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A B S T R A C T

The purpose of this in vitro study was to evaluate and compare the effect of dimethyl sulfoxide (DMSO) or
ethanol on the permeability, stiffness and collagen dissociation of demineralized dentin.

Dentin cubes (2 ×2 ×2mm) were demineralized in EDTA and incubated in DMSO or ethanol (0.01, 0.1, 1,
5, 10, 20, 50 and 100%) (n= 10/group) for 30 s, followed by 100% HEMA incubation. Extracted HEMA was
quantified. For elastic modulus (E), demineralized dentin beams (6 ×2 ×1mm) were incubated in DMSO or
ethanol (1, 10, 20, 50 and 100%) for 10, 30 or 60min at 3-point bending. Additional demineralized dentin discs
(1 mm) were incubated in DMSO (1, 10, 50 and 100%) for 10, 30 and 60min and the optical clearing effect was
observed. The data were analyzed using ANOVA and Tukey's test (α=0.05) using SigmaPlot (Systat Software
Inc., San Jose, CA).

Compared to controls, HEMA uptake was significantly higher with all DMSO concentrations, and with 0.1%
or higher ethanol concentrations (p<0.05). HEMA uptake in DMSO-incubated specimens (0.01, 5 and 10%)
was significantly higher than with the ethanol incubation. Significant increase in elastic moduli was observed
with 50–100% DMSO- and only with 100% ethanol after 10min incubation. The optical clearing effect of
50–100% DMSO-incubated dentin disks was observed starting from 10min.

The pretreatment of dentin surfaces with low concentrations of DMSO resulted in significant improvement of
the penetration of monomers to demineralized dentin matrices. Increase in penetration of monomers combined
with a reversible stiffening of dentin collagenous matrix may explain the previously shown increase in durability
of wet- or dry-bonded adhesive interfaces with DMSO treatment.

1. Introduction

Despite the substantial improvements in formulations and adhesive
technologies over the last decades, achieving a durable dentin bonding
is still the main challenge in adhesive dentistry [1,2]. Resin-dentin
bonding relies on the effective penetration of solvated adhesive resins
into demineralized collagen matrix to create a durable hybrid layer [2].
However, replacement of residual water in acid-etched dentin is the
main challenge [3] resulting in incomplete infiltration of the adhesive
resin monomers into the demineralized collagen network [1,2]. Im-
perfect hybrid layers are prone to degradation of the resin component

[4], as well as host-derived enzymatic degradation of the incompletely
impregnated collagen fibrils in the presence of water [5].

Solvents are essential components of dental adhesive resins to sol-
vate the resin monomer mixtures, decrease viscosity and increase mo-
lecular mobility [6]. Solvated adhesive application to dentin enhances
the penetration of resin monomer into inter-fibrillar spaces and si-
multaneously facilitates the displacement of water from dentin [6,7].
Furthermore, some solvents contribute to the inhibition of the host-
derived endogenous enzymatic activity in dentin [8]. Ethanol is the
most commonly used solvent in commercial dental adhesives, either
alone or incorporated to water [6].
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During the bonding procedures, dentin surface is modified by acid-
etching resulting in a thin apatite-depleted surface layer to create mi-
cromechanical spaces for retention of the restorations [9]. Moist dentin
surface is required to maintain demineralized collagen matrix in ex-
panded state for proper resin infiltration by relatively hydrophilic
monomers such as hydroxyethyl methacrylate (HEMA) [9,10]. How-
ever, the diffusion of the comonomer mixtures are not without pro-
blems: it has been shown that mixtures of monomers diffuse into ex-
panded inter-fibrillar spaces at different rates, resulting in a gradient of
different monomers at the hybrid layer [11].

Dimethyl sulfoxide (DMSO) is a polar, aprotic solvent that has the
ability to dissolve polar and non-polar solvents and compounds [7]. It
possesses the polarity needed to break the self-association tendency of
water, and displace water molecules [12]. It has been widely used in
medicine because of its ability of penetrating biological surfaces [13]
and in the treatment of several inflammatory diseases, interstitial cy-
stitis even in pediatric patients [13–15].

Although DMSO was originally proposed as a potential solvent to
simplify the reaction of polymerization in adhesive applications [16],
only recently several in vitro studies have shown that DMSO pretreat-
ment of dentin can improve the immediate and long-term dentin bond
strength and lower long term nanoleakeage from relatively low
(0004%) to high concentrations (50%) [17–24]. Enhanced monomer
penetration into the collagen matrix [18,21] has been suggested as a
possible mechanism but no systematic information is available re-
garding the effect of DMSO on adhesive monomer penetration.

