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Entanglement is a valuable resource for quantum computing and information technologies. A

promising way to obtain spin-entangled electrons is the splitting of Cooper pairs residing in super-

conductors. This is realized by a nanodevice called Cooper pair splitter. A Cooper pair splitter is

realized by tunnel-coupling a superconductor to two quantum dots, which are each further tunnel-

coupled to separate terminal leads. This setup enables the extraction and splitting of Cooper pairs

from the superconductor into the terminals via the quantum dots.

The quantum dots are commonly fabricated from semiconducting materials like InAs and InSb,

that can manifest spin-orbit interaction. This thesis studies the effect of spin-orbit interaction on

the spin state of the electron pair in the Cooper pair splitter. Activating the spin-orbit effects in a

Cooper pair splitter requires a static magnetic field to be applied to the quantum dots. Together

with the gate electrodes controlling the electrostatic energy of the quantum dots, the external

magnetic field provides a handle for addressing different two-particle spin states.

The spin-orbit interaction can be activated by various combinations of the gate voltage and Zeeman

magnetic field, that create resonances between different states of the system. The most interesting

coherent evolution, that can be invoked in this way, involves the simultaneous activation of the two

spin-polarized triplet states. This gives a rise to an entangled Bell state, (|↑↑〉 + |↓↓〉)/
√

2, that

moreover exhibits spin blockade and thus stabilizes entanglement in the Cooper pair splitter.

Secondly, the spin-orbit interaction can be used to bypass suppressed Cooper pair tunneling at

a high superconductor-quantum dots detuning. Introducing a large Zeeman magnetic field allows

Cooper pairs to tunnel into the dots given that their spin state flips to the triplet |↓↓〉. Although this

regime lacks spin-entanglement, it is of interest for creating triplet Cooper pairs and spin-polarized

superconducting currents.
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1. Introduction

Entanglement [1, 2] is a fundamental quantum mechanical property that, in addition

of being of immense theoretical interest [3, 4, 5], is an essential resource for encoding

quantum information [6, 7, 8, 9]. In short, entanglement signifies non-local correla-

tions between quantum particles. Entanglement is of particular interest in quantum

information processing, that utilizes spatially separated entangled particles, so called

Einstein-Podolsky-Rosen-pairs [10], for new kind of computing and communication

[9, 11]. The production of photon EPR-pairs, where the photon polarization is the

entangled quantity, has been first realized in 1970s [12, 13]. In contrast, despite the

abundance of entanglement in solid-state physics [14], the controlled production of

spin-entangled electrons remains a challenge.

Accessing individual electrons has become possible as a result of nanotech-

nology reaching ever smaller length scales [15]. The propagation of electrons in

nanoscale metal or semiconductor structures involves quantum effects, such as quan-

tization of energy levels, and is studied in the field of quantum transport [16, 17]. In

nanodevices, electric current can be shrunken down to individual events of electrons

hopping across insulating barriers. Moreover, the flow of electrons through isolated

pieces of semiconducting islands can become blockaded as the Coulomb repulsion of

electrons in them prevents further electrons from tunneling in. This effect, known

as the Coulomb blockade, proves to be useful for production of entangled electron

pairs in a solid state setting [18, 19].
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Superconductors are a naturally occurring source of entangled pairs [20]. A

metal becomes superconducting when, below its critical temperature, its conduction

electrons pair up as Cooper pairs propagating with zero energy dissipation. The

Cooper pairs of a conventional superconductor [21] occupy a specific two-electron

state known as the spin-singlet [22]. The wavefunction of the singlet is a quantum

superposition of the spin ’up-down’ and ’down-up’ states, (|↑↓〉 − |↓↑〉)/ 1√
2 . The

state is spin-entangled since if one spin is known, the other one is also determined,

as it must be opposite. In the ground state of a superconductor, all conduction

electrons are bound as Coopers pairs [23]. Hence, a superconductor principally

yields electrons only in pairs to remain in its ground state.

This insight motivates the subject of this thesis, a nanodevice called Cooper

pair splitter [24, 25]. A Cooper pair splitter essentially consists of a superconductor

separated by insulating tunneling barriers from two single-level quantum dots, each

of which are further coupled to separate terminal leads. Quantum dots [26, 27]

are tiny, less than 100 nm in width, semiconductors that have significantly discrete

electron energy levels as a result of quantum confinement. In a single-level quantum

dot, or a resonant level, only one energy level is available for electrons. The Coulomb

blockade can be utilized to block the tunneling of a second electron on the resonant

level [24], making it effectively a box that fits only one electron at a time. In a

Cooper pair splitter, this forces the Cooper pairs to split between the two quantum

dots upon tunneling. Hence, a voltage bias can be used to generate flow of entangled

electron pairs directed from the superconductor to each of the leads. The idea of

such a device was first proposed in 2001 [24] and realized in 2009 [25].

There are no spin-flips involved in the conventional model of Cooper pair split-

ter [24], so the spins of the electron pair will remain in the singlet state throughout

the transport from the superconductor to the leads. It is known [28, 29], however,

that electrons traversing through certain semiconductors, such as indium arsenide
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(InAs) [30] can experience spin-flips caused by an effect known as spin-orbit interac-

tion [31, 32, 33]. Since the quantum dots of a Cooper pair splitter are semiconductors

with potential to exhibit spin-orbit coupling, and the quantity of interest is the en-

tangled spin of the electrons, it seems natural to ask what effects the spin-orbit

interaction would have on the operation of a Cooper pair splitter?

This motivates the research questions of this thesis: How does active spin-orbit

interaction in the quantum dots of a Cooper pair splitter affect the spin state of the

electron pairs? To what degree can the spin state be manipulated? What happens

to the entanglement?

It turns out, that the spin-orbit interaction can indeed give rise to spin-

rotations for the electron pairs in the dots. An external static magnetic field is

required to break the time reversal symmetry that normally mitigates spin-orbit

effects in solids. This Zeeman magnetic field and the capacitive gate detuning of the

dot energy levels function as handles to the coherent evolution of the spin states.

By tuning these handles, different two-particle spin states can be made degenerate

in the presence of an active spin-orbit interaction. This causes the electron spins to

rotate in the dots and introduces the spin-triplet states in the Cooper pair splitter.

Employing a time-dependent gate detuning would allow spin-manipulation at the

dots, in a fashion of the electric dipole spin resonance (EDRS) method [34].

