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ABSTRACT 

 

Purpose 

We have created a cloud-based machine learning system (CLOBNET) that is an open source, lean 

infrastructure for electronic health record (EHR) data integration capable of extract, transform, and 

load (ETL) processing. CLOBNET enables comprehensive analysis and visualization of structured EHR 

data. We demonstrate the utility of CLOBNET by predicting primary therapy outcomes of high-grade 

serous ovarian cancer (HGSOC) patients based on EHR data. 

 

Materials and Methods  

CLOBNET is built using open-source software to make data preprocessing, analysis, and model 

training user friendly. The source code of CLOBNET is available in GitHub. The HGSOC dataset was 

based on a prospective cohort of 208 HGSOC patients treated at Turku University Hospital, Finland 

from 2009 to 2019 for whom comprehensive clinical and EHR data were available. 

 

Results 

We trained machine learning (ML) models using clinical data including a herein developed 

dissemination score that quantifies the disease burden at the time of diagnosis to identify patients 

with progressive disease (PD) or a complete response (CR) based on Response Evaluation Criteria in 

Solid Tumors (RECIST 1.1). The best performance was achieved with a logistic regression model, 

which resulted in an area under receiver operating characteristic curve (AUROC) of 0.86 with 

specificity of 73% and sensitivity of 89%, when classifying between PD and CR patients. 

 

Conclusion 

We have developed an open-source computational infrastructure, CLOBNET, which enables 

effective and rapid analysis of EHR and other clinical data. Our results demonstrate that CLOBNET 

allows predictions to be made based on EHR data to address clinically relevant questions. 
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INTRODUCTION 

Electronic health record (EHR) data provide an untapped and currently underused resource for 

improving health care and patient management. However, many current EHR systems comprise a 

colossal, distributed dataset of patient information, without an integrated method for secondary 

use of the data, such as healthcare analytics or research, thereby severely hindering extensive use 

of EHR data.1-3 Furthermore, the size and complexity of EHR calls for automatic data handling 

systems and machine learning (ML) algorithms that can analyze and translate these data to make 

them useful for research, patient care, and health economics.2 

 

Translating raw EHR data into medical benefits requires the ability to utilize vast but dispersed 

knowledge in various databases and machine learning (ML) algorithms in a clinically relevant way. 

ML algorithms are powerful because they can process highly dimensional data and discover patterns 

from complex data without extensive prior knowledge of the underlying variable relationships. 

Extract-transform-load (ETL) processes are needed to deliver the data from various sources to a 

single database in a usable format. Interpreting EHR data requires the use of biological and medical 

databases, such as the International Classification for Diseases-104 or NOMESCO Classification of 

Surgical Procedures.5 These requirements, together with the various formats used in managing EHR 

data, call for an infrastructure that allows for short and agile development cycles and for the 

integration of clinical expertise into systems development.  

 

Extensive work has been done on standardizing ontologies and data structures to make EHR data, 

such as Informatics for Integrating Biology & the Bedside (i2b2)6,7 or Health Level 7,8 available for 

research and other secondary usage. Although several systems have been created to serve distinct 

research settings,9-11 these systems are often either too specialized or heavy-duty systems requiring 
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laborious setup and administration tasks. Thus, they do not allow rapid iteration and testing of 

methods and results. 

 

To address the challenge of creating clinically relevant models with ML from heterogeneous clinical 

data stored in several different locations, we have developed an open-source cloud-based machine 

learning system (CLOBNET). This computational infrastructure integrates ETL processes, data 

warehousing, variable aggregation, ML implementation, and a graphical user interface (GUI) in a 

single, lean system. Using CLOBNET, clinical research questions can be answered with combined 

data and ML in a streamlined and agile fashion. Regarding the information flow from patients to 

new models and extracted information, CLOBNET is positioned downstream of systems storing EHR 

data or other structural databases containing patient-related data, which cannot readily be analyzed 

using ML or are stored in distinct locations or networks. 

 

To demonstrate the utility of CLOBNET, we used it to predict the therapy response of patients with 

high-grade serous ovarian cancer (HGSOC). HGSOC is the largest and most lethal epithelial ovarian 

cancer subtype, with a 43% five-year survival rate.12 The primary standard of care therapy consists 

of primary or interval debulking surgery (PDS or IDS) combined with adjuvant or neoadjuvant 

platinum-based chemotherapy. However, up to 20% of patients do not respond to primary therapy, 

and have primary progressive disease (PD) associated with an extremely poor prognosis. Currently, 

the clinically used prognostic markers for HGSOC are residual tumor after debulking surgery,13 age 

at diagnosis, levels of the cancer antigen 125 (CA-125), and the International Federation of 

Gynecologists and Obstetricians 2014 (FIGO 2014) stage, which classifies disease spread.14 However, 

the current markers are poor predictors of the lack of response to treatment. We hypothesized that 

detailed clinical data, including a dissemination score introduced herein that quantifies the disease 
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burden in a patient, combined with EHR data using ML, would be superior to current markers in 

terms of the identification of patients with PD, thereby opening a window to offer additional 

therapies to eventually improve the prognosis and quality of life of patients with aggressive 

HGSOC.15  Our results show that machine learning classification based on clinical data alone allows 

identifying poor and good responding HGSOC patients. 

