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Abstract

We develop a general method for estimat-
ing a finite mixture of non-normalized mod-
els. A non-normalized model is defined to
be a parametric distribution with an in-
tractable normalization constant. Existing
methods for estimating non-normalized mod-
els without computing the normalization con-
stant are not applicable to mixture mod-
els because they contain more than one in-
tractable normalization constant. The pro-
posed method is derived by extending noise
contrastive estimation (NCE), which esti-
mates non-normalized models by discrimi-
nating between the observed data and some
artificially generated noise. In particular, the
proposed method provides a probabilistically
principled clustering method that is able to
utilize a deep representation. Applications to
clustering of natural images and neuroimag-
ing data give promising results.

1 INTRODUCTION

Many statistical models are given in the form of
non-normalized densities with an intractable normal-
ization constant; they are also called energy-based.
Since maximum likelihood estimation is computation-
ally very intensive for these models, several estimation
methods have been developed which do not require the
normalization constant (i.e. the partition function), or
somehow estimate it as part of the estimation pro-
cess. These include pseudo-likelihood (Besag, 1974),
contrastive divergence (Hinton, 2002), score matching
(Hyvärinen, 2005), and noise contrastive estimation
(Gutmann and Hyvärinen, 2010).
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On the other hand, mixture models are a well-known
general-purpose approach to unsupervised modelling
of complex distributions, especially in the form of the
Gaussian Mixture Model. In particular, estimation
of a finite mixture model leads to a probabilistically
principled clustering method. Compared to other clus-
tering methods such as hierarchical clustering and k-
means clustering, such model-based methods naturally
quantify the uncertainty of the cluster memberships.

It would be very interesting to be able to model data
with a mixture of non-normalized densities. However,
such applications are scarce, presumably because it is
not known how to estimate such model. In particular,
it is not known if any of the aforementioned methods
is applicable in such a setting, since we have several
normalization constants instead of a single one.

One motivating application where non-normalized
models and mixture models naturally meet is learn-
ing a clustering based on features learned by a neural
network. Deep neural networks have been shown to
learn useful representations from labeled data such as
ImageNet, and such representations seem to be useful
for analyzing other datasets, or for performing other
tasks; this is a fundamental case of transfer learning.

In this study, we develop a general method for estimat-
ing a finite mixture of non-normalized models. The
proposed method is expected to significantly increase
the practicality of non-normalized mixture models. As
an application of great practical interest, we apply the
framework for transferring a deep representation to
clustering of unlabeled data. Our approach provides a
probabilistically principled solution for the clustering
problem, building a probabilistic model that propa-
gates back to the original data space.

To accomplish our goal, first, we extend noise con-
trastive estimation (NCE) to estimate a finite mix-
ture of non-normalized models and show its consis-
tency. Then, based on the observation that classifi-
cation learning with neural networks is implicitly as-
suming an exponential family as a generative model,
we propose a method for clustering unlabeled data by
using a deep representation. The proposed method
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estimates a finite mixture of distributions in an ex-
ponential family that is derived from the deep rep-
resentation, by using the proposed extension of NCE
with a particular choice of noise. Finally, we apply the
proposed method to clustering of natural images and
neuroimaging data, with promising results.

2 BACKGROUND: NOISE
CONTRASTIVE ESTIMATION

In this section, we briefly review the problem of non-
normalized models, and its solution by noise con-
trastive estimation (Gutmann and Hyvärinen, 2010).

Suppose we have N samples x1, · · · , xN from a para-
metric distribution

p(x | θ) =
1

Z(θ)
p̃(x | θ), (1)

where θ is an unknown parameter and Z(θ) is the
normalization constant. For several statistical models
such as Markov random fields (Li, 2001) and energy-
based overcomplete ICA models (Teh et al., 2004),
only the non-normalized density p̃(x | θ) is given and
the calculation of Z(θ) is intractable. Thus, several
methods have been developed to estimate θ without
explicitly computing Z(θ) (Besag, 1974; Hinton, 2002;
Hyvärinen, 2005; Gutmann and Hyvärinen, 2010).

