly used in our
analysis.

Next we turn our interest to the estimation results of the regime switching
VAR model (2). So far, we have assumed that the lag lengths py and p; in the
QR-VAR(po, p1) model are known. In the previous research, Ang and Bekaert
(2002a,b) and Henkel et al. (2011), among others, have restricted themselves to
the parsimonious first-order regime switching VAR models (pg = p1 = 1). This
is also a reasonable benchmark in this study. According to our estimation sample
period 1972:1-1992:12, the Bayesian information criterion favors the QR-VAR(1,1)
and linear VAR/(3) models while the Akaike criterion suggests the maximum sixth-
order models. A sequential testing procedure, where the Likelihood ratio (LR) test
is applied sequentially when the order of the model increases until the first non-
rejection, selects the QR-VAR(4,3) and VAR(3) models. Irrespective of the selected
QR-VAR or VAR models, there is some evidence of remaining autocorrelation in
the equation of the short rate and conditional heteroskedasticity in both variables,
but among the examined specifications, the QR-VAR(4,3) model seems the best
selection also in terms of the diagnostic checks.

In Table 2, we illustrate, for simplicity, the estimation results of the parsimo-
nious QR-VAR(1,1) and VAR(1) models. Above the model selection was carried
out using the sample period 1972:1-1992:12, but the estimation results in Table 2
are, for illustrative purposes, presented for the full sample period 1972:1-2010:12
to include more recession periods to the sample. The results of the QR-VAR(4,3)
and VAR(3) models are available upon request. In the QR-VAR(1,1) model, the
parameter estimates, especially the constant terms, are different across the busi-
ness cycle regimes and from the ones of the VAR(1) model. In line with Figure

1, the constant term for the first-difference of the short rate is negative in the

16



recession regime. The term spread is a useful predictor of the short rate mainly
in the recession regime. Interestingly, the persistence in the term spread appears
much higher in the expansion regime. Furthermore, the higher standard errors of
estimated parameter coefficients in the recession regime are most likely resulting
from the small number of observations in the recession regime.

Overall, irrespective of the lag length selection (results not reported), the QR-
VAR model outperforms the VAR model as we can strongly reject the hypothesis
of equal parameter coefficients in the expansion and recession regimes at all tra-
ditional significance levels. Thus, there appears to exist a bidirectional in-sample
predictive linkage between the variables: The lags of the term spread and short rate
predict the state of the business cycle (see Table 1). On the other hand, the VAR
dynamics are strongly dependent on the business cycle regime (see Table 2). The
estimated covariance matrices 3y and X3 are also different in two business cycle
regimes. In particular, the diagonal elements are clearly higher in the recession

regime implying higher volatility.

4.3 Out-of-sample forecasting

We compare the (real-time) out-of-sample forecasts obtained with the proposed
QR-VAR model and various alternative linear and regime switching VAR models
for the period 1993:1-2010:12. The main interest is in interest rate forecasts (i.e. the
variables included in the VAR). We concentrate first on the comparison between
the QR-VAR and linear VAR models to examine the effect of allowing for business
cycle-specific regimes in the VAR model. Later on in Section 4.4, we will also
compare the forecasting performance with, e.g., the Markov switching model.
Forecasts are computed using an expanding window approach where the esti-
mation sample period increases in each time when the parameters are re-estimated
until the end of the sample. Based on the Monte Carlo forecasting experiments pre-
sented in the Appendix, the number of simulated realizations /N in the simulation-

based forecasting method is fixed to 10 000.
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Using the NBER recession dates naturally raises concerns on the real time
implementability of the QR-VAR model in forecasting as the business cycle turning
points determining the values of s; are not available in real time. This is, however,
taken into account in various ways. First of all, as a part of the model we forecast
the values of s; using only the information available in real time (see Steps 2 and 3
in Section 3.2). Second, we do not employ the lags of s; in model (6) circumventing
complications related to their use as predictors (cf. the models and discussion
in Kauppi and Saikkonen (2008) and Nyberg (2010)). Third, parameters are re-
estimated only when a complete business cycle from trough month to the next
trough has been completed (i.e. the business cycle trough point is identified in
real time) to facilitate a fair comparison between the models. Therefore, the out-
of-sample forecasting period starts after the announcement of the business cycle
trough for March 1991 made by the NBER in December 1992.

