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ABBREVIATONS 21 

IJ: The complete image that was measured 22 

K: Number of measured wavelengths 23 

Mi: The image mask for sample i 24 

N: Sample number 25 

Ni: Number of pixels (excluding background) for sample i 26 

NIR: Near infrared 27 

Ntot: The number of pixels in all samples in total 28 

P: Loadings from the PCA on the unfolded NIR images 29 

PLS: Partial Least Squares regression model 30 

T: Scores from the PCA on the unfolded NIR images 31 

TDS: Temporal dominance of sensation  32 

20/35/50A: Corn-based extruded samples containing 20, 35 or 50% amaranth of solids  33 

20/35/50K: Corn-based extruded samples containing 20, 35 or 50% kañiwa of solids  34 

20/35/50Q: Corn-based extruded samples containing 20, 35 or 50% quinoa of solids  35 

50/80C: Extruded samples containing 50 and 80% corn of solids 36 

 37 

 38 

 39 

 40 



ABSTRACT 41 

Amaranth (Amarantus caudatus), quinoa (Chenopodium quinoa) and kañiwa (Chenopodium 42 

pallidicaule) are Andean grains that are gaining interest as nutritious gluten-free alternatives to 43 

conventional cereals. Near infrared (NIR) imaging was applied to extrudates containing 20, 35% and 44 

50% amaranth, quinoa and kañiwa in order to study the spatial distribution of fibre and protein along 45 

the cross-sectional area. The results were contrasted with existing physical measurements (e.g., 46 

sectional expansion, stiffness) and textural data obtained from sensory profiling and temporal studies 47 

(i.e., temporal dominance of sensation, TDS). Score distribution in PCA plots was directly associated 48 

to fibre (PC1) and protein (PC2) due to spectral wavelength specificity (fibre: 1028nm; protein: 1470 49 

nm). Partial Least Squares regression model (PLS) showed that evenly distributed protein structures 50 

are strongly linked to desirable TDS textural properties such as crispiness and crunchiness, while 51 

protein clumps were linked to undesirable properties such as roughness. In contrast, fibre was found 52 

to reduce roughness. PLS could not explain accurately changes in physical attributes, and sensory 53 

data from profiling tests had to be omitted from computing due to lack of fit. This study shows that 54 

NIR hyperspectra imaging could help elucidate the chemical background of physical and particularly 55 

temporal dominant attributes.  56 

 57 
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INTRODUCTION 64 

Amaranth (Amarantus caudatus), quinoa (Chenopodium quinoa) and kañiwa (Chenopodium 65 

pallidicaule) are grains traditionally cultivated in the Andes of South America in areas around or 66 

above 4000 m.a.s.l. Over the years, quinoa has also been successfully cultivated in USA, UK, 67 

Denmark, The Netherlands, Finland and India (Janick et al., 1996; Jacobsen, 2003; Bhargava et al., 68 

2006). According to FAO (2011), quinoa along with amaranth are promising foods for the future 69 

due to their outstanding nutritional characteristics (e.g. protein quality, high content of fibre). 70 

Although kañiwa is a much lesser known grain, its nutritonal qualities are similar to those of quinoa 71 

and amaranth, and the production of kañiwa-containing extruded snacks is on the rise (Ramos Diaz, 72 

2015). Extrusion is a versatile technology that alters the physicochemical characteristics of grain 73 

flours, containing starch and protein, through increasing pressure and temperature along the 74 

extruder barrel (Ramos Diaz, 2015; Ramos Diaz et al., 2015b). The resulting snack is expected to 75 

have an expanded, porous structure, and crispy texture upon mastication.  76 

According to Bressani and Garcia Vela (1990), the two largest protein fractions in amaranth are 77 

globular proteins (albumins and globulins) and glutelins, accounting for around 90%, while the 78 

prolamine fraction is below 5%. In contrast, quinoa was found to have up to 27% prolamines, and 79 

fractions of globular proteins and glutelins accounting for around 70% (Scarpati de Briceño, 1979; 80 