 

METHODS 

CLOBNET 

CLOBNET is a scalable machine learning environment designed to process clinical data and to 

generate predictive models for disease prognostics. It contains all the required processes in a single 

package, thus providing a convenient setup and fast development of the automatic integration of 

data from multiple sources, such as research databases and EHR systems. As the data in CLOBNET 

are first gathered in a structured query language (SQL) database, transformation scripts can be 

developed in a uniform way using solely SQL, and the preprocessed data can be loaded to tables 

storing the data and fed to ML algorithms. Once possible error sources, such as textual information 

stored in laboratory data time series, are identified, these scripts can be updated, making the 

development of preprocessing straightforward and simple. By storing the untransformed data in 

the same database, the data can be visualized or analyzed for other purposes, such as patient history 

browsing using CLOBNET’s graphical user interface (GUI), which is illustrated in Supplementary 

Figure 2.  

 

Technical Implementation 

CLOBNET was built on the Ubuntu 16.04 Long Term Support (LTS) operating system and other 

openly available software. The data was stored in the PostgreSQL 9.5.12 database, and the ML 
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algorithms were run by Python 2.7.12 using Pandas 0.17.1, Scipy 1.0.0 and Scikit-learn 0.1916 

libraries. The GUI was built as a web page using PHP 7.0.30 with Bootstrap 4.0 and Chart.js libraries 

at the front end and hosted via Apache 2.4.18. Inside CLOBNET, data were analyzed using Python 

2.7.12. Python environment was connected to PostgreSQL database using psycopg library and Web 

GUI using PHP’s pgsql extension. The main functionalities of CLOBNET are depicted in Figure 1. 

EHR data synchronization to CLOBNET was built upon a standard SQL connection. A user account 

for the data provider was created with privileges to read a table with cohort patients’ personal IDs 

and to write data into tables storing the EHR data. Making the data connections directly to the SQL 

database enabled various middleware implementations, which may vary between hospitals. The 

data synchronization from live EHR was done by Turku University Hospital’s internal data service, 

the technical implementation of which is outside and out of scope of the CLOBNET system. 

The data gathered from EHR and research database was stored in the SQL database in source-

specific tables, containing the pseudonym as the main identificator per row. Tables containing 

clinical data, such as laboratory data, diagnosis codes, operation codes and medication data were 

merged into single table that was used in the treatment prediction analyses.  The database structure 

and the schema of CLOBNET is provided in supplementary material. The source code is published in 

GitHub (https://github.com/isoviita/CLOBNET) under BSD 2-Clause License. 

 

Dissemination Score 

The patient disease burden was systematically assessed by the operating team using a standardized 

16-part questionnaire, where each part was scored as shown in Table 1. Every major abdominal 

anatomical site and possible metastasis were included to obtain a complete picture of 

dissemination, as the level of dissemination is a prognostic factor.14 The dissemination score ranges 

from zero to 21. Scores close to zero mean limited disease, whereas high scores denote 
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metastasized disease and an extensive disease burden. The dissemination score was assessed by 

the operating gynecologic oncologist or operating team during diagnostic laparoscopy, primary 

debulking surgery (PDS) or interval debulking surgery (IDS), resulting in a high-resolution view of the 

disease burden.  

 

Cohort 

This study was based on a prospective cohort of ovarian cancer patients who were treated in Turku 

University Hospital, Turku, Finland between October 2009 and January 2019. At the time of the 

study in January 2019, the cohort had 208 HGSOC patients. The demographics and clinical 

characteristics of the cohort are shown in Table 2. Experienced gynecologic oncologists were 

responsible for clinical data collection and systematic disease dissemination assessments during the 

treatment. All the patients participating in the study provided informed consent, and the research 

was approved by the ethics committee of Turku University Hospital. A research database for patient 

information storage was created using FileMaker Server 13 and maintained by study nurses and 

participating researchers. Outcome predictions were evaluated using defined outcomes of the 

Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 as endpoints,17 as these are clearly 

defined and outlined by the Gynecological Cancer Intergroup (GCIG) and widely used by clinicians 

and the research community. For the machine learning analyses, progressive disease (PD) and 

complete response (CR) outcomes were selected for classification of two clinically clearly distinct 

prognostic groups.  

 

Statistical Analysis 

The statistical analysis was done using SPSS Statistics 24.0.0.2 (IBM Corp., Armonk, NY). For 

categorical dependent variables, the statistical significance of between-group differences was 
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assessed using the c2-test or Fisher’s exact test when the expected cell count was less than five. For 

continuous dependent variables, statistical significance was determined using the Kruskal–Wallis or 

Mann–Whitney U test, p values under 0.05 regarded as statistically significant.  We used area under 

receiver operating characteristic curve (AUROC) as the evaluation metric as the ROC figure shows 

directly sensitivity and specificity.  

 

In machine learning analyses, effect of class imbalance was tested by weighting the classes inversely 

proportional to class frequencies in the input data. Patients with incomplete clinical data were 

excluded, as the ML models required full set of input variables. ML model cross-validation was done 

using leave-one-out cross-validation (LOOCV). 