Therefore, the aim of this study was to compare the penetration of
HEMA (the most widely used adhesive hydrophilic monomer) to DMSO-
or ethanol-treated dentin, and to evaluate the effect of DMSO and
ethanol on the stiffness of demineralized dentin. Finally, the con-
centration-dependence of DMSO on dentin collagen dissociation was
analyzed. The null hypothesis was that DMSO or ethanol pretreatment
does not affect the uptake of HEMA, the stiffness of dentin or the
clearing effect on demineralized dentin differently.

2. Materials and methods

2.1. Materials

Sound human third molars extracted as a part of patient's routine
dental treatment from anonymous donors and exempt from notification
to the Ethics Committee according to the Finnish law (Tissue act, sec-
tion 20) were used in this study. Teeth were stored in 0.9% NaCl sup-
plemented with 0.02% sodium azide, and used within three months
after extraction.

2.2. Methods

2.2.1. Effect of solvent on HEMA permeability
Fifty-five teeth were used to evaluate the HEMA (2-hydroxyethyl

methacrylate, Sigma-Aldrich, St. Louis, MO, USA) uptake of dentin
pretreated with either DMSO (Merck KGaA, Frankfurt, Germany) or
ethanol (Berner OY, Helsinki, Finland). Dentin discs of 2mm thickness
were prepared by removing the occlusal enamel and superficial dentin
from the crown and further sectioned into 2 ×2 ×2mm dentin cubes
using a precision saw with a cut-off diamond blade under continuous
water-cooling (Isomet, Buehler, Lake Bluff, Il, USA). Three to four
dentin cubes were obtained from each tooth, to produce total of 180
dentin cubes which were randomly divided into two main groups after
measuring their dimensions under the microscope. The cubes were in-
cubated in 0.5 M EDTA (ethylene diamine tetra-acetic acid; pH 7.2) for
20 days for demineralization, washed in distilled water four times for
6 h each to remove the remnants of EDTA and the dimensions were
remeasured under the microscope. Digital radiography [26] was used to
confirm the absence of residual minerals.

After demineralization, dentin cubes were incubated in eight

different concentrations of DMSO or ethanol (0.01, 0.1, 1, 5, 10, 20, 50
and 100%) (n= 10/group) in shaking incubator at room temperature
for 30min. The control group cubes were incubated in distilled water.
After incubation, each dentin cube was gently blot-dried and trans-
ferred into glass vials containing 2ml of 100% HEMA to allow the
HEMA diffusion for 100min at room temperature. After HEMA diffu-
sion, dentin cubes were blot-dried to remove the excess adherent HEMA
on the surface. Each cube was then transferred into a test tube con-
taining 2ml of fresh distilled water to extract the HEMA in the shaking
incubator. After 1 h extraction, each cube transferred to another test
tube containing 2ml of distilled water to extract the remaining HEMA.
The first and second extracts were combined for HEMA analysis [28].

Spectral scan of HEMA in water was performed using a UV-spec-
trophotometer (Shimadzu model UV-1601, Kyoto, Japan) with UV-
cuvettes (UV-Cuvettes semi-micro, Wertheim, Germany). Several spec-
tral scans were first performed with only HEMA, and the best strength
of absorption was observed at wavelength 222 nm. Therefore, this
wavelength was used as a reference (λmax) for all absorbances. Standard
HEMA/water solutions were used to create a calibration curve to con-
vert absorbance readings to concentrations. Extracts of HEMA in dis-
tilled water were scanned using the spectrometer and the absorption
values were used to calculate the amount of HEMA in the extracts.

2.2.2. Effects of solvents on modulus of elasticity (E)
Forty-five non-carious human third molars were used to prepare

dentin disks of 1mm thickness using the precision saw (Isomet) under
continuous water cooling. Disks were then fixed on a glass slab and
sectioned (6 ×2 ×1mm) to obtain a total of one hundred and twenty
dentin beams. Dentin beams were demineralized following the standard
protocol as described above. The initial modulus of elasticity of the
beams was measured by 3-point bending at 15% strain that has been
shown not to cause plastic deformation of demineralized dentin beams
[29]. Digital radiography [26] and modulus of elasticity [27] were used
to confirm the absence of residual minerals. Beams with an initial
modulus of elasticity> 5MPa were accepted as demineralized [27].