Scarpati de Briceño and Briceño, 1980). In kañiwa, prolamine accounted for around one third of the 81 

proteins (Scarpati de Briceño, 1979). Regarding starch, quinoa seems to contain more amylose than 82 

amaranth (around 12 and 7%, respectively) (Stone and Lorenz, 1984; Lorenz 1990; Qian and Khun, 83 

1999; Jane et al., 1994; Lindeboom, 2005; Kong et al., 2009). To the best of our knowledge, there is 84 

no information on amylose/amylopectin ratio of kañiwa. Upon extrusion, low content of amylose is 85 

associated to highly elastic doughs leading up to greater expansion (and potential shrinkage) of 86 

extrudates at die point (Babin et al., 2007; Ramos Diaz 2015).      87 



Various studies (Ilo and Lui, 1999; Ramos Diaz et al., 2013; Ramos Diaz, 2015) have observed that 88 

increasing contents of protein or fibre, and the addition of water into the system descrease the 89 

sectional expansion of extruded snacks. Conversely, low content of amylose has been associated to 90 

highly elastic doughs upon extrusion, bringing about greater expansion and potential shrinkage of 91 

extruded snacks at die point (Babin et al., 2007; Ramos Diaz 2015). Despite this, little is known 92 

about the spatial distribution of food component (e.g. protein, starch) across the sectional area, and 93 

the potential effect this may have on the physical and textural characteristics of the product. In that 94 

regard, near infrared (NIR) hyperspectral imaging is an optical nondestructive method that allow us 95 

to explore the distribution of food components. NIR is based on the molecular capacity to attenuate 96 

light at a given wavelength (700–2500 nm) or, technically called, molar absorptivity. This is 97 

associated to a degree of molecular excitation that is specific to particular chemical groups such as 98 

hydroxyls and amines. The overtone bands or molecular overtones (specific to chemical groups) are 99 

then observable in the NIR spectra. 100 

Although this optical multispectral meaurement is nondestructive, fast to conduct and ideal for 101 

online monitoring, it is not as specific as chemical tests, and requires a great deal of data analysis 102 

(e.g. pre-processing, modelling) prior to interpretation. However, it gives a good overview of the 103 

sample measured with only one analysis. The amount of information largely surpass that of any of 104 

the chemical tests, and can lead to new understanding of the system at hand. According to Alander 105 

et al. (2013), the mathematical models created, very often, cannot be generalised, and need to  be 106 

adjusted to new conditions.  Although this may be seen as a weakness, this is also a strength, 107 

indicating that NIR is capable to detect even minor changes in the sample matrix. Furthermore, the 108 

problem mentioned by Alander et al. (2013) also indicates another strength of spectroscopy coupled 109 

with chemometrics; they inheret the first-order advantage (Booksh and Kowalski 1994), meaning 110 

that it will indicate to the user when a change in the sample matrix for new samples has occurred. 111 

This is not possible with the regular chemical tests as these are univariate by nature.                    112 



The aim of this study is to identify the spatial location of major food components in extrudates 113 

containing amaranth, quinoa and kañiwa through the application of NIR hyperspectra imaging, and 114 

study the effect of such food components on specific sensory attributes through the application of 115 

chemometrics.   116 

 117 

MATERIAL AND METHODS 118 

Materials  119 

Commercial varieties of amaranth, quinoa and kañiwa were purchased from South America as seeds 120 

(Aduki Ltd., Finland), and milled with a pin disc grinding device (100 UPZ-lb, Hosokawa Alpine, 121 

Augsburg, Germany) at the Technical Research Centre of Finland (VTT). Pregelatinised corn flour 122 

(Polenta flour, Risenta AB, Sweden) was obtained from a local store in Helsinki, Finland. The 123 

calculated composition of flour blends is shown in Table 1. The median particle sizes of amaranth, 124 

quinoa, kañiwa and corn flour were 285, 575, 240 and 747 μm, respectively. Particle size was 125 

determined by laser light diffraction in a Beckman Coulter LS230 particle size analyser (Coulter 126 