In noise contrastive estimation (NCE), the non-
normalized model is rewritten as

log p(x | θ, c) = log p̃(x | θ) + c, (2)

where the scalar c = − logZ(θ) is also viewed as an
unknown parameter and estimated from data. In addi-
tion to data x1, · · · , xN , we generate M noise samples
y1, · · · , yM from a noise distribution n(y). The noise
distribution should be reasonably difficult to discrimi-
nate from the real data, while having a tractable prob-
ability density function. For example, n(y) can be set
to the Gaussian distribution with the same mean and
covariance with data. Then, the estimate of (θ, c) is
defined by learning to discriminate between the data
and the noise as accurately as possible:

(θ̂NCE, ĉNCE) = arg max
θ,c

ĴNCE(θ, c), (3)

where

ĴNCE(θ, c) =
1

N

N∑
t=1

log
Np(xt | θ, c)

Np(xt | θ, c) +Mn(xt)

+
1

N

M∑
t=1

log
Mn(yt)

Np(yt | θ, c) +Mn(yt)
. (4)

The objective function ĴNCE is the log-likelihood of the
logistic regression classifier. NCE has consistency and

asymptotic normality under mild regularity conditions
(Gutmann and Hyvärinen, 2012). Note that NCE is
somewhat similar in spirit to Generative Adversarial
Networks (Goodfellow et al., 2014), which aim to gen-
erate realistic data by training a generative network
and a discriminative network simultaneously.

3 NON-NORMALIZED MIXTURE
MODELS AND EXTENDING NCE

In this section, we first introduce the problem of non-
normalized mixture models. Then, we develop a gen-
eral method for estimating non-normalized mixture
models by extending NCE and discuss its application
to clustering. We also prove the consistency of the
extended NCE.

3.1 Non-normalized mixture models

We begin by defining the statistical model whose esti-
mation is the central problem of this study. Suppose
we have N samples x1, · · · , xN from a finite mixture
distribution

p(x | θ, π) =

K∑
k=1

πk · pk(x | θk), (5)

where πk > 0,
∑K
k=1 πk = 1, and

pk(x | θk) =
1

Z(θk)
p̃k(x | θk). (6)

Here, θ = (θ1, · · · , θK) and π = (π1, · · · , πK) are
unknown parameters and the normalization constant
Z(θk) of each component pk(x | θk) is intractable.

Existing methods for estimating non-normalized mod-
els are not applicable to (5) since it includes more than
one intractable normalization constant. Although Nair
and Hinton (2008) extended the contrastive divergence
method to estimate a finite mixture of restricted Boltz-
mann machines, that is only a special case.

For language modeling, Wang et al. (2017) proposed a
statistical model called the trans-dimensional random
field model, which has a similar form to (5) but they
assumed the class label k is also observed. Wang et
al. (2017) estimated this model based on the stochas-
tic approximation technique (Younes, 1989) and later
Wang and Ou (2018) improved its efficiency by using
NCE.

3.2 Extending noise contrastive estimation

Here, we propose an extension of NCE to estimate the
non-normalized mixture model (5) in a general setting.
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First, we reparametrize (5) as

p(x | θ, c) =

K∑
k=1

pk(x | θk, ck), (7)

where c = (c1, · · · , cK) with ck = log πk − logZ(θk)
and each pk(x | θk, ck) is defined as

log pk(x | θk, ck) = log p̃k(x | θk) + ck. (8)

When K = 1, this reparametrization reduces to that
used in the original NCE in (2). Similarly to the
original NCE, we consider c as an additional un-
known parameter. Then, we generate M noise sam-
ples y1, · · · , yM from a noise distribution n(y) and es-
timate (θ, c) in the same way as the original NCE in
(3) and (4), that is, we use the definition (7) in the
original NCE objective function (4). This estimator
has consistency under mild regularity conditions sim-
ilar to the original NCE, as will be shown in the next
subsection. Note that the additional parameter ck in-
corporates both the mixture weight πk and the nor-
malization constant Z(θk) and so we cannot obtain an
estimate of πk from the estimate of ck, although it is
not a problem for clustering application as shown next.

The estimation result can be used for clustering of
x1, · · · , xN . Specifically, by introducing a hidden vari-
able z taking values in {1, · · · ,K}, the non-normalized
mixture model (5) is rewritten in a hierarchical form:

p(z = k | π) = πk (k = 1, · · · ,K), (9)

p(x | z = k; θ) = pk(x | θk). (10)

Then, the posterior of z given x is

p(z = k | x; θ, π) =
πkpk(x | θk)∑K
j=1 πjpj(x | θj)

, (11)

for k = 1, · · · ,K. By reparametrization, (11) is rewrit-
ten as

p(z = k | x; θ, c) =
exp (log p̃k(x | θk) + ck)∑K
j=1 exp (log p̃j(x | θj) + cj)

.