 

RESULTS 

CLOBNET enables testing a number of ML models, automates the data flow, analysis, and 

visualization, without the need for manual data import or file handling. An overview of CLOBNET is 

provided in Figure 1, and a more detailed schematic is given in Supplementary Figure 1. The 

automated processes in CLOBNET facilitate iterative model training and re-analysis of constantly 

accumulating and updating data. CLOBNET provides an infrastructure capable of answering clinical 

questions by fusing structured but not necessarily cleaned EHR data from different sources and 

creating information from the combined data with ML models. 

 

We first tested the predictive value of all clinical variables (n=16, Table 3) with six ML methods in 

classifying HGSOC patients with progressive disease (n=19) or complete response (n=78). Best 

overall performance was achieved with the logistic regression 20 (AUROC=0.86, sensitivity=89%, 

specificity=73%) as shown in Figure 2 followed by Bernoulli Naïve Bayes (AUROC=0.84, 
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sensitivity=68%, specificity=75%). While Random Forest 21 achieved AUROC of 0.88, it did not 

achieve acceptable sensitivity (sensitivity=26%, specificity=98%).  AUROC for C-support vector 

machine, Gaussian Naïve Bayes and linear support vector machine varied between 0.62 and 0.78 

(Supplementary Table 1 and Supplementary Figure 3). As our dataset had 1:4 ratio of PD and CR 

patients, which could affect the performance of some classifiers, we tested whether class weighting 

changed the results. The effect of class imbalance did not have an effect to the best-performing 

logistic regression model (AUROC=0.86; Supplementary Figure 4). 

 

Next, we analyzed the predictive power of the individual variables in classifying 1) PD and CR 

patients and 2) PD and merged CR and partial response (PR) patients. The most predictive and 

significant independent variables for the comparison between PD and CR after PDS were the 

dissemination score (AUROC = 0.70, p=0.03, 95% CI=0.527-0.872) and blood platelet count at 

diagnosis (AUROC=0.71, p=0.03, 95% CI=0.515-0.894). The predictive power of the other variables 

ranged from 0.51 (Serum CA-125 levels) to 0.67 (blood sodium level at diagnosis; Supplementary 

material). When the CR and PR patients were merged and compared against PD patients, the 

predictive power of the variables declined. Again, the most predictive variables were dissemination 

score (AUROC=0.67, p=0.07, 95% CI=0.484-0.847) and platelet count (AUROC=0.67, p=0.06, 95% 

CI=0.482-0.855) (Supplementary material).  

 

The herein introduced dissemination score is one of the most predictive variables for treatment 

resistance and thus we used Cox regression model to test whether dissemination score can predict 

the time elapsed from diagnosis to disease progression (Table 3). The dissemination score showed 

prognostic value in a univariate Cox model (HR=1.097, 95% CI=1.039-1.157, p=0.001). The 

prognostic value of the dissemination score remained statistically significant when tested with a 
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multivariable Cox model that included the FIGO 2014 stage, age at diagnosis and CA-125 level at 

diagnosis (HR=1.100, 95%, CI=1.038-1.166, p=0.001). When the residual tumor size, which is 

currently the one of the strongest prognostic variables 13,18, was included to the model, the 

dissemination score became marginally significant (HR=1.062, 95% CI=1.000-1.128, p=0.051).  

 

DISCUSSION 

We demonstrated that CLOBNET, an agile and open-source computational infrastructure, enables 

the translation of structured EHR data into useful clinical knowledge. Lean and full stack systems 

development permit high-frequency iterations when the research setting requires new features or 

different configurations. CLOBNET allows for straightforward training of ML models when new data 

become available, as the preprocessing functions can be linked automatically to live data sources. 

Using clinical data without the need for natural language processing or manual extraction of clinical 

annotations greatly reduces the workload needed to convert EHR data to meaningful information, 

which is one of the main benefits of using CLOBNET. The development of CLOBNET can be enhanced 

by the continued utilization of widely used open-source libraries and related community resources.  

 

In our case study, we predicted primary therapy outcomes in HGSOC using six different supervised 

machine learning methods using CLOBNET. The best predictor was logistic regression, which 

achieved AUROC of 86% for separating PD and CR HGSOC patients. Our results demonstrate the 

benefit of combining information from multiple sources as well as the utility of CLOBNET by 

predicting primary therapy outcomes of HGSOC patients based on EHR data. While CLOBNET’s high 

predictive power for therapy outcome is very encouraging and suggests that CLOBNET could be used 

as a part of clinical routine to predict in real-time whether an HGSOC patient will respond to primary 
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therapy, our results are based on limited data set and warrant further validation in larger cohorts 

as well as careful consideration in the clinical setting.  

 

The best predictions of a PR or CR in HGSOC patients were achieved using a combination of clinical 

markers and laboratory test results from EHR systems. The AUC of 0.86 achieved with logistic 

regression indicates that CLOBNET enables the establishment of predictive models to analyze 

combined perioperative dissemination data and preoperative clinical data. Taken together, the 

results demonstrate the benefit of combining information from multiple sources. They show that 

the data analysis workflow implemented in CLOBNET can accurately predict primary outcomes in 

HGSOC. 