Corporation, Miami, USA). Samples were first dispersed in 95% ethanol using magnetic stirring, 127 

and then incubated in an ultrasound bath (5 min) to prevent the formation of aggregates. The 128 

volumetric distribution of the particles (in accordance with the Fraunhofer diffraction model and 129 

geometric statistics) was used to calculate medians of the particle sizes. 130 

 131 

Extrusion 132 

Extrudates were prepared using a co-rotating twin-screw extruder (Thermo Prism PTW24, Thermo 133 

Haake, Germany). The extruder consisted of seven sections with individual temperature control in 134 

six of them (each 96 mm in length). The feed rate was maintained at 86 g/min (constant) and the 135 

temperature profile was fixed at 90 °C (section 1), 95 °C (section 2), 95 °C (section 3), 100 °C 136 

(section 4), 110 °C (section 5) and 140 °C (section 6). Further details on the extrusion conditions 137 



can be found in Ramos Diaz et al. (2015). The samples used in the present study were obtained 138 

under the following conditions: a. Content of amaranth, quinoa or kañiwa, 20, 35% and 50% (of 139 

solids); b. Water content of mass, 14%; c. Screw speed, 500 rpm; d. Temperature of die, 140 °C. 140 

 141 

Physical and sensory evaluation   142 

Sectional expansion index (SEI) was the ratio between the cross-sectional area of an extrudate and 143 

die. Stiffness was calculated as the slope of force-formation curve in a universal testing machine 144 

(Instron 4465, Instron Ltd., High Wycombe, UK) under three-point bending conditions. Extrudates 145 

were positioned perpendicularly over a sample holder (12-mm gap) and the speed of the aluminium 146 

probe was 5 mm/min (Ramos-Diaz 2015). Water absorption index (WAI) and water solubility index 147 

(WSI) was calculated following the method described by Mäkilä et al. (2014). 148 

Regarding the sensory evaluation, panellists (n=10, aged 20-30 years) were in trained in English for 149 

up to 12 hours at the sensory laboratory of the Department of Food and Nutritional Sciences of the 150 

University of Helsinki. Sensory profiling; training was performed to familiarize the panel with 151 

extrudates and develop a set of descriptors, references and definitions. Panellists were first introduced 152 

to various commercial extruded products in order to generate a preliminary list of attributes linked to 153 

texture. Reference samples are described by Ramos-Diaz et al. (2015). Each panellist evaluated all 9 154 

samples [three contents of flours (20, 35, 50%) × three grain types (amaranth, quinoa, kañiwa)] in 155 

duplicate. The intensity of the descriptors on unstructured 10-cm line scales with the anchors: “not at 156 

all” and “very”. The attributes for texture were: crispiness, crunchiness (not included in the present 157 

study), hardness, hard particles and adhesiveness. Temporal dominance of sensation (TDS); Panellists 158 

discussed and generated a set of descriptors associated to dominant perceptions during mastication. 159 

The list of potentially dominant descriptors was presented in this order (decided by consensus): 160 

crispiness, hardness, crunchiness, roughness, stickiness and gooeyness. Panellists began the 161 

evaluation by placing the sample in their mouth and then selecting the descriptor they perceived as 162 



dominant. As the time went by, panellists evaluated changes in dominant descriptors upon mastication 163 

(e.g. from crispiness to crunchiness). The order of change and the time of dominance was registered 164 

and subsequently analyzed.       165 

For either sensory profiling or TDS test, data management was carried out with FIZZ Sensory 166 

Evaluation Software, Version 2.45 (Biosystemes, Courternon, France). 167 

 168 

NIR measurements 169 

Extrudates were dehydrated for three days at 52 °C in vacuum incubator prior to packaging in 170 

modified atmosphere (N2). These samples were eventually sliced in to pieces of 5 mm in height before 171 

NIR measurement. The NIR-hyperspectral images were obtained with a spectrometer (Headwall 172 