This thesis presents a scheme for verifying the spin-flips, that take the elec-

trons on the quantum dots from the singlet state, (|↑↓〉 − |↓↑〉)/ 1√
2 , to polarized

triplet states, |↑↑〉 and |↓↓〉. In the conventional operation regime of the device [24],

the tunneling rate between quantum dots and terminal leads is fast and the dot

occupation time is vanishing. This leaves no time for measuring the state of the

electron pair on the well isolated dots before the electrons are lost in the reservoirs

of the terminal leads. In order to give time for the spin-flips and their measurement,

the transport through the Cooper pair splitter needs to be slowed down by reducing
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the dots-to-terminals tunneling rate.

In the limit where the dots-to-terminals tunneling rate is much slower than the

superconductor-to-dots tunneling rate, the time evolution of the superconductor-

coupled double quantum dot can be observed. The coherent evolution results firstly

from the superconductor-coupling, that hybridizes the empty dot state (singlet pair

in the superconductor) and the singlet pair on the dots and secondly on the spin-

orbit coupling, that introduces the triplet states via spin-flips. The fact that only

electrons in a spin-singlet state can enter the superconductor leads to a spin blockade

[35] for electron pairs in a triplet state. When occupying a triplet state, an electron

pair remains trapped in the quantum dots, until it rotates back to the singlet state

able to realize a tunneling back to the superconductor.

Thus, observing the effects of spin blockade on the quantum dots amounts

to proving that spin-flips have taken place. The average occupation, and hence

electric charge, on the double dot increase due to spin blockade. This means that

instead of directly measuring the spins of the electrons, which is more challenging, it

suffices to measure the average charge. By using a quantum point contact [36, 37],

an efficient capacitive real-time measurement can be performed. Alternatively, the

slow connection to terminal leads can be utilized in tunneling spectroscopy approach

for probing the charge state on the dots.

In addition to the way to verify the spin-orbit interaction in the Cooper pair

splitter, a couple of interesting coherent states are discussed. In particular, at

a zero detuning between the superconductor and dots, the two polarized triplet

states can be addressed simultaneously giving rise to an equal superposition state,

(|↑↑〉+ |↓↓〉)/
√

2. Being product states, the polarized triplets generally ruin the en-

tanglement in a Cooper pair splitter. However, remarkably, the equal superposition

of polarized triplets is maximally entangled and also especially long-lived due to the

spin blockade. Hence, the occupation of this triplet state increases the average time
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the quantum dots hold entangled electrons.

Away from the zero-detuning regime, the polarized triplets can only be ad-

dressed individually, by specific values of Zeeman magnetic field which enable spin-

rotations due to spin-orbit coupling to only one of the triplets. Despite ruining the

entanglement of electron pairs, the ability of accessing the individual triplets turns

the Cooper pair splitter into a source of spin-polarized electrons [38]. The extreme

case occurs in a regime of high detuning, where the ordinary Cooper pair transport

between superconductor and dots becomes near completely suppressed. Using high

external magnetic field, a degeneracy between the polarized triplet, |↓↓〉, and the

empty dot state can be reached, allowing spin-orbit coupling to mix the two. In

view of this, the Cooper pair splitter could thus be used as a source of pair-wise

emitted spin-polarized electrons.

The structure of the thesis is the following. The first three chapters, after

the introduction, each discuss some physical phenomenon, that together create the

physics of a Cooper pair splitter. In short, these phenomena are the electron tunnel-

ing in the dynamic Coulomb blockade regime (Chapter 2), two-particle spin states

(Chapter 3) and superconductor-normal metal junction (Chapter 4).

Chapter 5 discusses the double quantum dot-regulated electron transport through

the conventional Cooper pair splitter. In Chapter 6 the reader is familiarized with

the spin-orbit interaction. The main results of the thesis, the evolution of the spin

state leading to a spin blockade is discussed in Chapter 7.

In Chapter 8 a measure called concurrence is used to quantify the entanglement

on the double quantum dot. Finally, in Chapter 9, two charge based detection

schemes are suggested for indirect measurement of the spin state and its concurrence.

The concluding Chapter 10 presents some discussion and future implications of the

main results.



2. Coulomb blockade

Cooper pair splitters operate in an exotic conductance regime known as the dynamic

Coulomb blockade regime [16, 17]. In most of the solid state physics, the celebrated

free-electron model [39] can be used to accurately model electrons by non-interacting

quasiparticles known as solid-state electrons. However, many nanodevices include

components where electrons are localized close to each other. In such setups, the

free-electron model is no longer applicable. Instead, the Coulomb interaction leads

to a concept of charging energy, that renders the energy spectrum of charge carriers

discrete [40]. Electron localization occurs in parts of a nanostructure separated from

the rest of it by weakly conducting tunnel barriers, where an electron can be trapped

for a time.

The fundamental unit of conductance in electron transport is the conductance

quantum GQ = 2e2/h. It is the conductance of a channel that allows only two elec-

trons of opposite spins to enter at a time, with transmission probability of one [41].

It is, therefore, the minimum conductance for a spin degenerate ballistic nanocon-

ductor. Non-ballistic channels i.e. those with transmission probability less than one,

have conductance less than the conductance quantum. A barrier with conductance

G� GQ will stagnate the electron flow to an occasional trickling and stack up elec-

trons on the other side. Such low conductance characterises the dynamic Coulomb

blockade regime reviewed in this chapter.

6



2.1. CHARGING ENERGY 7

2.1 Charging energy

The isolated parts of a Coulomb nanostructure, called islands, form the center for the

physics in the dynamic Coulomb blockade regime. On an island, an excess electron,

whose charge is not countered by a positive nucleus, generates an electric field around

itself. This electric field possesses electrostatic energy Eel = e2/2C, where C is the

capacitance of the island. An island with N number of excess electrons has a charge

eN and electrostatic energy

Eel = e2

2CN
2, (2.1)

where EC ≡ e2

2C is termed the charging energy. Adding Nth electron to an island

with a charge e(N−1) increases the electrostatic energy by ∆Eel = ECN
2−EC(N−

1)2 = EC(2N − 1). This extra energy needs to be provided to surpass the Coulomb

repulsion when adding an electron to a charged island. The uncompensated charging

energy will block a current from flowing, giving rise to a Coulomb blockade [42].

The charging energy EC is inversely proportional to the capacitance of the

island and is therefore determined by the size and separation of the island. For

macroscopic islands the large capacitance leads to a vanishing charging energy. In

the opposing limit, as one reduces the size of the island to the length scales of the

De Broglie wavelength of an electron, another energy scale has to be taken into

consideration. As the island gets smaller, the discreteness of electron energy levels

becomes more prominent by the virtue of increased quantum confinement so that

the interval between energy levels, the mean level spacing δS, has to be considered.

Only two electrons can fit to a single energy level, which means that subsequent

electrons have to go to a higher empty level with δS more energy. This energy has

to be provided as an extra part of the addition energy on top of the charging energy

EC .