After initial modulus of elasticity measurements, the beams were
distributed to two main groups according to the incubation solvent
(DMSO or ethanol). Various concentrations of DMSO and ethanol (1,
10, 20, 50 and 100%) (n=10/group) were used for incubation of beams
for 10, 30 or 60min prior to reevaluation. Demineralized dentin beams
were placed on a three-point bending fixture with 2.5mm distance
between the lower supports while immersed in incubation solutions.
The specimens were loaded using a universal test frame (AGS-10,
Shimadzu Corporation, Kyoto, Japan) with a 5 N load cell (Shimadzu
Corporation, Kyoto, Japan) at rate of 0.5mmmin−1 until a pre-set 15%
strain was obtained and the load was returned immediately to zero to
prevent permanent deformation of the beam by creep [29]. Calculation
of E from each dentin beam was performed using the modification of
the method described before [27], using the equation:

=

mL
bh

E
4

.
3

3

Where m is the slope of the linear portion of the load-displacement
curve, L is the span length, b is the width of the test specimen and h is
the beam thickness. Beams were evaluated after each incubation
period, and further reassessment was performed after 24 h water in-
cubation, to evaluate the reversibility effect of DMSO or ethanol in-
cubation on dentin stiffness.

2.2.3. Effect of DMSO concentration on dentin collagen dissociation
The optical clearance method to analyze dentin collagen dissocia-

tion after incubation in 100% DMSO was adapted from a previous work
[17]. Five sound third molars used to prepare dentin disks of 1mm
thickness from the coronal and deep dentin and demineralized as de-
scribed above. Two dentin discs from different teeth (one from the
coronal and one from the pulpal side) were assigned randomly per
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group according to the concentration of DMSO used for incubation (1,
10, 50 and 100%) for 10, 30 and 60min. Optical clearance of the disks
was observed against a ruler.

2.2.4. Statistical analysis
The monomer uptake was evaluated using two-way analysis of

variance (ANOVA). Variables were “solvent type”, and “concentrations
of the solvent”. Modulus of elasticity data was evaluated using re-
peated-measures ANOVA with “pretreatment” condition and solvent
type as the group variables and “time-point” as the repeated factor.
Holm-Sidak test was used as a post-hoc test to evaluate the interaction
and differences between the groups at α =0.05. All the statistical cal-
culations were carried out using SigmaPlot Version 13.0 (Systat
Software Inc. San Jose, CA).

3. Results

3.1. Effect of solvent on HEMA permeability

The results of the HEMA uptake by demineralized dentin are shown
in Fig. 1. Uptake of HEMA was significantly higher with all the DMSO
concentrations (mean: 62.45×10-7- 71.8×10-7moles mm-3), com-
pared to the control group (47.28×10-7moles mm-3). Ethanol pre-
treated groups in concentration of 0.1% or higher also showed sig-
nificantly higher HEMA uptake compared to the controls. When both
solvents were compared, HEMA uptake after DMSO-pretreatment was
significantly increased with 0.01, 5%, and 10% solvent concentrations
(Fig. 1).

3.2. Effects of solvents on modulus of elasticity

The changes in the elastic moduli (E) of the beams in time are shown
in Fig. 2. The baseline mean E values ranged between 2.02 – 2.6MPa,
which was not significantly different among the test groups (p> 0.05).
The solvent concentration and the incubation time showed significant
effects on E (p<0.001) and also the interaction between factors was
significant (p<0.001), so all the concentrations were compared to
each other for the same solvent (Fig. 2) and the same was performed for
each time point (Fig. 2).

An increase in E was observed starting from 20% DMSO, but the
significant increase was only observed with 50–100% DMSO-treated
beams from the first 10min of incubation. Specimens treated with
lower DMSO concentrations did not show significant change in E

(Fig. 2). Similar trend was observed also in ethanol groups, but sig-
nificant increase in E was observed only with beams incubated in 100%
ethanol, starting from the first 10min of incubation. When DMSO was
compared to ethanol, beams incubated in 50% DMSO showed sig-
nificantly higher E values than respective ethanol concentration after
10min incubation. However, the highest values were observed with
100% ethanol-treated beams after 60min incubation. The effect be-
tween DMSO and ethanol was time-dependent: at 10min, E of DMSO
was significantly higher, at 30min there were no difference between
the groups, and after 60min the ethanol-treated group had significantly
higher in E compared to DMSO-treated group (Fig. 2). However, the
increase in stiffness was reversible for both groups after 24 h water
incubation.