Photonics, Model 1002A-00371, Fitchburg, MA) working in a wavelength range of 1000-1700 nm 173 

with a spectral resolution of 7 nm. In total, 142 wavelength bands were recorded for each pixel. The 174 

measurement was conducted on nine replicates per extrudate sample.  Thus, a total of 81 images were 175 

recorded (9 replicates x 3 grain types x 3 contents), however, due to an error for one of the 176 

measurements, one of the images (one image with 20Q) could not be retrieved from the camera, 177 

reducing the total number of images to 80. The number of pixels for each image was on average 185 178 

x 56.                           179 

 180 

Data handling  181 

Each step in the data handling is shown in Figure 1.  182 

i. The background for each of the images (Figure 1A) were removed by making a mask 183 

indicating whether a pixel in the image contained the extrudate (1) or the background (0) 184 

(Figure 1B).  185 

ii. The mask was then applied to each image (Figure 1C).  186 



iii. Subsequently each image was unfolded, creating a matrix of size IJ x 142 columns (one row 187 

per pixel and one column per NIR wavelength; Figure 1D).  188 

iv. All samples were concatenated, giving rise to a matrix containing N x IJ rows and 142 189 

columns (Figure 1E). N equals the total number of images, which were 80, and IJ indicates 190 

the number of extrudate pixels for each image. However, due to a lighting problem for one of 191 

the remaining images (one image with 20Q, probably related to the missing image mentioned 192 

above), an outlier was spotted in a preliminary PCA, thus reducing the number of images 193 

further to 79. The total number of spectra thus ended up being 520.062.  194 

v. Each row of this matrix was pre-processed (Figure 1F) by first smoothing the spectra 195 

according to the Savitzky-Golay algorithm (Savitzky-Golay, 1964) using a window size of 196 

nine, 2nd order polynomial for fitting the data and exclusion of the end-points. This was 197 

important in order to improve the signal-to-noise-ratio of the spectra. In order to reduce the 198 

scattering effects, all data were subsequently pre-processed by Multiplicative Scatter 199 

Correction (MSC; Geladi et al., 1985).  200 

vi. For each image, the average spectrum was extracted, and a global PCA (Figure 1G) was 201 

made on these 79 spectra by 134 wavelengths (the four first and four last wavelengths were 202 

lost during the Savitzky-Golay pre-processing step). The pixels for all the images were 203 

subsequently projected onto this PCA model. Please note that both the reference for the 204 

MSC and the average spectrum used for the mean-centering were calculated based on the 79 205 

average spectra.6.  In order to visualize the PCA, the calculated scores were refolded back 206 

into the shape of the original image (Figure 1H).  207 

 208 

 209 

 210 

 211 



Combining the NIR images and the sensory evaluation 212 

In order to compare the NIR image data and the sensory evaluations, a PLS analysis was conducted 213 

with the average spectra of each sample type (quinoa, amaranth or kañiwa) and content (20, 35 and 214 

50% of tested flour) (Figure 1G’), and regressed towards the physical and sensory evaluation (i.e. 215 

TDS) of the same sample type and content (Figure 1H’). Thus, the analysis consisted of a total of 216 

nine samples and 134 wavelengths in the X-matrix, and nine samples with 10 sensory attributes in 217 

Y. The NIR data was mean-centered and the sensory evaluation was autoscaled prior to the PLS 218 

model. No validation was performed, as the result only was interesting from an exploratory 219 

approach. 220 

 221 

RESULTS AND DISCUSSION 222 

Overview PCA 223 

As a first step in the data analysis, a PCA was made on the 79 average spectra across each image. 224 

Instead of showing the score-plot with the 79 samples, 9 ellipses based on the average and standard 225 

error of each group (type and content of tested grains) are shown in Figure 2. The first component 226 

explains 82.1% of the variance, while the second component explains 10.1%. It is evident that the 227 

chemical composition of samples containing kañiwa is very different from those containing 228 

amaranth and quinoa. Differences can be seen through PC1 (Figure 2A) and the loading plot 229 

(dotted line in Figure 2B). This is primarily due to a large peak at the very beginning of the spectra 230 

– with a probable maximum around 990 nm – caused by fibre. As shown in Table 1, kañiwa has a 231 

markedly larger fibre content than the other grains. However, as both this peak, and the peak at 232 