In Table 3, following the previous literature on the regime switching VAR mod-
els, we report the results of the first-order QR-VAR(1,1) model along with the
QR-VAR(4,3) model. The relative MSFE and QPS statistics are obtained relative
to the single-regime VAR(1) and VAR(4) models and the univariate autoregres-
sive probit (6) model. The VAR(4) model is used as a single-regime counterpart
of the QR-VAR(4,3) model instead of the VAR(3) model (suggested by the BIC
and sequential model selection procedure) as the VAR(3) (results available upon
request) leads to inferior out-of-sample forecast performance compared with the
VAR(4). The forecast evaluation for the short rate is executed for its level which is
of interest in many applications and can easily be computed from the forecasts of
the first-difference of i;. Under the hypothesis of no business cycle-specific regimes
the QR-VAR model nests the VAR model as a special case. Thus, the test of
Clark and West (2007) is used to test the equal predictive performance between
the QR-VAR and VAR models. The QR-VAR and univariate forecast horizon-
specific models for the binary variable are not (generally) nested and, thus, the
Diebold-Mariano (1995) and West (1996) test is employed in that case.

Many interesting findings emerge. Let us first consider forecasts for the short
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rate which are of most interest in this analysis. It can be seen that the QR-VAR(1,1)
and QR-VAR(4,3) models clearly outperform their corresponding single-regime
VAR(1) and VAR(4) models. Depending on the forecast horizon, the relative dif-
ferences in the forecast accuracy typically range from 5% to even 20%. The first-
order (QR-VAR(1,1)) model seems to yield better forecasts than the QR-VAR(4,3)
model. Based on the test of Clark and West (2007), the differences between the
QR-VAR and VAR models are statistically significant at all the conventional sig-
nificance levels showing the superior predictive performance of the former model.

The results for the term spread are basically the same as for the short rate. In
this case, the QR-VAR(4,3) model produces somewhat better forecasts than the
QR-VAR(1,1) model. However, in both cases, the QR-VAR models outperform the
VAR models by a clear margin. The relative MSFEs are throughout below unity
and the p-values of the Clark and West (2007) test are essentially zero.

As in Kauppi and Saikkonen (2008) and Nyberg (2010), the univariate autore-
gressive probit model (6) yields good forecasts for the state of the U.S. business
cycle when the forecast horizon is relatively short. However, as expected and con-
sistent with the simulation forecasting results presented in the Appendix, when
the forecast horizon lengthens towards the maximum 12-month horizon, the dy-
namic iterative forecasting approach employed in the QR-VAR model outperforms
the forecast horizon-specific univariate model. According to the Diebold-Mariano
and West test the differences are not, however, statistically significant. All in all,
in possible future applications, such as impulse response analysis within the QR-
VAR model (cf. Dueker, 2005, Fornari and Lemke, 2010), the dynamic iterative
forecasting approach proposed in this study seems more appropriate.

It is also worth noting that the linear VAR can, in principle, be estimated
recursively using real-time data observed at each time ¢. Due to the dependence
on business cycle regimes and thus the publication lag in the values of sy, this
is not the case in the QR-VAR model in real time. This can be seen as a draw-
back for the QR-VAR model. Hence, another comparison between models could

be performed by allowing for all the non-QR-VAR models to be estimated using
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the entire information set available. How substantial is this drawback? In fact, the
forecasting performance of the VAR model estimated at each step yields slightly
inferior forecasts than the one reported in Table 3 (details available upon request).
Hence the main message of this and the next section, the importance of taking the
predictable regimes into account in forecast construction, remains intact.

To get more detailed information where the forecasting gains are coming, in
Table 4 we report the relative MSFEs separately for the business cycle expansions
and recessions (Panel A). For the short rate the forecasting gains are larger in
expansions but also at recession periods the QR-VAR model outperforms the linear
VAR. For the term spread the forecasting gains are coming from expansions.

In Panel B of Table 4, the Area Under the ROC Curve (AUC) summarizes the
out-of-sample predictive power obtained for the state of the U.S. business cycle.
As in in-sample estimation results (Table 1), following the testing procedure used,
for example, in Berge and Jorda (2011), the reported AUCs are all statistically
significantly higher than 0.5 at the conventional significance levels.? In other words,
the proposed QR-VAR model is able to predict U.S. business cycles out of sample,
providing the necessary ingredient to obtain superior predictive power also for
interest rate variables. It appears that the only notable exception is approximately
the period between the years 1998-1999 where the probability of recession is falsely
somewhat high early in advance the recession started in 2001.