(12)

Thus, based on the posterior p(zt = k | xt; θ̂, ĉ) for
each xt, clustering of x1, · · · , xN is obtained.

3.3 Consistency of extended NCE

Here, we show the consistency of the extended NCE
introduced in the previous subsection for estimating
non-normalized mixture models.

When all components in the non-normalized mixture
model (7) belong to the same parametric model, the
parameters of (7) have indeterminacy with respect to

the ordering of K components. To remove this inde-
terminacy, we put order constraints on θ1, · · · , θK . For
example, when each θk is scalar, we assume θ1 < · · · <
θK .

Let ξ = (θ, c). Suppose we have N samples x1, · · · , xN
from p(x | ξ∗) in (7). Here, from the discussion
above, the true parameter value ξ∗ = (θ∗, c∗) is de-
fined uniquely. We consider the asymptotics where
N → ∞, M → ∞ and M/N → ν, which is the same
setting with Gutmann and Hyvärinen (2012). Let

JNCE(ξ) =

∫
p(x | ξ∗) log

Np(x | ξ)
Np(x | ξ) +Mn(x)

dx

+ν

∫
n(y) log

Mn(y)

Np(y | ξ) +Mn(y)
dy. (13)

Then, the consistency of extended NCE is stated as

follows. Here,
p→means the convergence in probability.

Theorem 1. Assume the following.

• n(x) is nonzero whenever p(x | ξ∗) is nonzero.

• supξ |ĴNCE(ξ)− JNCE(ξ)| p→ 0.

• The matrix I =
∫
g(u)g(u)>Pν(u)p(u | ξ∗)du has

full rank, where

g(u) = ∇ logξ p(u | ξ)
∣∣
ξ=ξ∗

, (14)

Pν(u) =
νn(u)

p(u | ξ∗) + νn(u)
. (15)

Then, ξ̂NCE in Section 3.2 converges in probability to

ξ∗: ξ̂NCE
p→ ξ∗.

The proof is obtained by extending the proof for the
original NCE (Theorem 2 of Gutmann and Hyvärinen,
2012), which is based on the nonparametric character-
ization of the log-pdf of data distribution (Theorem
1 of Gutmann and Hyvärinen, 2012). This character-
ization becomes non-trivial when the K components
belong to the same parametric model. Specifically, we
need the following Lemma.

Lemma 1. Suppose that the components pk(x | θk)
in (5) belong to the same parametric model p(x | θ).
Assume the following.

(a) The set {p(x | θ) | θ ∈ Θ} is linearly independent,
where Θ is the parameter space of the parametric
model p(x | θ).

(b) The parameters θ∗1 , · · · , θ∗K are all different.

(c) The parameters π∗1 , · · · , π∗K are all nonzero.
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(d) n(x) is nonzero whenever p(x | ξ∗) is nonzero.

Then,

arg max
ξ
JNCE(ξ)

={(ξ∗σ(1), · · · , ξ
∗
σ(K)) | σ ∈ Sn}, (16)

where Sn is the set of all permutations of {1, · · · ,K}.

The proof is given in Supplementary Material. As-
sumption (a) holds for general exponential families
including the Gaussian distribution. Under this as-
sumption, assumptions (b) and (c) mean that the true
data-generating distribution has exactly K compo-
nents. Assumption (d) is standard in noise contrastive
estimation (Gutmann and Hyvärinen, 2012) and eas-
ily fulfilled by taking, for example, a Gaussian as the
noise distribution.

4 CLUSTERING WITH DEEP
REPRESENTATION

In this section, based on the extended NCE in the
previous section, we propose a clustering method using
deep representation. First, we review an interpretation
where an exponential family is implicitly assumed as
a generative model (probability distribution of data
in each category) in classification learning with neural
networks. Next, we investigate an extension of NCE
with multiple noise distributions. Finally, we present
an ensuing method for clustering deep representations.

4.1 Exponential family and neural networks

Here, we review the relationship between an exponen-
tial family and classification with neural networks. See
Dai (2015) and Xie et al. (2016) for details.