1373 nm can be assigned to fibre, it is believed that not only the content of fibre, but also the 233 

composition of fibre in kañiwa is different from the other two grains. Fibre in kañiwa appears to be 234 

richer in hydroxyl groups (-OH) compared to quinoa and amaranth (Figure 2B). The most 235 

pronounced effect of the loading from PC2 (solid line in Figure 2B) are the two peaks around 1475 236 



nm, indicating changes in the protein composition between the samples. In general, samples with 237 

low content of kañiwa behave very similar to those with high content of amaranth and quinoa. 238 

 239 

NIR hyperspectral imaging of extrudates  240 

NIR images showed various score distribution patterns across extrudate samples (Figure 3). As 241 

noticed from Figure 2A, the samples containing kañiwa have clearly higher scores on PC1 than 242 

those containing amaranth and quinoa. Score-images with larger red sections seem to follow the 243 

content of fibre (Figure 3, PC1); this is particularly noticeable in samples containing kañiwa. 244 

Score-images of samples containing amaranth and quinoa showed remarkable similarities for PC1. 245 

20A and 20Q are almost undistinguishable, but differences become more evident at higher levels of 246 

grain incorporation (Figure 3, PC1). Samples containing quinoa presented slightly higher score 247 

values than the corresponding amaranth (see also Figure 2A). In general, the distribution of the 248 

scores for PC1 seems quite homogenous, with only minor changes within each image (Figure 3). 249 

This is very different for the score-images of PC2, where samples show random peaks of score 250 

distribution across individual images. Inevitably, the score positioning in Figure 2A is linked to the 251 

score images in Figure 3. From this one can observe the similarity among 20K, 35A, 50A and 50Q 252 

in terms of score distribution (i.e. large dark blue areas and few red ones). On the other hand, 20Q, 253 

35Q, and 20A have similar average score values for PC2 (Figure 2A) but the score distribution was 254 

found to be quite different (Figure 3, PC2). For instance, 20A showed a high degree of 255 

heterogeneity with sharp and small red spots while 20Q and 35Q, though heterogenous, displayed 256 

smooth and large red areas (neighbouring pixels have similar values). Various authors have found 257 

that, in native amaranth and quinoa, starch and protein form strong links that require enzymatic 258 

treatment or alkali conditions to break them apart (Radosavljevic et al., 1998; Choi et al., 2004; 259 

Villarreal et al., 2013; Kumar et al., 2013). Probably, this makes more feasible for starch and 260 

protein to form intertwined matrices upon extrusion, like in extrudates containing amaranth (Figure 261 



2). The resulting molecular arrangement may strongly depend on the type of starch (e.g. 262 

amylose/amylopectin ratio) and protein (i.e. albumin, globulin, glutelin, prolamin) present in the 263 

flour mixture.  264 

According to Cabrera-Chavez et al. (2012), insoluble native starch granules may have the capacity 265 

of entrap proteins during the gelatinization and retrogradation of amaranth starch. In the present 266 

study, the extrusion temperatures (90-140 °C) were high enough to ensure a high degree of 267 

gelatinization, dextrinization and eventual retrogradation. In Figure 2B, the spectra show overtones 268 

at around 1470 nm (max) and 1533 nm (min), corresponding to the spectral features of starch 269 

retrogradation (Osborne, 1996). Generally, polysaccharide hydroxyl groups are exposed during 270 

extrusion contributing, most possibly, to the formation of links with other food polymers (Osborne, 271 

1996). The cysteine residues present in glutelins (around 40% of total protein in amaranth; Bressani 272 

and Garcia-Vela, 1990) could have increased the content of thiols (-SH) thereby boosting the 273 

formation of protein-starch networks. Unfortunately, the overtone corresponding to thiols is 274 

commonly shown at 1740 nm, beyond the boundaries of the wavelength range (1000-1700 nm) of 275 

the present study. Cabrera-Chavez et al. (2012) explained that the starch-protein network might rely 276 

on a combination of covalent (disulphide bonding) and non-covalent hydrophobic interaction.    277 

Generally, quinoa and kañiwa have distinctively greater content of albumins and globulins than 278 

amaranth (Ramos Diaz, 2015), reaching, in some cases, almost 80% of the protein content (Romero, 279 