Comparison of the charging energy and mean level spacing for a 100 nm island
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with 109 atoms yields EC/δS ≈ N
2/3
atoms [17]. Hence, the contribution of the discrete-

ness of energy levels to the addition energy is vanishing compared to the charging

energy if the island consists of a large number of atoms. This metallic island limit

is assumed in this chapter in order to illuminate the basic concepts of the dynamic

Coulomb blockade regime. The opposite limit, where δS � EC , is discussed in

Sec. 5.1. Properties of such quantum dots prove to be essential to the operation of

Cooper pair splitters.

2.2 Capacitance circuits

A coulomb nanostructure can be conceptually represented by a DC electric circuit

consisting of capacitors and voltage sources. In this picture, the islands are formed

by plates of two or more capacitors, so that one of the adjacent plates of each

capacitor is part of the island while the second plate belongs to circuit elements

connected to the island, as illustrated in the left side of Fig. 2.1. The gaps between

capacitor plates describe tunneling barriers defined both by their capacitance and

conductance. Electron transmission is represented as occasional leaking of these

capacitors: given enough energy an electron can hop across the capacitor plates

creating a tiny current. The tunnel barriers separate the islands from the rest of the

nanodevice, where electrons follow the metallic free electron model [39]. These lead

electrodes (reservoirs of delocalized electrons) correspond to anodes and cathodes of

voltage sources in the circuit. The difference in electric potential between the source

and drain leads, represented by the bias voltage Vb will drive current through island,

if it is not prevented by the Coulomb blockade.

In addition to islands and leads, gate electrodes have an important role in the

Coulomb capacitance circuits. A gate is connected to a separately adjustable voltage

source Vg and is placed farther from the island than source and drain leads in the

realization of the circuit. This results in a weak coupling that suppresses electron
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tunneling between the island and gate. As the gate is coupled only capacitively to

the island, no electron transfer may take place between them. Instead, the function

of a gate is to affect the electrostatic energy of an island by inducing charge, that

can trigger or prevent electron tunneling between the island and other leads.

Vg

Cg

Vb

C2C1

qg

−qg

q1−q1 q2−q2

+−

+
−

−eN

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-Vg (Cg /e)

0.5

1.0

1.5

2.0
E/Ec

Figure 2.1: (Color online.) Single electron transistor. Left: Electric circuit corre-

sponding to an elementary Coulomb device consisting of a single island coupled to

source, drain and gate electrodes. The charge on the island is quantized as multi-

ples of the elementary charge −eN . The gate electrode is used to manipulate the

electrostatic energy of the island to govern the electron transport through it from

the source to the drain. Right: The electrostatic energy Eel (2.2) of the island in

units of charging energy EC for various charge states N as a function of the gate

voltage Vg in units of −e/Cg. The three parabolas correspond to having −1, 0 and

1 excess electrons on the island. The energy of the system is minimum below the

horizontal line, which implies that electron transfers become preferable as the gate

voltage reaches degeneracy points Vg = ±0.5e/Cg.
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2.3 Gate electrodes

The electrostatic energy of an isolated island, Eel = ECN
2, will be modified by volt-

age sources of the circuit that it is part of. Voltage will cause charge to accumulate

on the capacitor plates adjacent to the island, which generates electric fields. These

electric fields will increase the island’s electrostatic energy as they induce a charge

q on it. The electrostatic energy accounting for this induced charge can be written

as

Eel = EC(N − q

e
)2, (2.2)

where the charging energy includes a sum over capacitances of all circuit elements

connected to the island, EC ≡ e2/2∑Ci. Likewise, the induced charge q ≡ −∑CiVi

is generally contributed to by all adjacent elements. It is, however, often convenient

to choose antisymmetric bias voltage Vsources = −Vdrains, so that source and drain

contributions cancel in the above sum, making the induced charge depend solely on

the gate voltage Vg.

Note that while the electrostatic energy of Eq. (2.2) is now continuous due to

the gate voltage q = −CgVg, the charge on the island is always an integer multiple

of the electron charge, −eN . The result of this can be illustrated by plotting the

electrostatic energy versus the gate voltage for different numbers of excess electrons

N . Such plot yields a set of parabolas each reaching zero energy at the minimum

vertex and shifted by integer number from each other, as displayed in the right

panel of Fig. 2.1. Clearly the island has minimal energy whenever the gate voltage

is an integer multiple of e/Cg corresponding to the number of excess electrons.

Lowering (increasing negative) Vg boosts the electrostatic energy of an island in

charge state N until it reaches a degeneracy point with a state of N + 1 electrons

as the corresponding parabolas cross. At this point the Coulomb blockade is lifted

and a tunneling of an electron to the island is allowed. Further decrease of Vg will
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allow another electron to enter after a full period of e/Cg. Likewise, raising the gate

voltage will lead to electrons periodically tunneling away from the island in order

to relax the electrostatic energy.

Hence, the charge quantization of the island causes its electrostatic energy to

be a periodic function of the gate voltage. This presents a useful tool to control

the number of electrons on the islands as well as deny or allow tunneling by the use

of Coulomb blockade. Although the electron tunneling is a quantum mechanical

effect, the dynamics of the transport in the dynamic Coulomb blockade regime

are governed by concepts from classical physics such as energy conservation and

probability balance, as will be discussed next.

2.4 Sequential tunneling

The state of an island is characterized by the number of excess electrons in it. This

charge state changes when electrons tunnel between the island and other parts of a

nanodevice. Because of the weakly conducting connections G � GQ, nanosystem

spends most of its time in one of the well defined charge states. Tunneling occurs

rarely and is dominated by the most probable case of a single-electron transfer.

Consider the single electron transistor portrayed in Fig. 2.1. The device con-

sists of an island connected to three electrodes: a source (on the left), a drain (on

the right) and a gate. A single electron transfer between charge states N and N + 1

or N − 1 is possible if it complies with the energy conservation principle. In other

words energy can only be dissipated, not increased, unless it is brought from outside

as heat or work. This corresponds to the difference of the energies of the initial

and final states of a process being negative, ∆E < 0. Assuming vanishing thermal

fluctuations, only the difference in the electric potentials across the tunneling barrier

and a change in the electrostatic energy of the island contribute to the electron ad-

dition energy of the tunneling event. An island in charge state N holds electrostatic
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energy given by Eq. (2.2). Therefore, the energy difference between states N and

N ± 1, is

∆E = Eel(N ± 1)− Eel(N)∓ eVL/R. (2.3)

The last term eVL/R represents the energy gained (paid) from extracting (adding)

an electron from the left or right lead with electric potentials VL and VR respectively.