 

 

The herein introduced dissemination score alone demonstrated high preoperative prognostic value 

(AUROC=71%) and suggests that it provides a more accurate assessment of the disease burden than 

the FIGO 2014 stage. The decline in the significance when the disease dissemination score was 

combined with the cytoreduction results in Cox model is expected as several studies indicate the 

prognostic value of leaving as little tumor mass as possible after PDS.14,18,19 . 

 

Most importantly, predictions done with CLOBNET allow for early identification of patients who are 

resistant to therapy and who have an extremely poor prognosis. As CLOBNET is designed to real-

time use, it can provide unprecedented power to support clinical decisions and offer additional 

therapies to patients with primary progressive HGSOC. While the setup described herein is 

configured for distinct data sources and HGSOC, CLOBNET is open source and can be easily modified 
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for other datasets and clinical settings or deployed in a multicenter setting, thereby mitigating the 

security risks and legal burdens of health data exchange. 
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TABLES AND FIGURES  
 

Anatomic location 
Points 
0 1 2 3 

Pelvic carcinomatosis No Yes   
Subdiaphragmatic surface carcinomatosis No Yes   
Carcinomatosis around the peritoneal cavity No Yes   
Small bowel mesentery carcinomatosis No Yes   
Small bowel mesentery retraction No Yes   
Large bowel mesentery carcinomatosis No Yes   
Small bowel serosae carcinomatosis No Yes   
Large bowel serosae carcinomatosis No Yes   
Invasion to bowel mucosae No Yes   
Largest omental nodule - < 2 cm 2–5 cm > 5 cm 
Largest right ovary nodule - < 10 cm ≥ 10 cm  
Largest left ovary nodule - < 10 cm ≥ 10 cm  
Pelvic lymph node metastasis suspected No Yes   
Para-aortic lymph node metastasis suspected No Yes   
Spleen metastasis No Yes   
Invasion to abdominal wall No Yes   
Invasion to liver surface No Yes   

 
Table 1. 
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  Outcome Sig. 

CR PR PD  ND Other Total p 
No. of subjects (%) 101 (48.6) 50 (24) 29 (13.9)  18 (8.7) 10 (4.8)  208 (100)  
Age at diagnosis, years, mean ± SD 67 ± 9 69 ± 7 68 ± 10  68 ± 10 75 ± 5 68 ± 9 0.043 (1 
Previous cancer diagnosis, no. (% of 
outcome) 

        

Yes 12 (11.9) 6 (12.0) 3 (10.3)  3 (16.7) 3 (30.0) 27 (13.0) 0.104 (2 
No 88 (87.1) 42 (84.0) 24 (82.8)  13 (72.2) 6 (60.0) 173 (83.2)  
ND 1 (1.0) 2 (4.0) 2 (6.9)  2 (11.1) 1 (10.0) 8 (3.8)  

Chronic illnesses, no. (% of outcome)        0.868 (2 
Yes 68 (67.3) 35 (70.0) 21 (72.4)  14 (77.8) 8 (80.0) 146 (70.2)  
No 31 (30.7) 13 (26.0) 7 (24.1)  3 (16.7) 2 (20.0) 56 (26.9)  
ND 2 (2.0) 2 (4.0) 1 (3.4)  1 (5.6) 0 6 (2.9)  

Cancer in the family, no. (% of outcome)        0.491 (2 
Yes 41 (40.6) 18 (36.0) 11 (37.9)  10 (55.6) 2 (20.0) 82 (39.4)  
No 13 (12.9) 3 (6.0) 3 (10.3)  0 1 (10.0 20 (9.6)  
ND 47 (46.5) 29 (58.0) 15 (51.7)  8 (44.4) 7 (70.0) 106 (51.0)  

CA-125 level at diagnosis, U/ml ± SD 1346 ± 2297 2151 ± 
3084 

1766 ± 3006  961 ± 1349 598 ± 492 1527 ± 2524 0.037 (1 

Hemoglobin level at diagnosis, g/l ± SD 123 ± 16 119 ± 13 118 ± 15  125 ± 15 120 ± 9 121 ± 15 0.242 (1 
Leukocyte level at diagnosis, E9/l ± SD 13 ± 19 18 ± 41 10 ± 14  9.7 ± 2.3 9.5 ± 2.7 13 ± 24 0.242 (1 
Creatinine level at diagnosis, µmol/l ± 
SD 

69 ± 13 73 ± 21 71 ± 20  - 95 ± 40 72 ± 19 0.315 (1 

Platelet count at diagnosis, E9/l ± SD 340 ± 104 397 ± 141 460 ± 162  416 ± 134 335 ± 95 376 ± 131 0.001 (1 
FIGO 2014 stage, no. (% of outcome)        0.06 (2 