1981). In addition, the ratio of amylopectin/amylose in amaranth starch is commonly higher than in 280 

quinoa starch (Qian and Kuhn, 1999). These differences could clearly affect the formation/stability 281 

of a starch-protein network upon extrusion.  282 

 283 

Combining NIR images with physical and TDS data 284 

The PLS model (Figure 4) made by combining NIR images (independent variables) with physical 285 

and TDS data (response variables) showed an extremely similar loading plot to the one in Figure 286 



2A. The correlations between the loadings from PLS and PCA are higher than 0.95, indicating that 287 

the same profile that applies to the description of the sensory attributes, applies to the chemical data. 288 

The only difference is that the sucrose/ starch peak at 1441 nm is larger for the PLS model, 289 

changing from a shoulder in the PCA to two peaks, with the protein peak at 1470 nm (results not 290 

shown).  291 

PLS modelling allow the introduction of a cause-effect relationship between score distribution 292 

(Figure 3) and physical/TDS data (Table 2). As explained earlier, the score distribution in PC1 is 293 

associated to the content of fibre and, in the PLS context, fibre presents an inverse effect on 294 

roughness (Figure 2; Figure 4). Besides, 20K, 35A, 50A and 50Q presented very similar patterns 295 

of score distribution, visually characterized for having small red dots (associated to protein) spread 296 

across those samples (Figure 3B). These evenly-distributed protein-associated structures had a 297 

direct effect on crunchiness and crispiness, with some minor effect on gooeyness, stiffness, 298 

stickiness and SEI (Figure 4). In contrast, score distribution in 20A, 20Q and 35Q was visually 299 

characterized for having large and well-defined red areas (associated to protein). The unevenness of 300 

protein distribution as well as the formation of large protein clumps had a direct effect on roughness 301 

and hardness, and minor effects on WSI and WAI (Figure 4).  302 

Although sensory profiling was initially included in the modelling, it had to be omitted due to 303 

technical challenges in the development of a reliable model. Apparently changes in the chemical 304 

data arising from NIR spectral data can be successfully reflected on sensory continuum attributes 305 

(e.g. TDS) rather than on mainstream sensory profiling. Details on the statistical analysis and level 306 

of significance associated to sensory data is comprehensively described by Ramos-Diaz et al. 307 

(2015).         308 

 309 

 310 

 311 



Effect of protein and fibre distribution on physical attributes   312 

The increase of amaranth, quinoa and kañiwa had a considerable effect on the physical attributes of 313 

corn-based extrudates as seen in Figure 4 and detailed in Table 2. Samples containing more fibre 314 

and protein presented statistically lower SEI (20/35/50A, p = 0.0001; 20/35/50Q, p = 0.005; 315 

20/35/50K, p = 0.0001), WAI (20/35/50A, p = 0.0001; 20/35/50Q, p = 0.004  ; 20/35/50K, p = 316 

0.039) and WSI (20/35/50A, p = 0.007; 20/35/50Q, p = 0.0001; 20/35/50K, p = 0.004). It was 317 

observed that the progressive increase of kañiwa led to the formation of protein clumps (Figure 2), 318 

possibly linked to the disruption of porous structures and reduction of sectional expansion. The 319 

incorporation of kañiwa reduced SEI by almost 50% (50K, Table 2). In contrast, the sectional 320 

expansion of extrudates containing quinoa and amaranth (Figure 4) was not substantially reduced. 321 

In this case, the formation of protein clumps took place at low grain incorporation (e.g. 20A, 35A, 322 

20Q) and eventually dispersed (e.g. 50A, 50Q).  323 

The increase of amaranth, quinoa and kañiwa reduced the extrudates capacity to absorb and 324 

solubilize in water, probably, attributed to the formation of protein clumps. However, the effect was 325 

not the same for all grain types (Figure 4). Extrudates containing kañiwa were able to absorb more 326 

water (highest WAI), and were less likely to solubilize in water (lowest WSI) compared to those 327 

containing quinoa and amaranth. This might indicate presence of hydrophilic polymeric structures, 328 

possibly involving starch/fibre (Figure 2; Figure 3A). In contrast, extrudates containing amaranth 329 

were the least able to absorb water (lowest WAI) and the most likely to solubilize (highest WSI). 330 