As a by-product of the simulation-based forecasts in the proposed QR-VAR
model, we also obtain generally asymmetric density and interval forecasts. A more
extensive examination is left for the future research but some general remarks can
already be made. As expected, the interval forecasts (predictive densities) are gen-
erally somewhat wider when allowing for business cycle regimes in the VAR (see,
e.g., the differences in the diagonal elements of the covariance matrices reported

in Table 2). Due to wider forecast intervals, especially during the uncertain times

3 The (out-of-sample) AUC gets values between 0 and 1, with the values of 0.5 and 1 corresponding
a coin toss and perfect forecasts, respectively. In a growing number of economic applications (see, e.g.,
Berge and Jorda, 2011; Lahiri and Yang, 2013; Berge, 2015; Nyberg and Ponké, 2016), the AUC has
been used as a statistical goodness-of-fit measure for binary time series.
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around business cycle turning points, the QR-VAR model contains the observed
short rate more often than the linear VAR model.

As a whole, we can conclude that superior forecasts for the interest rate vari-
ables can be obtained by allowing for the business cycle-specific regimes and, in
particular, utilizing the predictability of those regimes in forecasting. In the previ-
ous studies, the relative differences between the single-regime and regime switching
models have typically been smaller than in this study (see, e.g., Filardo, 1994, Ang
and Bekaert, 2002a). In this respect, the proposed model turns out to perform
really well. Dacco and Satchell (1999) show that a regime-switching model, based
on the latent regimes, may have poor forecasting performance relative to a linear
model as a result of misclassifying observations to wrong regimes. Clements et al.
(2004) have also emphasized that the relative performance of the regime switch-
ing model is expected to improve when the regimes are persistent. The fact the
QR-VAR model is based on the observable and persistent NBER business cycle
regimes helps in parameter estimation which seems to lead subsequent forecasting
gains. This interpretation is still examined more detail in the next section when

comparing the forecasting performance with, e.g., the Markov switching model.

4.4 Additional out-of-sample forecasting checks

Instead of the bivariate linear VAR and QR-VAR models, in this section we con-
sider several additional out-of-sample forecasting checks for the findings obtained
in Section 4.3. In particular, we examine augmented (three-variable) VAR and
QR-VAR models as well as the predictive performance of the random walk, which
has often been found to yield superior forecasts over, for example, various yield
curve models (see, e.g., Duffee, 2002). In addition, we assess the value added of
the QR-VAR model when comparing its out-of-sample forecasting performance
with the Markov switching VAR and vector threshold VAR models (which is also
interpreted as a regime switching model in this study).

An alternative approach to the QR-VAR model to explore the relationship
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between the interest rates and business cycle can be based on an augmented lin-
ear VAR model by simply augmenting y, (including interest rate variables) by a
continuous variable measuring real economic activity. In other words, instead of
using the binary variable determining the business cycle regime, we can specify
a three-variable VAR model where in addition to the term spread (7'S;) and the
first-difference of the short rate (Ai;) a growth rate of industrial production (ipt)
or nonfarm payroll employment (emp) is also included in the model. Ultimately,
the comparison between this traditional and the QR-VAR-based regime switch-
ing approach is about what is the best way of forecasting interest rates and real
activity (business cycles) and their linkages.

Industrial production and employment have probably been the most commonly
used monthly indicators of real activity. Because of real-time data availability
issues, we use the real-time data of industrial production and employment available
at the Federal Reserve Bank of Philadelphia website. In addition to data revisions,
we are also taking the one-month information lag of both variables into account
in out-of-sample forecasting (cf. the informational lag in the NBER business cycle
turning points). Therefore, nowcasts for their values at time T" are constructed first
with the same models which are used to compute forecasts for the future.

Similarly as in Table 3, we report the MSFEs (QPSs for the binary variable) of
different models in Table 5. Following the results obtained in Table 3, parsimonious
models seem to overall produce slightly superior forecasts than the models with
longer lag lengths. Therefore, the models presented in Table 5 are selected based
on the BIC including the QR-VAR(1,1) model (which out-of-sample forecasting
performance is already presented in Table 3). It turns out that the QR-VAR(1,1)
model is generally the best model also in this comparison, especially for the short-
term interest rate. In particular, it outperforms the three-variable VAR models
including industrial production or employment as a third variable. In other words,
linking interest rates to real activity in a nonlinear (business cycle-specific) regime
switching fashion leads to superior out-of-sample forecasts compared with the aug-

mented linear models. Furthermore, the examined QR-VAR models also outper-
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form the random walk (by a wide margin) irrespective of the forecast horizon for
both variables (term spread and short rate).