There are two tunable parameters dictating whether tunneling process is allowed or

not: the gate voltage Vg governing the electrostatic energy Eel and the bias voltage

Vb = VL − VR responsible for the different chemical potentials of the left and right

leads eVb = e(VL − VR).

Now, there are four possible single electron transfers: an electron tunneling to

or from the left lead and an electron tunneling to or from the right lead. Whether

the energy difference (2.3) for each of these transports is negative or not dictates the

transport regimes of the device. Consider such bias voltage Vb and gate voltage Vg,

that ∆E < 0 for an electron tunneling from the left reservoir to the island and from

the island to the right reservoir, while ∆E > 0 for the opposite transfers. There

is now a current running from left to right as the island oscillates between charge

states N = 0 and N = 1. See the region marked as 0 
 1 in Fig. 2.2.

The region where the energy costs for all single electron transfers are negative

is Coulomb blockaded. When the bias and gate voltages of the system are within

this regime, the charge state of the island remains unchanged and there is no current.

In the Vg−Vb plane, the conditions ∆E > 0 for various transfers are represented by

slanted lines. For the single electron transistor considered earlier with symmetric

bias voltage VL = −VR = Vb/2, these lines form the typical diamond pattern seen in

the middle of Fig. 2.2 known as the Coulomb diamonds. In order to produce such

plots, one has to know the electric current as a function of the two voltages. This is

achieved by utilizing the master equation approach.
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Figure 2.2: (Color online.) Coulomb blockade. The colours represent the current

(2.7) through a metallic island as a function of bias Vb and gate voltages Vg, cal-

culated from the master equation (2.5). Sequential tunneling is blocked within the

rhombuses centered at zero bias voltage, known as the Coulomb diamonds. Each

diamond corresponds to a different discrete charge state. In the regions around the

diamonds, there is a finite current, carried by single electron transfers either from

left to right or in the opposite direction for opposite bias voltage. The region re-

sponsible for transitions between charge states N = 0 and N = 1 is labelled in the

picture as an example.

2.5 The master equation and current

The time evolution of the charge states of Coulomb nanostructures and the resulting

current can be solved by considerations of probability balance. Since the charge

states are classical non-coherent states, classical reasoning suffices to deduce their

evolution. An electron transition from a charge state to another, given that it is

allowed by the energy conservation, is realized if some electron actually undergoes

a tunneling event. To quantify the probabilistic nature of electron transitions, rate

Γα→β is introduced. It equals the probability per unit time that electron tunnels
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from a charge state α to β.

The probability of an island to be in a charge state N is denoted by the oc-

cupation probability distribution P (N). Assigning the charge states with classical

probability distributions is possible because the island has time to relax into inco-

herence after every tunneling event. The state of the island changes only due to

charges either leaving or arriving from the neighbouring charge states N + 1 and

N − 1. It is convenient to label states with α and β so that the states α evolve

to neighbouring charge states β at a tunneling rate Γα→β. The time evolution of a

charge state α is then written as

d

dt
P (α) = −

M∑
β

Γα→βP (α) +
M∑
β

Γβ→αP (β), (2.4)

where the rates taking the system away from the initial charge state are assigned

with a minus sign andM is the total number of charge states. This balance equation

is called the master equation. For practical purposes it is easiest to write it as a

matrix equation

d

dt
Pα =

M∑
β

Γ̂αβPβ. (2.5)

The diagonal elements of the matrix Γ̂ contain rates from state α to other states

and the off-diagonal elements contain rates, that bring the system to state α, corre-

sponding respectively to the first and second terms in Eq. (2.4).

The rates Γ do not change in time as long as the capacitances, bias and gate

voltages in the circuit are kept constant. There exists, therefore, a set of station-

ary solutions to the master equation, {P 0(α)}. These time-independent solutions,
d
dt
P 0(α) = 0, correspond to a situation where the incoming and outgoing terms can-

cel in the right hand side of Eq. (2.4). With the aid of condition ∑M
α P (α) = 1 i.e.

the sum of all occupation probabilities is unity, the steady states can be straightfor-

wardly found. In the matrix formalism of the master equation, finding the steady
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states corresponds to finding an eigenvector associated with the zero eigenvalue,
M∑
β

Γ̂αβP 0
β = 0. (2.6)

The components of the eigenvector P 0
β are the steady probabilities P 0(N), P 0(N ±

1), P 0(N ± 2)..., that can be solved as a function of the rates Γα→β.

The state transitions evoke a tiny current in the nanocircuit as each electron

hop transfers elementary charge across a tunneling barrier. The stationary current

through the circuit is found by considering rates at any junction of the device. As

long as the steady states P 0(α) are used and there is no splitting of the current

in the circuit, charge conservation ensures that the same current goes through all

junctions. The stationary current through a given junction is a sum of the competing

contributions of electrons going both to and from any of the stationary states

I = e
∑
α

(Γα→α+1 − Γα→α−1)P 0(α). (2.7)

As an example of solving the stationary current using the master equation, con-

sider transfer through a simple lead-island-lead structure with the left lead having

higher chemical potential so that the electrons move from left to right. Consider

for simplicity only charge states N and N + 1. Tunneling from the left lead to the

island changes the charge state from N to N + 1 with rate ΓL and tunneling from

the island to the right lead brings it back to state N with rate ΓR. Therefore, the

charge state of the island oscillates between N and N + 1 as electrons pass through

the junctions. The time derivatives of stationary solutions of the master equation

are zero, 
dP 0(N)
dt

= ΓRP 0(N + 1)− ΓLP 0(N) = 0

dP 0(N+1)
dt

= ΓLP 0(N)− ΓRP 0(N + 1) = 0.

With the help of unity condition, the stationary occupation probabilities P 0(N) =

ΓR/(ΓR + ΓL) and P 0(N + 1) = ΓL/(ΓR + ΓL) are readily solved and the current

(through the left junction) is obtained from the Eq. (2.7) as
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IL = eΓLP 0(N) = e
ΓLΓR

ΓR + ΓL
. (2.8)

By virtue of the charge conservation, the same current goes through both junctions,

IR = IL. To conclude the analysis of the sequential tunneling at the Coulomb

blockade regime, the classical description must finally give way to the quantum

theory for the determination of the rates Γα→β.