Interestingly, protein clumps were not clearly observed in extrudates containing amaranth (Figure 331 

3B). It is likely that the formation of protein aggregates and/or starch-protein complexes (clumps 332 

observed as large red areas) stabilize the structure of the system, thereby allowing it to absorb water 333 

and preventing further solubilisation. Due to the high standard deviation of stiffness, only minor 334 

changes among tested samples were observed (Table 2). Extrudates containing more amaranth 335 



became structurally weaker (20/35/50A, p = 0.001), which seems consistent with low WAI and high 336 

WSI if compared with other tested samples (Table 2).         337 

 338 

CONCLUSIONS 339 

This study shows that the chemical profile obtained through NIR hyperspectral imaging can be 340 

successfully linked to specific sensory and (to a lesser extent) physical attributes. Changes in 341 

spectral data was accurately reflected in temporal dominance of sensations (TDS) rather than in 342 

sensory profiling. Appealing TDS attributes such as crunchiness and crispiness were linked to 343 

evenly distributed protein-associated structures while undesirable roughness was clearly linked to 344 

the formation of protein clumps (e.g. protein aggregates, protein-starch complexes). In the present 345 

study, increasing content of fibre was found to reduce the sensation of roughness. The versatility of 346 

NIR to monitor food properties at industrial scale is well known, but its ability to predict textural 347 

attributes is much lesser known. This study proves that fast-monitoring techniques could be used to 348 

analyse the textural quality of extruded snacks.     349 
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TABLES  475 

 Table 1. Content of protein and fibre in amaranth, quinoa, kañiwa and corn flours. The calculated 476 

contents for flour blends were also included (Ramos-Diaz, 2015).  477 

 478 

 479 

  Content (% of solids) 

  Protein  Fibre 

Amaranth (A) 16.1 8.3 

20A : 80C 9.8 6.3 

50A : 50C 12.2 7.1 

Quinoa (Q) 13.1 9.1 

20Q : 80C 9.2 6.5 

50Q : 50C 10.7 7.5 

Kañiwa (K) 16.7 16.1 

20K : 80C 9.9 7.9 

50K : 50C 12.5 11 

Corn (C) 8.2 5.8 



Table 2. Physical/physicochemical and sensory characteristics of corn-based extruded snacks containing 20, 35 and 50% amaranth (A), quinoa (Q) and 480 

kañiwa (K). The data were obtained from Ramos-Diaz et al. (2015) and Ramos-Diaz (2015).    481 

  Physical/Physicochemical  properties*   Sensory profiling**   Temporal studies (cm2)*** 

  

SEI STF, N/mm WAI, % d.b. WSI, % d.b.   CRISP HARD HARD_P ADHE 

  

  

  
CRISP CRUN HARD STICK ROUGH GOO 

20A 11 ±1a 45.9 ±11.2a 387.1 ±8.3a 35.2 ±1.1a 
  

9.0 ±0.1 5.6 ±0.3 5 ±0.4 7 ±0.3  14.4 27.0 12.6 41.3 28.8 24.1 

35A 11.2 ±1a  28.1 ±9.4b 354.9 ±3.3b 34.1 ±0.3a 
 

8.0 ±0.2 3.3 ±0.3 1.5 ±0.2 5.3 ±0.3  17.2 37.6 7.3 40.1 15.5 31.4 

50A 8.7 ±0.5b 22.5 ±4.5b 322.3 ±5.8c 32.1 ±0.6b 

 

7.7 ±0.2 3.5 ±0.5 1.3 ±0.3 6.5 ±0.3  21.3 44.0 7.3 43.3 7.7 43.5 

20Q 9.9 ±0.9a 32.0 ±10.9a 400.4 ±2.0a 32.6 ±0.6a 

 