We consider image classification for convenience. Let x
be image data and z be its category. We assume that z
takes values in {1, · · · , L}. In classification with neural
networks, the softmax function is commonly used in
the output layer. Namely, the probability output is
computed by

p(z = l | x) =
exp(

∑d
i=1 wlifi(x))∑L

j=1 exp(
∑d
i=1 wjifi(x))

, (17)

where l = 1, · · · , L, d is the number of units in the
last hidden layer, fi(x) is the activation of the i-th
unit in the last hidden layer when x is input to this
network, and wji is the connection weight between the
i-th unit in the last hidden layer and the j-th output
unit. Thus, neural networks learn to extract nonlinear
features f1, · · · , fd that are useful for image classifica-
tion.

From (17) and Bayes’ formula, we obtain

p(x | z = l)

=p(x | z = 1)
p(z = 1)

p(z = l)
exp

(
d∑
i=1

(wli − w1i)fi(x)

)
,

(18)

for l = 1, · · · , L. Here, the prior probability p(z) is
defined from the proportion of each category in the
training data. Therefore, the distribution of images in
the l-th category p(x | z = l) belongs to the exponen-
tial family

p(x | θ) = h(x) exp

(
d∑
i=1

θifi(x)−A(θ)

)
(19)

with θi = wli and A(θ) = log p(z = l) − log p(z = 1),
where

h(x) = p(x | z = 1) exp

(
−

d∑
i=1

w1ifi(x)

)
. (20)

Thus, classification with neural networks (17) implic-
itly assumes the exponential family (19) as a genera-
tive model.

For image data, many pretrained networks are publicly
available such as AlexNet (Krizhevsky et al., 2012) and
inception-v3 (Szegedy et al., 2015). Although these
networks were trained for ImageNet competition, they
have learned a useful representation of general natural
images. Indeed, they work well empirically as feature
extractors for other image data. Therefore, the distri-
butional assumption (19) seems to be reasonable even
for image categories outside of the ImageNet competi-
tion.

4.2 NCE with multiple noise distributions

In the original NCE, we generate noise samples from
one noise distribution and discriminate between data
and noise. In order that such discrimination learns
deep structure in the data, it would intuitively seem
important that the noise distribution is as close as pos-
sible to the real data distribution. Thus, it would be
more efficient to use several noise distributions, since
different noise distributions would enable to learn dif-
ferent kinds of data structure. Here, we introduce
NCE with multiple noise distributions and discuss its
equivalence to the original NCE with a mixture noise
distribution.

Suppose we have N samples x1, · · · , xN from a
non-normalized model (1) or a non-normalized mix-
ture model (5). We consider L noise distribu-
tions n1(y), · · · , nL(y) and generate Ml noise samples
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y
(l)
1 , · · · , y(l)Ml

from each nl(y). Then, similarly to the
original NCE and its extension in Section 3.2, an esti-
mate of (θ, c) can be defined by discriminating between
L+ 1 classes (data, noise 1, · · · , noise L) as correctly
as possible:

(θ̂MNCE, ĉMNCE) = arg max
θ,c

ĴMNCE(θ, c), (21)

where

ĴMNCE(θ, c)

=
1

N

N∑
t=1

log
Np(xt | θ, c)

Np(xt | θ, c) +
∑L
l=1Mlnl(xt)

+
1

N

L∑
l=1

Ml∑
t=1

log
Mlnl(y

(l)
t )

Np(y
(l)
t | θ, c) +

∑L
l=1Mlnl(xt)

.

(22)

On the other hand, we can regard

y
(1)
1 , · · · , y(1)M1

, · · · , y(L)1 , · · · , y(L)ML
as samples from

the mixture distribution

n(y) =

L∑
l=1

Ml

M1 + · · ·+ML
nl(y), (23)

and use the original NCE (θ̂NCE, ĉNCE) as (3).

In fact, these two estimators coincide as follows:

Theorem 2.

(θ̂MNCE, ĉMNCE) = (θ̂NCE, ĉNCE). (24)

The proof is given in Supplementary Material. From
Theorem 2, NCE with multiple noise distributions has
the same statistical properties with the original NCE.
We will present simulation results for a typical situa-
tion where using multiple noise distributions is bene-
ficial in Section 5.

4.3 Deep clustering method

Now, we combine the developments above to finally
provide a method for transferring the representation
of a deep neural network to clustering of unlabeled
data, using the exponential family introduced in Sec-
tion 4.1 and the extensions of NCE proposed in Sec-
tion 3.2 and Section 4.2. While in the current state
of research, it seems that the only way to employ the
deep representation for clustering is to heuristically ap-
ply conventional clustering algorithms to the feature
vectors, here we provide a probabilistically principled
clustering method that leverages the deep representa-
tion. Again, for concreteness of exposition, we con-
sider image clustering, although the method is quite
general.