For the term spread, the results are essentially similar as for the short rate.
The only exception is the three-variable VAR(2) model including employment
(VAR(2)+emp). However, it is worth noting that its forecasting performance for
the short rate is clearly inferior compared with the QR-VAR models. It appears
that including the third continuous variable in the QR-VAR model (in the vectors
y; and x;_1) does not improve interest rate forecasts and does not have a sub-
stantial effect on the forecasts for the state of the business cycle (s;) even though
for some forecast horizons the QPS statistics are slightly smaller than in the best
QR-VAR(1,1) model presented in Table 3.

As discussed in the Introduction, the QR-VAR model can be seen as an alter-
native to the Markov switching VAR (MSVAR) model. Time-varying regime prob-
abilities obtained with the QR-VAR model would thus ideally lead to a comparison
between the MSVAR model with time-varying transition probabilities. However,
to the best of our knowledge, in the previous univariate and multivariate regime
switching models with dependence on latent regimes and time-varying transition
probabilities (based on the lagged values of y,, as in model (6)), including MSVAR
models, only one-period-ahead forecasts (forecasting methods) have been consid-
ered so far (see, e.g., Filardo, 1994; Perez-Quiros and Timmermann, 2000; Simpson
et al., 2001; Ang and Bekaert, 2002a). Because we are especially interested in mul-
tiperiod forecasting, this previous work is thus not directly comparable to ours.
As the multistep forecasting procedures and their properties are unknown at the
moment, we use the MSVAR model with fixed transition probabilities where the
multiperiod forecasts can be obtained using analytical expressions (see details, e.g.,
in Terasvirta et al., 2010, pp. 346-347).

In Table 6, we compare the out-of-sample forecasting performance of the QR-
VAR model to the MSVAR model with constant transition probabilities to get
evidence whether it is advantageous in terms of interest rate forecasts (variables

included in the VAR) to relate the regimes to the NBER periods compared with
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latent regime approach. In the MSVAR model, the extracted regimes maximize
the statistical likelihood of a switching model which can be more relevant to the
interest rate variables and dictated by other economic forces than the business
cycles such as the stance of the monetary policy (see, e.g., Sims and Zha, 2006;
Bibkov and Chernov, 2013).4

Another forecasting comparison check is made with a vector threshold VAR
(VTVAR) model (see Terasvirta et al., 2010, pp. 34-35). In the VTVAR model,
we assume that the first lag of the term spread is used as the threshold variable
for both VAR equations. For example, when the full sample period is used in
estimation, the threshold value between the regimes is 0.13 (cf. the right panel of
Figure 1). As above in Table 5, the results of the VIVAR and MSVAR models are
based on the models where the lag lengths are selected using the BIC.

Table 6 reports the relative MSFEs between the QR-VAR model and MSVAR
and VTVAR models, respectively. The entries below unity show the superiority of
the QR-VAR model. Overall, it turns out that the QR-VAR(1,1) model (selected
based on the BIC as well) produces superior out-of-sample forecasts over the com-
peting models. According to the Diebold-Mariano and West test, the differences
in the forecast accuracy are also statistically significant at least at the 10%, in
many cases even at the 5%, significance levels. This is, especially, the case when

the forecast horizon lengthens.

5 Conclusions

Regime switching models provide an attractive class of econometric models to
capture regime changes in the stochastic behavior of interest rates. In this study,
we suggest a new regime switching VAR model, referred for simplicity to as the
QR-VAR model, which can also be seen as a joint model between real-valued con-

tinuous and qualitative dependent variables. The model is easier to work with and

4 In the case of the Markov switching model, we employ the MS Regress package for Mat-
lab (see Perlin 2012: MS Regress - The MATLAB Package for Markov Regime Switching Models
(http://ssrn.com/abstract=1714016)).
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interpret than some previously considered multivariate regime switching models
where the latent regimes are determined within the econometric model. Although
a simulation-based forecasting method is required to construct multiperiod fore-
casts, the proposed method is not computationally burdensome.