3.3. Optical clearing effect

The optical clearing effect of 50–100% DMSO incubated dentin
discs was observed from the first incubation time (10min), while the
effect was not clearly observed with dentin discs incubated in lower
concentrations of DMSO (1 or 10%). Similar effect was also confirmed
after 30, or 60min incubation both for the discs incubated in 50 and
100% DMSO (Fig. 3).

4. Discussion

The quality and efficiency of adhesive bonding to dentin is

A b

B b

A a A a
A a A a A a A a A a

Fig. 1. HEMA uptake by demineralized dentin pretreated with different con-
centrations of DMSO or ethanol. Groups identified by different upper case let-
ters for DMSO or lower case letters for ethanol indicate statistically significant
differences between the concentrations within the solvent. Asterisks indicate
statistically significant difference between DMSO or ethanol treated specimens
at the same concentrations (p ˂ 0.05).
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Fig. 2. Modulus of elasticity (E) of dentin beams treated with DMSO or ethanol.
In DMSO- treated beams: Upper case letters indicate the significant difference
between DMSO concentrations of the same time point. Lower case letters in-
dicate the significant difference between the same concentrations in different
time points within the solvent (p˂0.05).
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determined by the infiltration of the adhesive monomers [1]. HEMA (2-
hydroxymethyl methacrylate) is a low molecular weight hydrophilic
monomer widely used in dental adhesives as an adhesion-promoter to
ensure the wetting of demineralized collagen network and also as a
solvent to stabilize the hydrophilic and hydrophobic monomers in the
adhesive mixtures. [6,28,30]. Furthermore, HEMA does not bind to
collagen [28], and for that reason it was selected as a model resin
monomer to evaluate the amount of diffusion in dentin after pretreat-
ment with different solvents. The uptake of HEMA after dentin mod-
ification by solvents is strongly dependent on the interaction between
the solvents and dentin collagen [28,31–34] and indirectly reflects the
volume of open dental tubules and surface absorption after surface
treatment in corresponding solvent concentration [10,35].

Pretreatment of dentin cubes with different concentrations of DMSO
or ethanol prior to HEMA incubation showed a significant increase in
HEMA uptake compared to water-saturated demineralized dentin
(Fig. 1). The increase in HEMA uptake was obvious with both solvents.
Therefore, these findings allowed the rejection of the first null hy-
pothesis. The increase in HEMA uptake ranged between 32–55% for
DMSO-pretreatment and between 2–39% for ethanol pretreatment
compared to only water-saturated dentin cubes. The increase in HEMA
uptake with the lowest concentration of DMSO (0.01%) was 32% and a
further increase up to 55% was observed with 10% DMSO treatment.
DMSO's ability to increase spaces between collagen fibrils by suppres-
sing the interpeptide hydrogen bonds within collagen fibrils [36] as
well as improving dentin wettability due to lower surface tension, high
dielectric constant and the equilibrium between polar and surface
tension properties [25] plays a significant role in increasing the HEMA
uptake in DMSO-saturated demineralized dentin. Furthermore, DMSO
can lower the surface tension of water by breaking down the self-as-
sociative tendencies of water, which in turn further increases the
wettability properties [12,25]. Similar to DMSO, ethanol treatment also
showed an increase in HEMA uptake (Fig. 1). However, this increase
was rather slow, showing only 2% increase with lowest concentration
of ethanol (0.01%), which further increased up to 39% with 50%
ethanol (Fig. 1). The slow increase in HEMA uptake with ethanol (0.1
-100%; Fig. 1) might be related to the dose-dependent enhancement of
dentin wettability in ethanol saturated dentin environment [37].

Quantifying the changes in stiffness of demineralized dentin matrix
after different treatments is important as it reflects the degree of in-
termolecular changes occurred. Mineralized dentin contains about 50%
mineral by volume, but during acid etching for restorative procedures,