Suppose we have N images x1, · · · , xN and a neu-
ral network previously trained (“pretrained”) on some
other image dataset (e.g., AlexNet, inception-v3). We
assume that x1, · · · , xN belongs to the same exponen-
tial family (19) with the image data on which the net-
work was pretrained, in other words, the difference
is only in the last layer weights. Then, the generative
model of x1, · · · , xN is a finite mixture of distributions
in the same exponential family:

p(x | θ, π) =

K∑
k=1

πk · h(x) exp

(
d∑
i=1

θkifi(x)−A(θk)

)
,

(25)

where K is the number of image categories in
x1, · · · , xN . Note that A(θk) here are not known and
intractable, although they were known for the cate-
gories used in training. Like (7), we reparametrize
(25) as

p(x | θ, c) = h(x)

K∑
k=1

exp

(
d∑
i=1

θkifi(x) + ck

)
, (26)

where c = (c1, · · · , cK). From (20), the function h is a
function of the distribution of one image category p(x |
z = 1) and so it is totally unknown. Yet, clustering of
x1, · · · , xN is possible if we can estimate θ and c, since
the function h cancels out in the posterior:

p(z = k | x; θ, c) =
exp

(∑d
i=1 θkifi(x) + ck

)
∑K
j=1 exp

(∑d
i=1 θjifi(x) + cj

) ,
(27)

where k = 1, · · · ,K.

We use the NCE extensions in Section 3.2 and Section
4.2 to estimate θ and c in (26). Here, we have to be
careful in the choice of the noise distribution because of
the unknown function h in (26). If we generate noise
samples artificially, h remains in the objective func-
tion of NCE (4) and so the optimization is impossible.
To get rid of h, we propose here to use the original
training data of the pretrained network as noise sam-

ples. Specifically, let x̃
(1)
1 , · · · , x̃(1)M1

, · · · , x̃(L)1 , · · · , x̃(L)ML

be the training data of the pretrained network, where
L is the number of categories and Ml is the number of
samples in the l-th category. Then, the prior proba-
bility is p(z = l) = Ml/M where M = M1 + · · ·+ML.
Therefore, from (18) and (20), the distribution of im-
ages in the l-th pre-training category (here used as
noise) is

ql(x̃) = h(x̃)
M1

Ml
exp

(
d∑
i=1

wlifi(x̃)

)
(28)

for l = 1, · · · , L. Thus, we regard q1, · · · , qL as noise
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distributions and the training data x̃
(l)
1 , · · · , x̃(l)Ml

as

samples from ql for l = 1, · · · , L, respectively1.

In summary, the estimate of (θ, c) is given by

(θ̂MNCE, ĉMNCE) = arg max
θ,c

ĴMNCE(θ, c), (29)

where

ĴMNCE(θ, c) =
1

N

N∑
t=1

log
Np̄(xt | θ, c)

Np̄(xt | θ, c) +M1n̄(xt)

+
1

N

L∑
l=1

Ml∑
t=1

log
M1 exp

(∑d
i=1 wlifi(x̃

(l)
t )
)

Np̄(x̃
(l)
t | θ, c) +M1n̄(x̃

(l)
t )

, (30)

p̄(x | θ, c) =

K∑
k=1

exp

(
d∑
i=1

θkifi(x) + ck

)
, (31)

n̄(x) =

L∑
l=1

exp

(
d∑
i=1

wlifi(x)

)
. (32)

Note that h cancels out in ĴMNCE, and so the objec-
tive function only depends on quantities we can read-
ily compute. Using the estimate (29), clustering of
x1, · · · , xN is obtained by the posterior (27).

5 SIMULATION RESULTS

In this section, we use simulations to further confirm
the validity of the estimation of non-normalized mix-
ture models by extensions of NCE proposed in Section
3.2 and Section 4.2. As a special case of finite mixture
models (7), we consider the one-dimensional Gaussian
mixture distribution. Namely,

p(x | θ, c) =

K∑
k=1

exp(θk1x
2 + θk2x+ ck). (33)

where we pretend not to be able to compute the nor-
malization constants for the purpose of this simula-
tion. We generated N samples x1, · · · , xN from the
two-component Gaussian mixture distribution 0.5 ·
N(0, 1) + 0.5 · N(4, 1). The sample size N was set to
29, 210, · · · , 218 and the simulation was repeated 100
times for each sample size.