The QR-VAR model is applied to forecast the U.S. interest rates and the state
of the business cycle. The empirical results show that there is a strong bidirectional
linkage between the U.S. business cycle measured in terms of the NBER expansion
and recession periods and the bivariate system of the U.S. term spread and the
changes in the short-term interest rate. The results can be interpreted as positive
evidence for a reduced-form model for the short rate incorporating business cycle
shifts as the term spread and the short rate help to predict the future business
cycle regimes while the state of the business cycle has also feedback effects back
to them. Most importantly, the ability of the QR-VAR model to forecast business
cycle turning points leads to superior out-of-sample forecasting performance for the
interest rate variables compared with the conventional single-regime VAR model
and previously considered nonlinear VAR models, including the Markov switching
VAR model.

The QR-VAR model can be extended various ways. One possibility is to replace
the binary variable with other qualitative response variable, such as a multinomial
variable allowing for more than two regimes. Another interesting extension could be
to use the model in structural macroeconomic analysis where the impulse response
functions implied by the QR-VAR model, with alternating regimes, may lead to
different conclusions than the VAR or other regime switching models employed in
the previous literature. To facilitate impulse response analysis, forecasts for the
future values of the variables are required and, therefore, the proposed simulation-
based iterative forecasting method, and subsequent results, are also of interest.
Examining the interval and density forecasting performance of the proposed model
more detail in different applications might also be a worthwhile extension to this

study.
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Appendix: Monte Carlo forecasting experiment

As discussed in Section 3.2, a simulation-based forecasting procedure is generally
required to construct multiperiod forecasts in the QR-VAR model. In the proposed
MC simulation method, the essential task is to specify the number of simulation
replications N that affects the approximation error coming from the numerical
integration. Thus, we consider a small-scale Monte Carlo simulation experiment in
order to specify the number of replications IV and illustrate the properties and the
usefulness of the forecasting method. The data generating process (DGP) is based
on the QR-VAR(1,1) model presented in Tables 1-2.

We simulate 5 000 realizations of length T+ 12 observations from the above-
mentioned DGP. Using the first T observations in each realization, we estimate
the univariate probit model (6) and the VAR model along with the true QR-VAR
model. Forecasts are computed for the forecast horizons from 1 to 12 periods. The
mean-squared forecast errors (MSFE) and the QPS statistics (Diebold and Rude-
busch, 1989) for the continuous and binary dependent variables are constructed,
respectively. We experiment with two sample sizes (T=200 and T=500) and three
choices of N (1 000, 10 000 and 50 000).

Table 7 presents the MSFE and QPS statistics of the QR-VAR model for dif-
ferent forecast horizons. The accuracy of forecasts for the binary variable appears
to increase with the sample size T" while this effect is not so clear for the contin-
uous variables. As far as the number of replications is concerned, there is a slight
improvement when N increases from 1 000 to 10 000, but basically no changes
when N increases from 10 000 to 50 000. Thus, in conclusion, N=10 000 appears
to be a sufficient selection.

The relative MSFE and QPS statistics in Table 8 are obtained by dividing the
MSFE and the QPS statistics of the QR-VAR model reported in Table 7 by those
of the corresponding VAR(1) and univariate probit (6) models. Most of entries
are below unity for the variables y1; and y9; indicating the superiority of the true

QR-VAR specification over the VAR model. The relative MSFEs in Table 7 are
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essentially the same with different selections of N. The relative QPS statistics for
the binary variable show that the QR-VAR model designed to construct dynamic
iterative multiperiod forecasts outperforms the forecast horizon-specific univariate
model when the forecast horizon lengthens. As pointed out in Section 3.2, the
one-period forecasts from the QR-VAR and the univariate autoregressive probit

models are asymptotically equal.
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Tables and Figures

Table 1: Estimation results of the autoregressive binary response model (6).