IC1 1 (1.0) 0 0  0 0 1 (0.5)  
IC2 2 (2.0) 0 0  0 0 2 (1.0)  
IIA 1 (1.0) 0 0  0 0 1 (0.5)  
IIB 4 (4.0) 0 0  0 0 4 (1.9)  
IIIA 0 0 0  1 (5.6) 0 1 (1.0)  
IIIA1 1 (1.0) 0 0  1 (5.6) 0 2 (0.5)  
IIIB 5 (5.0) 1 (2.0) 0  2 (11.1) 1 (10.0) 9 (4.3)  
IIIC 64 (63.4) 22 (44.0) 16 (55.2)  7 (38.9) 7 (70.0) 116 (55.8)  
IVA 9 (8.9) 8 (16.0) 6 (20.7)  3 (16.7) 1 (10.0) 27 (13.0)  
IVB 14 (13.9) 19 (38.0) 7 (24.1)  3 (16.7) 1 (10.0) 44 (21.2)  
ND 1 0 0  1 (5.6) 0 1 (0.5)  

Treatment strategy, no. (% of outcome)        1.5 x 10-4 

(2 
PDS 59 (58.4) 22 (44.0) 1 (3.4)  9 (50.0) 5 (50.0) 96 (46.2)  
NACT 42 (41.6) 28 (56.0) 28 (96.6)  8 (44.4) 4 (40.0) 110 (52.9)  
Other 0 0 0  0 1 (10.0) 1 (0.5)  
ND 0 0 0  1 (5.6) 0 1 (0.5)  

PDS residual tumor size, no. (% of 
outcome) 

       3.0 x 10-4 
(2 

0 mm 33 (55.9) 2 (9.1) 0  4 (44.4) 1 (20.0) 40 (41.7)  
1–10 mm 17 (28.8) 11 (50.0) 0  3 (33.3) 1 (20.0) 32 (33.3)  
> 10 mm 9 (15.3) 9 (40.9) 1 (100.0)  1 (11.1) 3 (60.0) 23 (24.0)   
ND 0 0 0  1 (11.1) 0 1 (1.0)  

Dissemination score, mean ± SD 9 ± 4 12 ± 3 12 ± 4  10 ± 4  9 ± 4 11 ± 3 6.5 x 10-6 

(1 

Time to progression, months, mean ± 
SD 

18 ± 8 15 ± 7 4 ± 2  - 8 ± 7 14 ± 9 7.8 x 10-15 

(1 
Platinum-free interval, days, mean ± SD 387 ± 246 268 ± 220 5 ± 58  - -29 ± 134 256 ± 260 1.1 x 10-13 

(1 
Time to death, months, mean ± SD 41 ± 21 31 ± 18 14 ± 11  - 13 ± 18 27 ± 21 6.5 x 10-8 

(1 

 
Table 2.   
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 Dissemination score (DS) 
 PDS IDS Difference in the DS 

for PDS and IDS 
    
PD, mean ± SD 12.1 ± 4.1 12.1 ± 4.8 -1.5 ± 4.5 
Not PD, mean ± SD 9.9 ± 4.0 6.5 ± 3.5 -5.2 ± 4.2 
AUC 0.68 0.85 0.73 
Significance 0.046 7.5 x 10-5 0.009 
    
CR, mean ± SD 8.8 ± 3.8 5.7 ± 3.3 -5.4 ± 4.5 
Not CR, mean ± SD 11.5 ± 3.9 9.2 ± 4.6 -3.5 ± 4.3 
AUC 0.65 0.75 0.62 
Significance 0.030 3.4 x 10-4 0.089 
    
PD vs. CR    
AUC 0.71 0.88 0.74 
Significance 0.028 5.7 x 10-5 0.020 
    
 Cox regression model, time to progression 
 HR 95% CI Significance 
    
DS at diagnosis 1.097 1.039–1.157 0.001 
DS with FIGO 2014 stage 1.106 1.045–1.171 0.001 
DS with FIGO 2014, age at 
diagnosis, and CA-125 

1.100 1.038–1.166 0.001 

DS with cytoreduction 
results 

1.062 1.000–1.128 0.051 

 

Table 3.  
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Table 4.  

Variable Data Source Data type 

FIGO2014 stage Research database Ordinal 

Disease Dissemination Research database Nominal 

Dissemination index Research database Scale 

Treatment strategy Research database Nominal 

Age at diagnosis Research database Scale 

Peripheral blood at diagnosis   

CA-125 level EHR / Laboratory system Scale 

Hemoglobin level EHR / Laboratory system Scale 

Leukocyte count EHR / Laboratory system Scale 

Platelet count EHR / Laboratory system Scale 

Sodium level EHR / Laboratory system Scale 

Previous diagnosis in ICD-10 blocks C, E, F, I, K, N or O EHR Nominal 
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Figure 1.  
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Figure 2. 
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TABLE AND FIGURE LEGENDS 

Table 1. Dissemination scores. During surgery, the disease dissemination was evaluated by the 

gynecologic oncologist or the operating team, and points were given based on the following 

features. The dissemination score values ranged from 0 to 21.  

 

Table 2. Patient cohort demographics and clinical characteristics. CR = complete response, PD = 

progressive disease, PR = partial response, ND = not defined, PDS = primary debulking surgery, NACT 

= neoadjuvant chemotherapy, CA-125 = cancer antigen 125. SD = standard deviation. Statistical 

tests: 1) Independent samples Kruskal–Wallis 2) Fisher’s exact test. 