2.6 Tunneling rates

To obtain actual values for the stationary current in Coulomb nanostructures from

Eq. (2.7) the rates Γα→β must be known in terms of the circuit parameters. That is

achieved by the quantum mechanical perturbation theory [43], known in this context

as the tunneling Hamiltonian method [44]. Establishing the states of the islands

and leads of the circuit, with their individual quantum states labeled by i and l,

respectively, as the unperturbed Hamiltonian Ĥ0 = ∑
i Ĥi+

∑
l Ĥl and the tunneling

events as small perturbations given by Hamiltonian ĤT , enables a perturbative

approach to the analysis of the tunneling dynamics. Convenient formalism for the

Hamiltonians is the second quantization (see e.g. [44]), centered around the creation

and annihilation operators â†l,σ and âl,σ. The individual energy states of a lead or

island are expressed using the Dirac notation |n〉l,σ, where n gives the number of

electrons in a given energy state l with a spin σ. Each l is associated with two σ’s

because of the two possible spin orientations σ = {↑, ↓}. Due to the Pauli exclusion

principle, each energy level can have up to one fermion so that n must be either 0 or

1. This simplifies the effect of the creation and annihilation operators for electrons

to four following operations.

The creation operator â†l,σ acts on the corresponding empty state |0〉l,σ by

adding one electron to it â†l,σ |0〉l,σ = |1〉l,σ. In accordance with the Pauli exclu-
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sion principle, acting with a creation operator on a filled state destroys the state

â†l,σ |1〉l,σ = 0. Annihilation operator conversely removes an electron from an occu-

pied state âl,σ |1〉l,σ = |0〉l,σ and destroys an empty state âl,σ |0〉l,σ = 0. The com-

bination of creation and annihilation operators acting on the same state is dubbed

the number operator, â†l,σâl,σ ≡ n̂l,σ. Furthermore, the antisymmetry property of

fermions [44] is accounted for by the anti-commutation relations satisfied by the

fermionic creation and annihilation operators

{â†l,σ, âk,σ′} = â†l,σâk,σ′ + âk,σ′ â
†
l,σ = δl,kδσ,σ′

{â†l,σ, â
†
k,σ′} = {âl,σ, âk,σ′} = 0. (2.9)

Expressed in the second quantization formalism, the Hamiltonian of a lead is the

sum of energies of individual occupied electrons states l up to the Fermi level,

Ĥl =
∑
lσ

εlâ
†
lσâlσ. (2.10)

Each single level energy εl is doubly degenerate due to two allowed spin orienta-

tions σ = {↑, ↓}. In islands the interactions of localized electrons are accounted by

inclusion of interaction term in the Hamiltonian,

ĤI =
∑
iσ

εiâ
†
iσâiσ + Ĥint. (2.11)

In case of an island with a high density of states, such as those considered throughout

this section, the interaction term is simply the electrostatic energy of Eq. (2.2)

Ĥint ≡ Eel(N̂) = EC(N̂ + CgVg
e

)2, (2.12)

where again EC = e2/2C is the charging energy and the latter term in the parenthesis

stands for the energy contributed by the gate electrode. N̂ is the number operator

of the whole island, i.e. it gives the total number of electrons on the island N̂ =∑
i,σ â

†
iσâiσ.



2.6. TUNNELING RATES 18

The energy contribution of a single electron to the total energy is small for an

island and even more so for a metallic lead. It is therefore clear that the tunnel-

ing events transferring one electron between the island and lead change the initial

energies only slightly, and it is safe to treat them as perturbations. The tunneling

Hamiltonian of a sequential tunneling across a tunneling barrier is

ĤT =
∑
lrσ

(Tlrâ†lσârσ + T ∗lrâlσâ
†
rσ), (2.13)

where the first term removes an electron from left side of the barrier and adds one

to the right side, while the second term is its Hermitian conjugate representing the

opposite process. Tl,r gives the amplitude of the tunneling coupling i.e. the overlap

of the wavefunctions of the electron states l and r separated by a tunneling barrier.

In practice, solving such an overlap integral requires microscopic knowledge of the

specific quantum states and is hard to achieve. It turns out, however, that the sum

of Tl,r’s can be related to the conductance of the junction and thus solved indirectly

[17].

The rate Γα→β can be solved by applying a famous result from the quantum

mechanics for calculating transition rates between energy eigenstates known as the

Fermi’s golden rule [45, 46]. It yields the probability of transition per unit time

from a specific state of the system to a continuum of other states, initiated by a

weak perturbation [45]. The first order perturbation provides a rate

Γα→β = 2π
~

∣∣∣〈fβ| ĤT |iα〉
∣∣∣2δ(Efβ − Eiα), (2.14)

where |iα〉 and |fβ〉 are the initial and final states with α and β excess electrons and

Eiα and Efβ are energies of these states. The squared absolute value of the tunneling

matrix element included in the Fermi’s golden rule makes it phase independent i.e.

incoherent in the first order. Physically this follows from the destructive interference

between transitions to various continuous states that abolish any time and phase-

dependence [47]. This approach is valid in the dynamic Coulomb blockade regime
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because the electron waiting times between tunneling events are considerably longer

than the coherence times of the electrons and thus there can be no coherence between

successive tunneling events [44]. If the driving perturbation is time-independent, the

resulting transitions will be between states equal in energy, which is ensured in the

Fermi’s golden rule (2.14) by a delta function.

2.6.1 Tunnelling rate from a lead to an island

As a practical example, consider an electron tunneling from a source lead to an

island. The relevant parts of the unperturbed Hamiltonian of the system are the

ones describing the energies of the lead and island,

Ĥ0 = ĤL + ĤI , with

ĤL =
∑
lσ

εlâ
†
lσâlσ and

ĤI =
∑
kσ

εkσd̂
†
kσd̂kσ + Eel(N̂). (2.15)

The tunneling Hamiltonian is

ĤT =
∑
lkσ

(Tlkd̂†kσâlσ + T ∗lkâ
†
lσd̂kσ). (2.16)

The charge state of the island changes from |N〉iI to |N + 1〉fI as a result of the

tunneling while the lead loses an electron going from |n〉iL to |n− 1〉fL . Since the

lead and island states are independent, the initial and final states of the tunneling

event can be written as direct products |iN〉 = |N〉iI⊗|n〉iL and |fN+1〉 = |N + 1〉fI⊗

|n− 1〉fL . The final state can be further rewritten using creation and annihilation

operators as |N + 1〉f = d̂†kσ |N〉iI⊗ âlσ |n〉iL . Both the lead and island have multiple

electron energy states, that can all realize a tunneling (as long as the energy condition

is met) so the rate has to be a sum over all these states. Inserting the tunneling

Hamiltonian (2.16) into Fermi’s golden rule (2.14) with a summation over the initial
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and final states (written in terms of initial states) gives

ΓN→N+1 =2π
~
∑
i

∣∣∣∣∣∑
lσ

Tlk 〈n|iL ⊗ 〈N |iI d̂kσâ
†
lσd̂
†
kσâlσ |N〉iI ⊗ |n〉iL

∣∣∣∣∣
2

P (iN)