T v a b1 bo
(me-1)  (T'Si-3) (Aiy_1)
0.066 0.935 -0.119 -0.319
(0.014)  (0.009) (0.015) (0.074)
DSR2 0.419 QPS 0.152
CRsos 0.893 CRyso, 0.849
PTsy  6.887 (0.009) PTysy  5.408 (0.020)
AUC 0.931

Notes: In the table, T'S;_3 and Ai;_; denote the third and first lags of the term spread and the first
difference of the short rate, respectively, included in x;_; as predictors. The estimated coefficients are
based on the full sample period (1972:1-2010:12) and their standard errors, based on the Hessian of
the log-likelihood function, are given in the parentheses. The pseudo-R? of Estrella (1998) (psR?) and
the QPS statistic (Diebold and Rudebusch, 1989) are the counterparts of the coefficient of
determination and the mean-square prediction error used in linear models. CR5qy and CRgyse, denote
the percentages of correct recession and expansion signal forecasts when the 50% and 25% thresholds
are used to construct signal forecasts from the probability of recession (see (5)). PT denotes the
Pesaran-Timmermann (2009) test statistics (p-values in the parentheses) for the null hypothesis that
the state of the business cycle (s;) is unpredictable. AUC is the area under the Receiver Operating
characteristic Curve (ROC) used to evaluate the classification ability of the model (see, e.g., Berge
and Jorda, 2011, and Lahiri and Yang, 2013, and the references therein).
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Table 2: Estimation results of the QR-VAR(1,1) and VAR(1) models.

QR-VAR(1,1) VAR(1)
Expansion (s; = 0) Recession (s; = 1)
0.974 -0.251 0.779  -0.307 0.934 -0.274
Ao (0.012) (0.043)  Ai; (0.054) (0.083) A, (0.014)  (0.036)
0.010 0.315 0.183 0.363 0.048 0.347
(0.013)  (0.049) (0.076)  (0.117) (0.017)  (0.045)
wo 0.023 0.005 wi 0.418 -0.411 w 0.114 -0.091
(0.026)  (0.030) (0.098)  (0.138) (0.029)  (0.036)
0.088 -0.064 0.377 -0.438 0.146 -0.136
3o  (0.006) (0.006) 3 (0.063) (0.081) Y (0.010)  (0.011)
-0.064 0.113 -0.438  0.750 -0.136 0.227
(0.006)  (0.008) (0.081) (0.125) (0.011)  (0.015)
logl,  605.529 logl,  496.243
AIC  -587.529 AIC -487.243
BIC -550.426 BIC -468.692

Notes: Estimation results are for the bivariate system including the term spread and the
first-difference of the short-term interest rate (i.e. y, = [I'S; Ai]’, the observations at period ¢). In
the QR-VAR model, the reported values of the log-likelihood function (logL) and the Akaike and
Schwarz information criteria (AIC and BIC) are based only on the VAR part of the model. In this
table, the full sample period (1972:1-2010:12) is used to estimate the parameters.
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Table 3: Out-of-sample forecasting performance of the QR-VAR and VAR models.

Model Forecast horizon (months)
1 2 3 6 9 12
MSFE, term spread (T'S;)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982
VAR(1) 0.062 0.166 0.269 0.623 0.929 1.158
relative MSFE 0.944%*%*  0.909%**  (.868*** (.826%** (.819*** (.848%**
QR-VAR(4,3) 0.056 0.154 0.235 0.483 0.732 0.948

VAR(4) 0.061 0.172 0.267 0.592 0.894 1.138
relative MSFE 0.920%*%*  (0.892%**  (.879*** (.817*¥F* (.818*** (.832%**
MSFE, short rate (level, i)
QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375
VAR(1) 0.036 0.112 0.207 0.615 1.086 1.616
relative MSFE 0.907*%*  0.842%**  (.801*** (.801*** (0.821*** (.851%**
QR-VAR(4,3) 0.042 0.113 0.194 0.536 1.040 1.701
VAR(4) 0.051 0.143 0.236 0.628 1.154 1.770
relative MSFE 0.821%*%* (. 788***  ().824***  (.853%** (.901*** (.960***
QPS, business cycle (s;)

Univariate model (see (6)) 0.187 0.185 0.187 0.186 0.185 0.186
QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177
relative QPS 1.001 1.039 1.054 1.025 0.957 0.950
QR-VAR(4,3) 0.188 0.189 0.192 0.182 0.171 0.171
relative QPS 1.003 1.025 1.023 0.977 0.921 0.921

Notes: The entries are the MSFE and QPS statistics of different models. Relative MSFEs (QPS) are
obtained as dividing the MSFE (QPS) of the QR-VAR model by the MSFE (QPS) of the VAR
(univariate probit) model. The number of simulation replications in the MC forecasting procedure is
N=10 000. In the table, *, **, * * x denote the 10%, 5% and 1% level of significance in the test of
Clark and West (2007) for equal predictive accuracy between the QR-VAR and the VAR model.
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Table 4: Regime-specific out-of-sample forecast evaluation and business cycle predictabil-
ity.