 

Table 3. Dissemination scores, the difference in the dissemination scores for PDS and IDS according 

to patient outcomes, and the results of the Cox regression model for time to progression. The 

reported significance is for the difference between the groups calculated using the Mann–Whitney 

U test. PDS = primary debulking surgery, IDS = interval debulking surgery, PD = progressive disease, 

CR = complete response, AUC = area under the curve, SD = standard deviation, DS = dissemination 

score, FIGO 2014 = International Federation of Gynecologists and Obstetricians 2014 (FIGO 2014) 

stage, CA-125 = cancer antigen 12-5, HR = hazard ratio, CI = confidence interval. 

 

Table 4. Input variables and their sources used in machine learning analyses. FIGO2014 = 

International Federation of Gynecologists and Obstetricians 2014, CA-125 = cancer antigen 125, EHR 

= electronic health record system, ICD-10 = International Classification of Diseases. 
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Figure 1. The main functionality of the cloud-based machine learning system (CLOBNET). The figure 

shows the data flow from the patient to various repositories and into CLOBNET and the feedback 

loop to the clinic providing prognostic models and decision support. DB = database, CLOBNET = 

cloud-based machine learning system, ML = machine learning, EHR = electronic health record. 

 

Figure 2. Area under the receiver operating characteristics curve (AUROC) curve of a Logistic 

regression model classifying patients between progressive disease (PD, n=19) or complete 

response (CR, n=19) as primary therapy outcome, using clinical and laboratory data as input. 

Specificity = 73%, sensitivity= 89%. AUROC = area under the receiver operating characteristics 

curve.  
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SUPPLEMENTARY MATERIAL 
 
Documentation 
 
CLOBNET (Cloud-based machine learning network) v0.8 consists of front-end GUI for information 
visualisation and viewing, postgreSQL database and Python scripts performing the machine 
learning analysis. At the development setting, it has been running inside Ubuntu 16.04 LTS and it 
does not require any proprietary software. Main incentive to create the system has been to create 
an ability to integrate various data sources inside a single database to be used in clinical data 
analysis such as machine learning. We aim to do this in as light and as straightforward way as 
possible. As CLOBNET is intended to be operated only in a secured internal network, no user 
adminsitration functionality is integrated at the moment. 

CLOBNET is part of HERCULES project and it is maintained by Systems Biology in Cancer Group, 
Faculty of Medicine, University of Helsinki. 

Used software 

• PostgreSQL 9.5.13 as a database 
• Python 2.7 for machine learning analyses 
• Apache 2.4.18 for hosting the web GUI 
• PHP7.0.30 for web GUI back-end 
• npm for hanlding various packages for web front end, such as: 

o Grunt 
o React 
o Bootstrap 4 
o SCSS 
o … 
o These package dependencies are maintained at web/packages.json 

Folder structure 
. 
├── export                  # Folder for files to be exported from CLOBNET 
├── import                  # Folder for files to be imported to CLOBNET 
├── machine_learning        # Machine learning scripts 
│   ├── decision_trees      # Trained decision trees as dot files 
│   │   └ png               # Decision trees as png files 
│   ├── auc_curves          # AUC curves as png files 
│   └─- pickles             # ML models stored as pickles 
├── sql                     # SQL scripts 
└── web                     # Web GUI files 
    ├── dist                # Grunt output location, folder to be hosted by Apache 
    ├── src                 # GUI dev folder 
    │   ├ js                # Custom JS 
    │   ├ includes          # PHP scripts such as functions, database connections 
    │   ├ pieces            # Website parts such as HTML head, topbar 
    │   └ scss              # GUI design 
    └── node_modules        # npm modules 

SQL 
 
CLOBNET database runs with PostgreSQL. All patient information is identified using a pseudonym, 
which is found from every table under pseudonym column, datatype being varchar. Patient data is 
divided into distinct tables by different iformation categories such as diagnoses, laboratory test 



Infrastructure for health data integration and machine learning 
 

24 

results, operations and so on. Tables are named with _data ending and naming of tables and 
variables uses underscore and lowercase, as postgres naming is case-insensitive. 

As the data to be inputted into CLOBNET can require lots of cleansing and parsing, this 
transformation part has to be configured on a source by source basis. Idea in CLOBNET is to first 
load the files into import folder and then handle data transformation and loading using SQL 
scripts, which can be included into create_and_parse_all_tables.sql. In this manner, no further 
scripting is needed if the data source format and file naming are kept unchanged. 

Tables 

SQL script to create the tables are found in separate files under clobnet/sql/ folder. Scripts are 
divided to table creation and table parsing files, one for each table. A script file running all the 
scripts is also provided. This initiation can be done from postgres with the following command, 
including path to sql file: 

# \i /<clobnet-path>/sql/create_and_parse_all_tables.sql 
 
Population of the said data tables are created with data-source spesific scripts. Separation of table 
creation and paring allows the initialisation of database in an uniform way regardless of the data 
sources and thus using same analytics and downstream pipelines for different sources. 

 
classificators 

This table contains information about the machine learning models created with Python. When a 
model is trained, its performance information is stored to this table and the model itself is stored 
as a pickel to machine_learning/pickles, from where it can be accessed later. Pefrormance 
information is inserted by Python as the models are created and this information is visualised with 
GUI. 