× δ(E|N+1〉f − E|N〉i). (2.17)

Here the rate has been weighted with the probability of the system being in the initial

state P (iN) = P (il)P (ik). Using the anti-commutation relation {d̂†kσ, d̂k′σ′} = δkk′σσ′

and writing the creation and annihilation operators as number operators â†lσâlσ =

N̂lσ and d̂†kσd̂kσ = N̂kσ gives, after some rearranging,

ΓN→N+1 =2π
~
∑
i

∑
lkσ

|Tlk|2
∣∣∣〈n|iL n̂lσ |n〉iL∣∣∣2P (il)

∣∣∣〈N |iI (1− n̂kσ) |N〉iI
∣∣∣2P (ik)

× δ(E|N+1〉f − E|N〉i). (2.18)

Note that N̂lσ |n〉iL and N̂kσ |N〉iI = 0 or 1 due to the fermionic nature of electrons,

which demands that each energy level can have only up to one particle with a

certain spin. Consequently, the squares can be omitted from the matrix elements in

Eq. 2.18. Since electron states in the metallic leads are extended, the sums over the

occupations weighted by the occupation probabilities in the above equation are given

by Fermi-Dirac distributions: ∑i,σ 〈n|iL n̂lσ |n〉iL P (il) = nF (εl) and ∑
i,σ 〈N |iI 1 −

n̂kσ |N〉iI P (ik) = 1− nF (εk). The rate simplifies to

ΓN→N+1 = 2π
~
∑
lk

|Tlk|2nF (εl)(1− nF (εk))δ(E|N+1〉f − E|N〉i). (2.19)

The energies of the final and initial states appearing inside the delta function are

evaluated by taking expectation values of the non-interactive Hamiltonian (2.15) of

the system in these states

E|N+1〉f = 〈n− 1|fL ⊗ 〈N + 1|fI (ĤL + ĤI) |N + 1〉fI ⊗ |n− 1〉fL (2.20)

and

E|N〉i = 〈n|iL ⊗ 〈N |iI (ĤL + ĤI) |N〉iI ⊗ |n〉iL . (2.21)
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This yields,

E|N+1〉f = 〈n− 1|fL ⊗ 〈N + 1|fI
∑
lσ

εlâ
†
lσâlσ +

∑
kσ

εkd̂
†
kσd̂kσ + Eel(N̂kσ) |N + 1〉fI ⊗ |n− 1〉fL

=
n−1∑
lσ

εl +
N+1∑
kσ

εk + Eel(N + 1) (2.22)

and

E|N〉i = 〈n|L ⊗ 〈N |iL
∑
lσ

εlâ
†
lσâlσ +

∑
kσ

εkd̂
†
kσd̂kσ + Eel(N̂kσ) |N〉iI ⊗ |n〉iL

=
n∑
lσ

εl +
N∑
kσ

εk + Eel(N). (2.23)

The energy condition for the delta function is hence the difference

E|N+1〉f − E|N〉i = Eel(N + 1)− Eel(N) + εk − εl

≡ ∆Eel(+1) + εk − εl. (2.24)

Now, assuming continuous density of states in the lead, the sums over energy states

can be substituted by integrals over the energies weighted with the densities of states

ρ(εl) and ρ(εk)

∑
lk

→
∫
dεldεkρ(εl)ρ(εk). (2.25)

The Eq. (2.19) reads then

ΓN→N+1 = 2π
~

∫
dεldεkρ(εl)ρ(εk))|Tlk|2nF (εl)(1− nF (εk))δ(∆Eel(+1) + εk − εl).

(2.26)

Assuming the combination of the densities of states and tunneling probability ρ(εl)ρ(εk)|Tlk|2

to be constant, integration over εl yields

ΓN→N+1 = 2π
~
ρ(εl)ρ(εk)|Tlk|2

∫
dεknF (∆Eel(+1) + εk)(1− nF (εk)). (2.27)

The constants can be labelled as the tunneling density of states γ0 ≡ 2π
~ ρ(εl)ρ(εk)|Tlk|2,

whose value can be solved from the conductance of the tunneling barrier [17].
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In the limit of low temperature, the Fermi-Dirac distribution is a step function:

limT→0 nF (εl,k)→ 1− θ(εl,k−µL,I) = θ(−εl,k +µL,I), where µL,I is the Fermi energy

of the lead/island. This simplifies the rate (2.27) to

ΓN→N+1 = γ0

∫
dεkθ(−∆Eel(+1)− εk + µL)(1− θ(−εk + µk)). (2.28)

The step functions dictate which values of εk provide non-zero contribution to the

integral and hence set new effective limits of integration. The integral is then a

trivial one:

ΓN→N+1 = γ0

∫ µl−∆Ec(+1)

µk

dεk = γ0(µl − µk −∆Eel(+1)). (2.29)

The difference of the lead and island Fermi energies can be linked to the bias voltage

between them, µl−µk = eVb. As mentioned earlier, the tunneling density of states γ0

can be connected to the conductance of the tunneling junction, which allows the rate

to be finally written in a form characterized completely by the circuit parameters

ΓN→N+1 = G

2π2GQ

(eVb −∆Eel(+1)), (2.30)

where the gate voltage Vg acts through the electrostatic energy difference ∆Eel(+1) =

2Ec(N + 1
2 −

CVg
e

). The bias voltage multiplied by the electron charge eVb has to be

positive for the electrons to go from the lead to island, and larger than the change

in electrostatic energy, eVb > ∆Eel(+1), for the process to be in congruence with

the energy conservation principle. Once these conditions are fulfilled, the sequential

tunneling rate between an island and lead manifests a simple linear dependence on

the voltage bias. This is in contrast with quantum dots, that will be encountered in

Sec. 5.1, whose transition rate is bias-independent.

2.7 Coherent transport

The complex phase of the probability amplitude (matter wave) of a quantum state

has an important role in quantum mechanics. Though the phases of individual quan-
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tum states have no physical significance, since they cancel out when probabilities

are derived from corresponding probability amplitudes by taking squared moduli,

phases become relevant when considering multiple quantum states. Different states

are able to interfere in a manner typical to waves, and the effect of this interference

is determined by the difference of the phases of the subsystems, a quantity called

the relative phase. The interference manifests as an increase or decrease of the clas-

sically expected probability for a given outcome, depending on whether the matter

waves interfere creatively or destructively. Notable interference manifest only if the

phases of different amplitudes are coherent i.e. they have a constant relative phase.