Model Forecast horizon (months)
1 2 3 6 9 12
Panel A: Relative MSFE, conditional on the business cycle regime
Term spread (T'S;)

Expansion (s; = 0)
QR-VAR(L,1)/VAR(1) 0910 0.862 0.809 0.762 0.760 0.800
QR-VAR(4,3)/VAR(4)  0.881 0.863 0.857 0.782 0.773 0.784

Recession (s; = 1)
QR-VAR(1,1)/VAR(1)  1.038 1.049 1.084 1252 1.234 1.243
QR-VAR(4,3)/VAR(4) 1.027 0.991 0.945 0.974 1.047 1.136

Short rate (level, 7;)
Expansion (s; = 0)
QR-VAR(L,1)/VAR(1)  0.882 0.787 0.730 0.767 0.801 0.840
QR-VAR(4,3)/VAR(4)  0.757 0.748 0.826 0.895 0.924 0.973

Recession (s; = 1)
QR-VAR(1,1)/VAR(1) 0.961 0.929 0.907 0.870 0.865 0.880
QR-VAR(4,3)/VAR(4) 0.971 0.855 0.822 0.794 0.866 0.938
Panel B: AUC, business cycle forecasts (s;)
Univariate model (see (6)) 0.814 0.817 0.811 0.800 0.803 0.812
QR-VAR(1,1) 0.814 0.811 0.797 0.802 0.838 0.859
QR-VAR(4,3) 0.814 0.813 0.805 0.818 0.849 0.866
Notes: In Panel A, the entries are the relative MSFEs between the QR-VAR and VAR models
separately for expansion and recession states where the values under unity signify the superiority of
the former model. In Panel B, the (out-of-sample) AUCs (Area Under the ROC curve) measure the
predictability of the state of the business cycle. Details on the AUC, see, e.g., Berge and Jorda (2011)
and Lahiri and Yang (2013).
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Table 5: Out-of-sample forecasting performance of the augmented models and the ran-

dom walk.
Model Forecast horizon (months)
1 2 3 6 9 12
MSFE, term spread (T'S;)

QR-VAR(1,1) 0.059 0.151 0.239 0.515 0.761 0.982
VAR(2)+ipt 0.057 0.158 0.248 0.549 0.851 1.092
QR-VAR(1,1)+ipt 0.060 0.156 0.246 0.559 0.828 1.054
VAR(2)+emp 0.058 0.155 0.228 0.465 0.712 0.931
QR-VAR(1,1)+emp  0.063** 0.166 0.266 0.648** 0.975* 1.210
RW 0.063* 0.163** 0.258** 0.620* 1.076%*  1.558**

MSFE, short rate (level, i;)

QR-VAR(1,1) 0.033 0.094 0.166 0.493 0.891 1.375
VAR(2)+ipt 0.045%%* 0.127%%* 0.212%* 0.595 1.111 1.740
QR-VAR(1,1)+ipt 0.035 0.102 0.189 0.600 1.108 1.678
VAR(2)-+emp 0.049***  (Q.151***  0.265*%**  0.680***  1.171** 1.788%*
QR-VAR(1,1)+emp  0.041** 0.119* 0.229* 0.774%* 1.429%* 2.111**
RwW 0.044** 0.128%* 0.236** 0.702* 1.356* 2.161%*

QPS, business cycle (s;)

QR-VAR(1,1) 0.188 0.192 0.198 0.190 0.177 0.177
QR-VAR(1,1)+ipt 0.183 0.188 0.193 0.190 0.177 0.173
QR-VAR(1,1)+emp 0.183 0.186 0.191 0.191 0.176 0.168

Notes: The entries are the MSFE and QPS statistics in different models. The results of the
QR-VAR(1,1) model given in the first row for each variable are already reported in Table 3. In the
table, ipt (industrial production) and emp (employment) denote the third variable included in y, (in
addition to the term spread and the first-difference of the short-term interest rate) while RW denotes
random walk forecasts. In the table. *, #x*, * * * denote the 10%, 5% and 1% level of significance in the
Diebold-Mariano (1995) and West (1996) test of equal predictive accuracy between the QR-VAR(1,1)
and the model given in the first column (if denoted significant, the QR-VAR outperforms statistically
the latter model).