• id [serial] Model identifier, primary key 
• name [varchar(255)] Name of the model eg. Support Vector Machine, Decision tree 

minLeaf = 5 and so on. 
• sql_query [text] SQL query used by Python to get the input data for the model. 
• auc [float] AUC of the model 
• sensitivity [float] Sensitivity of the model 
• specificity [float] Specificity of the model 
• timestamp [date] Time of model creation 
• dataset_size [integer] Size of the dataset used 
• trainingset_size [integer] Size of used training set 
• testingset_size [integer] Size of used testing set, in LOOCV 1 
• scaling [varchar(144)] What kind of scaling was used 
• crossvalidation [varchar(144)] What kind of cross-validation was used 
• auc_data [json] Data for AUC curve, classes and their predictions per case 
• prediction [varchar(255)] What prediction was done 
• pickle [varchar(255)] Pickle filename 
• dataset_id [int] Id of the dataset used in datasets table 
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datasets 

The raw dumps of the datasets used in model training are stored here for possible future 
validation. CLOBNET stores the dataset as JSON and calculates SHA224 hash for the dataset. If new 
dataset has identical information and identical hash, no new copy is stored, but current id of the 
same dataset is used. 

• id [serial] Model identifier, primary key 
• hash [varchar(512)] Hash of the dataset information 
• dataset [json] Dataset stored as a json 

chemotherapy_data 

Information on chemotherapy cycles. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient idetifier 
• patient_medication_id [varchar(40)] Patient-specific id of the medication administered 
• patient_cycle_id [varchar(40)] Patient-specific id of the chemotherapy cycle 
• startday [smallint] Wether drug is administered on cycle starting day 
• calculation_date [date] Date of drug calculations 
• calculated_bsa [float] Calculated Body Surface Area (BSA) 
• used_bsa [float] BSA used in drug calculations 
• serial_number [smallint] Running number of cycles 
• cycle_id [varchar(40)] General id of the chemotherapy 
• cycle_name [varchar(255)] Cycle name 
• cycle [smallint] Number of days in cycle 
• cycle_start_date [date] Start date of cycle 
• cycle_end_date [date] End date of cycle 
• generic_name [varchar(255)] Generic name of cycle 
• dose [varchar(255)] Dose of cycle 
• administration_serial_number [smallint] Administration running number 
• administration_definition [varchar(70)] Definition on administration 
• cycle_basic_dose [float] Basic dose in the cycle 
• cycle_dose_definition [varchar(70)] Definition of cycle dosing 
• used_dose [float] Used dose 
• adminisitration_id [varchar(18)] Id of the single administration 
• administration_start_date [date] Start date of the drug administration 
• administration_end_date [date] End date of the drug administration 
• height [float] Height used in BSA calculation 
• weight [float] Weight used in BSA calculation 

clinical_data 

The main table containing clinical information. As the research settings vary from disease to 
disease and from research to research, this table is the hardest to generalize. In the initial setting, 
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the clinical data table provides besides required identifier some more generic columns such as 
clinical end points but also some HERCULES program and ovarian cancer (OC) specific columns. 

General columns: 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• status [varchar(20)] Status of the patient wether she is alive, deceased etc. 

• patient_id [integer] Another patient identifer used in HERCULES 
• age_at_diagnosis [float] Age at the time of OC diagnosis 
• height_at_diagnosis [float] Height at the time of OC diagnosis 
• weight_at_diagnosis [float] Weight at the time of OC diagnosis 
• figo_2014_stage [varchar(10)] FIGO 2014 stage of OC at diagnosis 
• primary_therapy_outcome [varchar(255)] Outcome of primary therapy: complete 

response, progressive disease and so on. 
• treatment_strategy ** [varchar(255)] Primary debulking surgery (PDS), neoadjuvant 

chemotherapy (NACT) or no chemo. 

diagnoses_data 

Diagnoses by date as International Classification of Diseases 10th Revision (ICD-10) codes. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• code [varchar(20)] Diagnosis as ICD-10 code 
• date [date] Date of diagnosis 

height_weight_data 

As the name says, stores height and weight data. No column for units, so possible unit conversion 
should be done before inserting data to this table. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• height [float] Height 
• weight [float] Weight 
• date [date] Date of measurement 

laboratory_data 

Laboratory test results are stored in rows per patient and date, every different laboratory test on 
their own columns. This is suitable setup for research where no bigger temporal resolution than 
daily values are needed and the amount of different laboratory tests are moderate. Floating point 
data type does not allow additional information sometimes embedded to lab time series data such 
as textual notes about failed test etc. Following table structure is somewhat research-specific. 
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Like in height and weight column, no units are specified in laboratory_data table and possible 
conversions should be done before data input. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• date [date] Date of measurement 
• ca125 [float] Cancer antigen 12-5 (CA12-5), OC tumor marker 
• he4 [float] HE-4, another tumor marker 
• hb [float] Haemoglobin 
• tromb [float] Trombocyte count 
• neut [float] Neutrophile count 
• na [float] Sodium level 
• krea [float] Creatinine 
• leuk [float] Leukocyte level 
• alat [float] ALAT, alanine aminotransferase 
• fmdate [string] Column for external research db purposes 