The phase of a wavepacket representing an electron can change as a result

of collisions. Inelastic collisions and collisions occurring at random times ruin the

coherence of electron waves as they disturb the relative phase [48]. In nanostruc-

tures such disturbances originate commonly from thermal vibrations of the lattice

or electron-electron interactions. Two electrons will therefore lose their coherence as

their phases change differently while travelling in a lattice. This is characterized by

a phase coherence time, the average time after which an electron loses its original

phase and no interference effects are to be expected.

Since in the dynamic Coulomb blockade regime the tunneling frequency is

slower than the phase coherence time, it is reasonable to assume the transport to

be dominated by incoherent single electron tunneling. However, as the potential

barriers become weaker and the waiting times decrease, the coherent correlations

between tunneling events gain importance. Electron co-tunneling describes coherent

transport at the dynamic Coulomb blockade regime as a correlated transfer of two

or more electrons. As will be explained next, it enables a tiny current to flow even

when sequential tunneling is forbidden, and can therefore be important even deep

in the Coulomb blockade regime where G� GQ.

For electrons in Cooper pair splitters, co-tunneling is an unwanted transport
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that one wishes to suppress. However, the extraction of Cooper pairs from the

superconductor is realized by another coherent mode of transport, the Andreev

reflection. This process occurring at the interface of superconducting and normal

conducting materials, will be described in Sec. 4.3.1.

2.8 Co-tunneling

Classically, tunneling processes have to obey the energy conservation: electron trans-

fer cannot increase the total energy of the system without outside work. However,

the uncertainty relation, ∆E∆t ≥ ~/2, between energy and time yields time interval,

∆t ≈ ~/(2∆E), during which the energy does not need to be conserved. This opens

a possibility for an electron co-tunneling: a chain of tunneling events, that although

ultimately conserves energy, passes through states that violate energy conservation.

An elementary example of such an event is a co-tunneling of an electron from

a reservoir to another via an intermediate island. An electron can tunnel in to the

island from the left lead and reside there for a time ∆t ≈ ~/(2∆E), within which

another electron can tunnel to the right lead, relaxing the island to its initial charge

state. Unless the second electron tunnels away from the very same energy level of the

island, that was previously excited by the initial tunneling, the co-tunneling process

leaves an electron-hole exciton on the island. Such processes are called inelastic

co-tunneling, since the energy of the transported electron in the drain lead is lower

than the energy of the initial electron in the source. The energy lost during the

transport equals the energy of the exciton created on the island. In contrast, in the

elastic co-tunneling process, no energy is dissipated as the same energy level both

receives and loses an electron on the island. Therefore, not only the charge state but

also energy of the island remains unchanged after an elastic co-tunneling transport.

The rate of two electron co-tunneling is obtained from the Fermi’s golden

rule (2.14), by substituting the tunneling Hamiltonian (2.13) with a higher order
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perturbation involving two subsequent tunnelings via an intermediate state. Since

the intermediate state cannot be realized for a time longer than is allowed by the

uncertainty principle, it is called a virtual state. Formally, the tunneling matrix

ĤT is replaced by a T-matrix containing a series of terms each describing tunneling

processes with increasing number of virtual states. Up to second order, the T-matrix

reads [44]

T̂ = ĤT + ĤT
1

Ei − Ĥ0
ĤT . (2.31)

The first term is the usual single electron tunneling Hamiltonian and the second

term corresponds to a co-tunneling via virtual state realized by two single electron

transfers. Ei is the initial energy and Ĥ0 is the unperturbed Hamiltonian of the

system. For the simple lead-island-lead junction, considered above, the co-tunneling

rate from a source to drain is obtained from the Fermi’s golden rule using the second

term of the above T-matrix

Γ(2)
co = 2π

~
∑
fβiα

∣∣∣∣∣〈fβ| ĤT
1

Ei − Ĥ0
ĤT |iα〉

∣∣∣∣∣
2

P (iα)δ(Efβ − Eiα). (2.32)

Operating on the initial state with the first tunneling Hamiltonian yields two pos-

sible virtual states: either electron enters the island from the source or leaves it by

tunneling to the drain, taking the system to a virtual charge state |νN+1〉 or |νN−1〉,

respectively. The reciprocal of the energy difference of initial and virtual states,
1

Ei−Ĥ0
, suppresses processes that involve high energy virtual states. The second tun-

neling Hamiltonian in Eq. (2.32) restores the system back to its original charge state

|iN〉, by either removing the excess charge to the drain lead or bringing electron from

the source lead back to the island, depending which tunneling had occurred initially.

The matrix element inside the squares in Eq. (2.32) hence composes of two terms

corresponding to the two ways to realize the electron transport through the junction
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i.e.

Γ(2)
co = 2π

~
∑
fβiα

∣∣∣∣∣〈fβ| (ĤTR
1

Ei − Ĥ0
ĤTL + ĤTL

1
Ei − Ĥ0

ĤTR) |iα〉
∣∣∣∣∣
2

P (iα)δ(Efβ − Eiα).

(2.33)

Because the sum of these two ways of transport appears within the square of the

absolute value, their contributions do not simply add up in the classical sense but

rather interfere like waves, embodying the coherence of the process.

The elastic co-tunneling, mentioned above, leaves no excitons on the island

since both transfers happen through the same energy level. The rate of such a

process is contributed by all available discrete levels of the island, that is ∼ EC/δS

levels. The phase shifts from transports via different energy levels are random and

thus average to zero for the total rate. This leads to a strong destructive interference

and suppression of the elastic co-tunneling rate by factor of ∼ δS/EC [17]. Hence, for

a metallic island with neglectable energy level spacing δS, co-tunneling is dominantly

inelastic [44]. For the quantum dots encountered in Sec. 5.1, the elastic co-tunneling

dominates, as the energy levels are notably discrete.



3. Spin states

Historically, the electric charge of an electron has been the primary property used

to encode, store, transmit and process information. The other intrinsic property

of all particles, spin angular momentum, has remained mostly untapped until re-

cently. Excluding few passive commercial innovations such as magnetic read heads

for reading data and MRAM (magnetic random-access memory) storage, the spin-

tronic devices are only in early development phase [49].

Though controlling the spin degree of freedom requires more sophisticated

techniques than charge-based manipulation, adopting spin as a basis of data pro-

cessing has indisputable benefits. In addition to possible increase in processing

speed and device density, a major advantage comes from a reduced heat dissipation.

This follows from the possibility to alter electron’s spin degree of freedom without

physically moving the electron, whereas traditional electronics relies on moving the

charged electron around. Quantum information technology serves as a more recent

motivator for spintronics, since the long coherence time of spin states makes them

promising storages for quantum information.

This chapter reviews the formalism of the electron spin and especially the

formulation of a two-spin system, which models the electron pairs processed by

the Cooper pair splitters. The formalism introduced here can be appreciated to

full extend in Ch. 7, where spin-orbit interaction is used to induce spin-flips that

transform the spin-singlet, the natural state of a Cooper pair, into other spin states.