8.3 ±0.1 5 ±0.6 7.7 ±0.2 6.6 ±0.4  16.5 23.8 17.5 34.7 38.4 19.0 

35Q 11.0 ±0.7a 24.0 ±8.8a 408.1 ±1.5b 28.0 ±0.04b 
 

8.4 ±0.2 4.0 ±0.4 5.4 ±0.3 5.9 ±0.3  19.8 29.6 9.4 36.4 32.6 24.9 

50Q 9.8 ±0.8a 37.7 ±15.8a 399.2 ±2.5a 21.1 ±2.7c 

 

7.9 ±0.2 2.6 ±0.3 1.9 ±0.3 4.8 ±0.3  20.2 51.3 6.5 34.9 11.8 26.1 

20K 10.1 ±1.1a 52.3 ±21a 427.0 ±12.4a 26.6 ±1.4b 

 

8.5 ±0.1 4.1 ±0.3 1.7 ±0.3 4.6 ±0.4  16.4 47.3 8.8 34.4 11.6 30.4 

35K 8.2 ±1.1b 30.9 ±17.5a 413.4 ±4.5a 26.6 ±0.5a 
 

7.4 ±0.2 5.5 ±0.3 1.6 ±0.3 4.8 ±0.4  15.3 34.7 22.7 33.9 6.6 34.3 

50K 5.4 ±1.1c 34.6 ±10.6a 405.2 ±3.4b 23.2 ±0.2b 
  

5.7 ±0.3 7.1 ±0.4 1.5 ±0.3 4.7 ±0.4  12.9 45.8 17.9 33.1 5.2 34.7 

*SEI, sectional expansion index; STF, stiffness; WAI, water absorption index; WSI, water solubility index. *Different letters (a, b, c) within the same category 482 

indicate significant difference at p < 0.05. 483 

**CRISP, crispiness; HARD, hardness; HARD_P, hard particles; ADHE, adhesiveness. Deviation expressed by standard error of the mean.  484 

***CRISP, crispiness; CRUN, crunchiness; HARD, hardness; STICK, stickiness; ROUGH, roughness; GOO, gooeyness. Combined average area of two trials.  485 



FIGURE CAPTIONS 486 

 487 

Figure 1. A schematic overview of data handling. A. Raw image of an extruded sample, B. Masking of the 488 

image to remove the background pixels, C. Application of the mask, D. Unfolding the image to create an 489 

individual matrix, NIR wavelengths (columns) vs pixels (rows), E. All samples were concatenated to generate 490 

a comprehensive matrix, F. Pre-processing of each pixel of the matrix (rows) and reducing the scattering 491 

effects of the all the data, G. Principal component analysis (PCA), H. PCA scores refolded back into the shape 492 

of the original image, G’. Average spectra for each sample type and content, H’. Regression towards physical 493 

and sensory data (i.e. data from temporal dominance of sensation, TDS).        494 

 495 

Figure 2. Scores (A) and loadings (B) of the first two PCs. These were obtained from PCA on the average 496 

image spectrum. In the loading plot (B), the dotted line corresponds to the first PC, while the solid line 497 

corresponds to the second PC. 498 

 499 

Figure 3. Score images corresponding to the first two PCs of one sample. Images were sorted following the 500 

type and amount of tested grains. The image was selected as to show the average tendencies. The two bars 501 

show the scale for the score-values used for the images. 502 

 503 

Figure 4. The bi-plot of the PLS model showing the samples (crosses; grey scale according to grain type) and 504 

the physical/physicochemical (red circle) and TDS data (thick-lined red circles). Samples: 20/35/50A (corn-505 

based extruded samples containing 20, 35 or 50% amaranth of solids); 20/35/50Q (corn-based extruded 506 

samples containing 20, 35 or 50% quinoa of solids); 20/35/50K (corn-based extruded samples containing 20, 507 

35 or 50% kañiwa of solids). Physical/physicochemical characteristics: SEI (sectional expansion index); STF 508 

(stiffness); WAI (water absorption index); WSI (water solubility index). TDS attributes: CRIP (crispiness); 509 

HARD (hardness); HARD, (hardness); STICK (stickiness); ROUGH (roughness); GOO (gooeyness).   510 
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