medication_data 

Information about medications, both at home or in hospital. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• start_date [date] Start date of medication 
• end_date [date] Possible end date of medication 
• brand_name [varchar(512)] Brand name 
• substance [varchar(512)] Generic name or the substance in the medication 
• atc_code [varchar(512)] ATC code 
• home_medication [smallint] 1, if prescibed to home 
• administration_unit [varchar(512)] Units in adminisitration 
• dose [varchar(128)] Dose 
• administration_code [varchar(512)] code e.g. IV, po 
• administration_definition [varchar(512)] textual definition of adminisitration 
• administration_dose [float] dose in administration 
• regular_daily_dose [int] regular daily dose 
• ondemanddose [varchar(512)] dose if taken only on demand 

operations_data 

This table stores data about the surgical operations and anesthesiology. NOMESCO Classification 
of Surgical Procedures (NSCP) is used as operation classification and ICD-10 as the diagnosis, if this 
is provided. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• decision_date [date] Date when the decision to operate was made 
• operation_date [date] Date when the opeartion was performed 
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• emergency [smallint] 1 if emergency or not planned operation, 0 if an elective surgery 
• main_operation [smallint] 1 if the code is for main operation, 0 if it is a secodary operation 
• asa_class [integer] ASA class for the operation, integer from 1 to 4 
• ncsp_code [varchar(20)] Classification code for the surgery 
• diagnosis_code [varchar(20)] Disease diagnosis 

pathology_data 

Pathology table provides structure for basic information about pathology analysis. As some of the 
results or clinical background information can be extremely long texts, these are stored as text 
datatype. 

• id [serial] Row identifier, primary key 
• pseudonym [varchar(20)] Patient identifier 
• question [text] The main clinical question and background information about the sample 
• answer [text] Textual result of the analysis 
• answer_id [text] Identifier for analysis 
• assay_type [varchar(512)] Analysis type code 
• date_of_sampling [date] Date of taking the sample to be analyzed 
• sender [varchar(512)] The name of the sending organization / clinicial 
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Supplementary Figure 1. 
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Supplementary Figure 2.  
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Supplemetary Figure 3.  
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Supplementary Figure 4. 
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Algorithm True 

positives 
True 

negatives 
False 

positives 
False 

negatives 
Accuracy Precision F1-Score 

Logistic regression, C=0.1 17 57 21 2 0.76 0.45 0.60 

Logistic regression, C=0.02 17 57 21 2 0.76 0.45 0.60 

Logistic regression, C=0.02, 
Balanced class weights 

18 47 31 1 0.67 0.37 0.53 

Bernoulli Naive Bayes 13 59 19 6 0.74 0.41 0.51 

Gaussian Naive Bayes 15 45 33 4 0.62 0.31 0.45 

Linear Support Vector Machine, 
Balanced class weights 

11 57 21 8 0.70 0.34 0.43 

Random Forests, 50 estimators 5 77 1 14 0.85 0.83 0.40 

Random Forests, 100 estimators 5 75 3 14 0.82 0.63 0.37 

C-Support Vector Machine, 
Balanced class weights 

11 63 15 8 0.76 0.42 0.49 

5 nearest neighbors 3 76 2 16 0.81 0.6 0.24 

Decision tree 8 57 21 11 0.67 0.28 0.33 

 
Supplementary Table 1. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Cloud-based machine learning system (CLOBNET) schema. Information 

was gathered from multiple sources and melded into a single database and Structured Query 

Language (SQL) database. The data were then used to train machine learning (ML) algorithms, and 

the information was visualized using a web-based graphical user interface (GUI). CLOBNET = cloud-

based machine learning system, EHR = electronic health record, CSV = comma separated values, 

SSH = secure shell, SQL = Structured Query Language, PHP = Hypertext preprocessor, AJAX = 

asynchronous JavaScript and XML, GUI = graphical user interface. 

 

Supplementary Figure 2. Screenshot of CLOBNET graphical user interface combining different data 

sources to a single view for a clinician to get a complete picture of patient’s health. Age at 

diagnosis, x-axis of laboratory data plot containing dates and pseudonyms are omitted to prevent 

identification. 

 

Supplementary Figure 3. AUC curves of different machine learning models performing binary 

classification between progressive disease (n=19) and complete response (n=78) patients. AUC = 

area under the curve, SVM = Support Vector Machine. C = inverse of regularization strength. 

 

Supplementary Figure 4. AUC curves of three different machine learning models performing 

binary classification between progressive disease (n=19) and complete response (n=78) patients 

using different input variable sets. In the left column: Figo2014 score, disease dissemination, age 

at diagnosis, treatment strategy, CA-125 level at diagnosis. In the center column: same as left plus 

platelet count, hemoglobin level, leukocyte count and sodium level at diagnosis. In the right 
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column: same as center plus previous C, E, F, I, K, N or O diagnosis from International Classification 

of Diagnoses 10 (ICD-10). AUC = area under the curve, C = inverse of regularization strength. 

 

Supplementary Table 1. Binary classification performance of different machine learning 

algorithms in classifying between progressive disease (n=19) and complete response (n=78) 

patients, whose AUC curves are depicted in Supplementary Figure 2. C = inverse of regularization 

strength. 

 