We consider two estimation methods, both of which
are based on the proposed extensions of NCE. The first
method is NCE with M = N noise samples generated
from the Gaussian distribution N(2, 5), which has the
same mean and variance with the true data-generating

1In practice, using only categories relevant to the new
data may suffice and it reduces computational cost.

(a)
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Figure 1: Estimation errors for (a) θ and (b) c in the
Gaussian mixture distribution (33).

distribution 0.5 · N(0, 1) + 0.5 · N(4, 1). The second
method is NCE with M1 = M2 = N/2 noise samples
generated from two Gaussian distributions N(0, 1) and
N(4, 1). We solved the optimization (3) in NCE by
the nonlinear conjugate gradient method (Rasmussen,
2006).

Figure 1 plots the median of the squared errors for θ
and c of each estimation method with respect to the
sample size N . Here, among the two estimated compo-
nents that are non-normalized Gaussian distributions,
we regarded the one with the smaller mean as the first
component p1(x | θ1, c1). For θ, we also plot the me-
dian of the squared error of the maximum likelihood
estimator computed by the MATLAB function fitg-
mdist. The estimation errors converge to zero for both
θ and c, which provides evidence for the consistency of
NCE extensions. Also, the estimation accuracy of the
second method is slightly better than that of the first
method, which is understood as follows. From Theo-
rem 1, the second method is equivalent to NCE with
the noise distribution equal to the true data-generating
distribution. Therefore, noise in the second method is
more difficult to discriminate from data than in the
first method.
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6 APPLICATION TO IMAGE
CLUSTERING

In this section, we apply the proposed method to im-
age clustering. We use the training data of “Dogs vs.
Cats” competition at kaggle2 (N = 25000), which con-
sists of 12500 dog images and 12500 cat images. As
a pretrained network, we use inception-v3 (Szegedy
et al., 2015), which extracts a d = 2048 dimensional
feature vector from image data. This network was
trained for ImageNet competition. For noise samples,
we use canine and feline images in the training data
of inception-v33 (M = 186125, L = 149). We set the
number of clusters to K = 2.

We solved the optimization (3) in NCE by the non-
linear conjugate gradient method (Rasmussen, 2006)
with 10 random initial values of (θ, c). Among 10 con-
verged solutions, we picked the one with the maximum
value of objective function ĴMNCE.

For comparison, we fitted the two-component Gaus-
sian mixture model (GMM) with diagonal covariance
matrices to the feature vectors of N images by using
the MATLAB function fitgmdist. We also fitted the
two-component GMM with isotropic covariance ma-
trices by EM algorithm. Although these models also
provide clustering, it is heuristic and not probabilisti-
cally rigorous.

Table 1 shows the clustering results. Here, we classify
an image x into cluster k if p(z = k | x) > 0.5. In
all methods, the two clusters seem to separate dogs
and cats well, although the training of inception-v3
was done with more detailed categories like “Scotch
terrier” or “snow leopard.” Furthermore, the proposed
method has better classification accuracy compared to
GMMs.

Table 1: Image clustering results. (a) The proposed
method. (b) GMM with diagonal covariance matrices.
(c) GMM with isotropic covariance matrices.

a) dog cat
cluster 1 12400 145
cluster 2 100 12355

b) dog cat
cluster 1 12490 325
cluster 2 10 12175

c) dog cat
cluster 1 12490 792
cluster 2 10 11708

2https://www.kaggle.com/c/dogs-vs-cats
3From the 152-th category “Chihuahua” to the 300-th

category “meerkat”. We use only color images.

Figure 2 shows the histogram of the posterior proba-
bility in the first cluster p(z = 1 | x). While the GMMs
cluster all images with high confidence, the proposed
method provides more nuanced probabilities. The his-
togram of the logit score of the posterior probability
is given in Supplementary Material.
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Figure 2: Histogram of the posterior probability p(z =
1 | x). The y-axis is in scale log10(1+y), where y is the
frequency. (a) The proposed method. (b) GMM with
diagonal covariance matrices. (c) GMM with isotropic
covariance matrices.