dentin surface is demineralized and the space freed from minerals are
simultaneously replaced by water to maintain the interfibrillar spaces
for adhesive monomers [37]. However, excess water in demineralized
dentin during restorative procedures is problematic, compromising the
quality of the interface [2,10]. Conversely, if water is removed from the
demineralized dentin, there is rapid, spontaneous development of in-
terpeptide hydrogen bonds between collagen peptides, resulting in the
stiffening of the collagen matrix in a collapsed state and reduction of
the interfibrillar spaces that serve as diffusion path for adhesive resin
penetration [37]. Adhesive monomers cannot break those interpeptide
hydrogen bonds, so penetration and infiltration will be compromised.
This study showed that both the solvent concentration and the in-
cubation time have significant effects on E, requiring the rejection of
the second null hypothesis. Exposing the demineralized dentin samples
to ethanol has previously been shown to cause stiffening in dentin due
to the spontaneous formation of interpeptide hydrogen bonding
[35,38,39]. In line with the previous work, current study also con-
firmed significant changes in elastic modulus of the demineralized
dentin beams only with high concentrations of ethanol (100%) or
DMSO (50–100%). Water has a very strong hydrogen bonding capacity
and can hydrogen bond to carbonyl oxygen and amide nitrogen moi-
eties in collagen peptides and prevents interpeptide hydrogen bonding
between collagen peptides [37]. Ethanol can hydrogen bond less
strongly to loosely-bound water around demineralized collagen ma-
trices [3]. Therefore, low concentrations of ethanol/water solutions do
not necessarily cause significant dehydration that would result with
spontaneous interpeptide bonds between the collagen peptides. On the
other hand, incubation with 100% ethanol can result in dehydration
that increase the collagen peptide bonding and stiffness of the demi-
neralized dentin matrix, as observed in this study. Similarly, addition of
DMSO into water breaks down water self-association and could com-
pete for hydrogen bond sites within dentin organic matrix. This was
confirmed with the slight increase in stiffness as well as a slight re-
duction in HEMA uptake with DMSO concentrations higher than 10%.
These results are also in line with a previous work showing less ex-
pansion of dentin matrix when higher concentration of DMSO was used
[25].

The effect of high concentration of DMSO on the stiffness and dis-
sociation of dentin collagen can be observed from the first treatment
time (10min) (Fig. 2 and Fig. 3). Previous work has demonstrated that
the dissociation of dentin disks incubated in 100% DMSO for 30min is
reversible [17]. This effect may result from the ability of DMSO to

Fig. 3. DMSO optical clearing effect on demineralized dentin discs, indicating dentin collagen dissociation. Appearance of clearing effect appeared especially with
50–100% DMSO incubated discs. No effect seen with 10% DMSO incubated discs or less.
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change the way of interaction between water molecules within the
demineralized dentin [17].

Ethanol vapor pressure (43.7 mmHg at 20°C) is higher than water
(17.5 mmHg) and especially of DMSO (0.417mmHg), allowing it to
evaporate easier and faster than DMSO [6]. Traditionally, evaporation
of dental adhesive solvents has been regarded essential for an optimal
penetration of adhesive monomers [6,7] and durability of the hybrid
layer [10,30]. However, relatively low vapor pressure of DMSO might
be an advantage. The presence of DMSO in collagen matrix may result
in further displacement of adhesive water molecules and preservation
of interfibrillar spaces for monomers even deeper inside the collagen
fibrils [17,20,25] and even improve the chemical bond of functional
monomers into collagen [20]. On the other hand, high vapor pressure
of ethanol may induce the reversible dehydration of dentin and result in
alteration of some mechanical properties such as increases in stiffness,
strength and toughness [38]. The limited, provisional improvement of
mechanical properties after ethanol exposure may associate with the
enhancement of cross-linking between dentin collagen and inter-
molecular hydrogen bonds [38,39].

The DMSO or ethanol immersion or HEMA incubation times used in
this study are not clinically applicable. Unfortunately, it is not possible
to quantitatively analyze the monomer penetration in 10–15 µm col-
lagen matrix layer exposed after acid etching in a clinical situation. The
size of the dentin cubes (2 ×2 ×2mm) requires significantly longer
immersion than the collagen matrix exposed in a clinical situation,
since the passive diffusion of HEMA across the demineralized dentin is a
slow process [28]. Respective “macro-model” setup has been success-
fully used in other studies where surface demineralization does not
allow the planned measurements, e.g. to study the solvation and ex-
pansion of demineralized dentin by different solvents [40–42], me-
chanical properties of demineralized dentin with and without adhesive
monomers [29,31,43] and dimensional changes of demineralized
dentin after monomer penetration [44]. Further studies are needed to
investigate the potential effect of DMSO- or ethanol- dentin pretreat-
ment on the penetration of other bulkier monomers (i e BisGMA) into
demineralized dentin cubes. Results of such study may guide toward
better understanding of DMSO or ethanol interaction to dentin.

5. Conclusion

Within the limitation of this study, it can be concluded that bio-
modification of demineralized dentin collagen with DMSO may im-
prove the diffusion of small-molecule hydrophilic monomers to dentin
collagen. The enhancement occurs due to the ability of DMSO to dis-
place/replace the residual water from dentin collagen, allowing dentin
collagen interfibrillar spaces to be occupied by monomers.
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