Table 6: Out-of-sample forecasting performance of the MSVAR and VIVAR models
(relative MSFEs).

Forecast horizon

1 2 3 6 9 12
Term spread (7'S:)
MSVAR(1)  0.996 0.987 0.983*%  0.841** 0.685** 0.567**
VTVAR(2) 0.975  0.806***  (0.749*** 0.764** 0.675** 0.634**
Short rate (level, i)
MSVAR(1)  0.929 0.875* 0.833*  0.789*  0.731*  0.701*
VTVAR(2) 0.669** 0.502*%*%  0.453**  0.477** 0.413*%* 0.390**

Notes: The entries are the relative MSFEs obtained as dividing the MSFE of the QR-VAR(1,1) model
by the MSFE of the MSVAR/(1) and VTVAR(2) model, respectively. In the table. %, xx, x x * denote
the 10%, 5% and 1% level of significance in the Diebold-Mariano (1995) and West (1996) test of equal
predictive accuracy between the QR-VAR(1,1) and the model given in the first column (if denoted
significant, the QR-VAR outperforms statistically the latter model). Forecasts in the VIVAR model
are obtained following the bootstrap-based forecasting method introduced more detail in Terdsvirta et
al. (2010, pp. 347-349).
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Table 7: MSFE and QPS statistics of the QR-VAR(1,1) model where the Data Gener-
ating Process (DGP) is the QR-VAR(1,1) given in Tables 1 and 2.

MSFE, Y1t MSFE, Yot QPS, St
N 1000 10000 50000 1000 10000 50000 1000 10000 50000
Forecast horizon T =200
1 0.158 0.158 0.158 0.261 0.261 0.261  0.207 0.206 0.206
2 0.400 0.399 0.399 0.277 0.276 0.276  0.200 0.199 0.199
3 0.671  0.668 0.668 0.265 0.263 0.263 0.218 0.217  0.217
6 1.234 1.228 1.228 0.270 0.269 0.269 0.240 0.238 0.238
9 1.535 1.530 1.529 0.278 0.276 0.276  0.257 0.257  0.257
12 1.770  1.765 1.764 0.293 0.292 0.292 0.267 0.265 0.265
T = 500
1 0.171  0.170 0.170 0.253 0.251 0.251 0.204 0.203 0.203
2 0.444  0.442 0.442 0.277 0.276 0.276  0.205 0.204 0.204
3 0.739 0.735 0.735 0.263  0.262 0.262 0.210 0.209 0.208
6 1.455 1.447 1.447 0.264 0.262 0.262 0.219 0.217 0.217
9 2.070  2.061 2.060 0.265 0.264 0.264 0.225 0.224 0.224

12 2723 2710 2709 0283 0.282 0.282 0.236 0.235  0.235

Notes: The entries are based on 5 000 realizations. The sample size is 200 or 500 observations (7'=200
or T=500) and the number of simulation replications in forecast computation is denoted by N where
N=1 000, 10 000 or 50 000. In simulations from the DGP, following the business cycle periods
determined by the NBER, an additional censoring rule is imposed guaranteeing that the sequences of
zeros and ones of the values of s; are at least six-period long.

Table 8: The relative MSFE and QPS statistics of the QR-VAR(1,1) relative to the
VAR(1) model and the univariate autoregressive probit model (6).

Forecast horizon
T 1 2 3 6 9 12

T =200 MSFE, y;; 0.971 0.930 0.884 0.773 0.704 0.641

MSFE, yo; 0.986 0.987 0.983 0.994 1.020 1.058

QPS, s; 1.000 0.939 0.940 0.906 0.941 0.915

T =500 MSFE, y;; 0.964 0.947 0.931 0.899 0.850 0.832

MSFE, yo; 0.997 0.985 0.978 1.006 0.997 0.998

QPS, s; 1.000 1.007 1.000 0.961 0.938 0.950
Notes: The number of simulated realizations is 5 000 and the number of replications in the forecast

computation of the QR-VAR model is N=10 000. See also the notes to Table 7.
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Figure 1: In the left panel, the U.S. short-term interest rate (i;) and its first difference
(Ai;, dashed line) are depicted with the U.S. recession (s; = 1, shaded areas) and
expansion periods. The right panel shows the term spread (7'S;).
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Figure 2: Estimated (in-sample) probability of recession (s; = 1) of the model presented
in Table 1.
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