Next, we show that the proposed method gives a good
estimate of the uncertainty of clustering. Table 2
shows the estimated and actual numbers of misclassi-
fication. Here, the estimated number of misclassifica-
tion is defined as the sum of the misclassification prob-
ability min(p(z = 1 | x), p(z = 2 | x)) over all images
x. We assume that the learned clusters really coincide
with the pre-defined classes of cats and dogs, so we
take the “actual” misclassification results in Table 1 as
the ground truth. Compared to the proposed method,
GMMs significantly underestimate the uncertainty in
clustering results. Thus, the proposed method quanti-
fies uncertainty in classification more accurately than
GMMs.

7 APPLICATION TO CLUSTERING
OF NEUROIMAGING DATA

In this section, we apply the proposed method to
clustering of neuroimaging data by using a deep
representation obtained by time contrastive learning
(Hyvärinen and Morioka, 2016), which is a nonlinear
ICA method that finds a representation by solving the



Estimation of Non-Normalized Mixture Models

Table 2: Estimated and actual number of misclassi-
fication. (a) The proposed method. (b) GMM with
diagonal covariance matrices. (c) GMM with isotropic
covariance matrices.

estimate actual
(a) 169.98 245
(b) 0.66 335
(c) 5.58 802

task of discriminating time segments.

We used magnetoencephalography (MEG) data from
the CamCAN repository 4 (Taylor et al., 2016; Shafto
et al., 2014). The data are electromagnetic measure-
ments of the human brain activity taken at a sampling
rate of 1000 Hz with 306 channels, consisting of two
categories: resting MEG and task MEG. As prepro-
cessing, we applied Morlet filtering around the alpha
frequency band, reduced the dimension from 306 to
100 by using PCA, and downsampled to 50 Hz.

First, we trained a three-layer neural network on rest-
ing MEG (400 seconds) from four subjects by TCL.
Following Hyvärinen and Morioka (2016), the length
of each time segment was set to 12.5 seconds (i.e., 625
data points). The number of nodes in each hidden
layer was set to 40–20–10. As the activation function,
we adopted the maxout units with two affine fully con-
nected weight groups in middle layers and the absolute
value units in the output layer. Thus, we obtained a
feature extractor that outputs a 10-dimensional fea-
ture vector from each data point of 306-ch MEG.

Then, we applied the proposed method to clustering of
resting MEG (8000 data points, separate from train-
ing data) and task MEG (7000 data points) from one
subject. For noise samples in NCE, we used the train-
ing data of TCL (see Section 4.3). For comparison, we
also fitted the Gaussian mixture model (GMM) with
diagonal covariance matrices to the feature vectors of
MEG by using the MATLAB function fitgmdist. We
classified each data point of MEG into the cluster with
the maximum posterior probability. Each cluster is
considered to represent a brain state.

Figure 3 shows the scatter plots of consecutive pos-
terior probabilities for K = 2. It indicates that the
posterior changes almost randomly in GMM, which is
unrealistic since the brain states should be relatively
stable.

Figure 4 shows the histogram of brain states for K =
10. Table 3 shows their entropy values. They im-
ply that resting MEG has more temporal variability of

4http://www.mrc-cbu.cam.ac.uk/datasets/camcan
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Figure 3: Scatter plots of consecutive posterior prob-
abilities (p(zt−1 = 1 | xt−1), p(zt = 1 | xt)) for K = 2.

brain states than task MEG, especially with the pro-
posed method. This result is consistent with previous
findings in neuroscience (Chang and Glover, 2010).

proposed GMM

2 4 6 8 10
0

1000

2000

2 4 6 8 10
0

2000

4000

6000

2 4 6 8 10
0

1000

2000

2 4 6 8 10
0

1000

2000

Figure 4: Histogram of the brain states (upper: rest-
ing, lower: task) for K = 10.

Table 3: Entropy values of the brain states for K = 10
(in bits).

resting task
proposed 1.996 1.351

GMM 2.062 1.833

8 CONCLUSION

We extended noise contrastive estimation (NCE) to
estimate a finite mixture of non-normalized models.
Both theory and simulation results showed the validity
of this extension of NCE.

Based on the extended NCE, we proposed a method
for clustering unlabeled data by using deep representa-
tion. Application to clustering of natural images and
neuroimaging data gave promising results. In partic-
ular, the proposed method was shown to give good
estimates of uncertainty in the clustering, in contrast
to a heuristic application of Gaussian mixture mod-
els. Concurrently to our present contribution, a re-
lated method was proposed by Rhodes and Gutmann
(2019)5.

5We thank Hiroshi Morioka for providing the script for
TCL. Also we thank Ricardo Monti for helpful comments.
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