27
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3.1 Electron spin

Particle’s spin angular momentum exhibits the same properties as its orbital angular

momentum: it has a magnitude and orientation and it obeys same quantum mechan-

ical restrictions. However, unlike orbiting, the spin cannot be linked quantitatively

to any physical motion, nor can its magnitude be changed [49]. Spin has therefore

to be understood as a fundamental intrinsic property like a mass or charge. The

relativistic quantum mechanics, as formulated by Dirac [33], dictate the existence

of particle’s intrinsic angular momentum quantized in half-integers.

The spin is described by a three component operator Ŝ = (Ŝx, Ŝy, Ŝz). The

rotational invariance sets (see e.g. [50]) restrictions to the components of all quantum

mechanical angular momenta, including spin, as commutation relations

[Ŝy, Ŝz] = i~Ŝx, [Ŝz, Ŝx] = i~Ŝy, [Ŝx, Ŝy] = i~Ŝz. (3.1)

These relations imply the uncertainty between the values of spin measured along

different axes. In other words, the components of spin Ŝ are conjugate variables in

a same way as momentum and position.

As for the orbital angular momentum, the square of total spin Ŝ2 = Ŝ2
x+Ŝ2

y+Ŝ2
z

commutes with each of the components Ŝx,y,z, which makes their eigenvalues s and

ms good quantum numbers of a spin state |s,ms〉. As will be seen later, the z-

component is the most convenient choice and together with the square of the total

spin, they satisfy simultaneously the eigenvalue equations

Ŝ2 |s,ms〉 = ~2s(s+ 1) |s,ms〉 ; Ŝz |s,ms〉 = ~ms |s,ms〉 . (3.2)

Furthermore, ms is quantized to values ranging from −s to s by integer steps [50].

The components of a spin s are hence allowed to have only 2s + 1 different values.

The spin quantum number of an electron is s = 1/2. Thus, measuring the spin

along any axis will always give either ms = +~/2 or ms = −~/2. It follows that
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the spin operators Ŝx,y,z must have two eigenvalues i.e. they can be represented by

a 2× 2 matrices. A group of matrices with eigenvalues ±~/2 fulfilling the relations

of Eqs. (3.2) and (3.1) for spin s = 1/2 are

Ŝx = ~
2 σ̂x, Ŝy = ~

2 σ̂y, Ŝz = ~
2 σ̂z, (3.3)

where the dimensionless matrices

σ̂x ≡

0 1

1 0

 , σ̂y ≡

0 −i

i 0

 , σ̂z ≡

1 0

0 −1

 (3.4)

are called the Pauli matrices after Wolfgang Pauli. The total spin operator can be

written using the Pauli matrices as

Ŝ = ~
2~σ, (3.5)

where ~σ ≡ (σ̂x, σ̂y, σ̂z) is the Pauli vector.

The form of Pauli matrices makes it easiest to consider measurements per-

formed along the z-axis. The eigenvectors of the spin operator Ŝz corresponding to

eigenvalues ms = +~/2 and ms = −~/2 are conveniently,

|12 ,
1
2〉z

=

1

0

 and |12 ,−
1
2〉z

=

0

1

 . (3.6)

It is a conventional notation to label the states as |12 ,
1
2〉 ≡ |↑〉 and |

1
2 ,−

1
2〉 ≡ |↓〉,

reflecting the vertical orientation of z-axis and that vectors projected on it can point

either up or down. The eigenvectors of the two remaining Pauli matrices written in

a basis spanned by |↑〉 and |↓〉 read

|12 ,±
1
2〉x

= 1√
2

 1

±1

 and |12 ,±
1
2〉y

= 1√
2

 1

±i

 , (3.7)

with the same eigenvalues ±~/2. Two component spin wavefunctions, like the el-

ementary ones above, are called spinors. The spinor of a particle contains full
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information of its spin state, which is to say that the direction of an arbitrary spin,

described by a spinor |ψs,ms〉 = a |↑〉 + b |↓〉, can be determined as a polarization

vector

~M ≡ (〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉), (3.8)

where 〈Ŝx,y,z〉 = 〈ψs,ms| Ŝx,y,z |ψs,ms〉 are the expectation values of its spin along

different coordinate axes.

3.1.1 The Zeeman effect

The concept of a particle as a charged object with intrinsic angular momentum

provokes one to wonder whether this spinning charge also induces a magnetic field.

Indeed, the proof for spin-induced magnetic moment was obtained for silver atoms in

the famous Stern-Gerlach experiment in 1922 [51]. Since then, the magnetic dipole

moment of electron has become one of the most accurately measured properties of

an elementary particle [52].

Classically, the magnetic dipole moment of a spinning charge is just the spin

angular momentum times the gyromagnetic ratio, ~µe = γ~S. For a quantum mechan-

ical particle, the classical gyromagnetic ratio γ = q/2m needs to be modified by a

proportionality constant known as the g-factor [53] to account for the fact that the

spin cannot be rigorously identified with a classical notion of a rotating body. The

spin magnetic dipole moment of an electron is therefore

~µe = − ege
2me

~S. (3.9)

Writing the spin operator in terms of Pauli matrices ~S = ~
2~σ and noting that the

electron spin g-factor has approximate value of ge ' 2 [52], modifies Eq. (3.9) to

~µe ' −
e~

2me

~σ. (3.10)
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The remaining proportionality factor between the magnetic moment and spin is

known as the Bohr magneton. It is approximately the magnitude of a spin magnetic

moment of a single electron

µB = e~
2me

. (3.11)

The operator associated with the interaction energy of electron’s magnetic moment

and external magnetic field ~B is the Zeeman Hamiltonian

ĤZ = µB~σ · ~B. (3.12)

This interaction between spin’s magnetic dipole and static external magnetic field is

the elementary handle to spin control. In the absence of a magnetic field, spin has no

effect to the energy of a particle and its orientation remains irrelevant. The Zeeman

interaction shifts the energy of a particle, making the state with spin opposite (since

electron has a negative gyromacnetic ratio) to external magnetic field energetically

favorable. Thus the spin-splitting, discovered by Pieter Zeeman [54], enables one to

distinguish between different spin states.

3.2 Two-particle spin states

Since the Cooper pair splitter deals with pairs of electrons, the spin formalism is

to be expanded to cover two-particle systems. In the formalism of the quantum

many-body physics [44], the pair of electrons is assigned with a single wavefunction

that describes both particles

Ψ(~r1, ~r2, ~s1, ~s2, ) = ψ(~r1, ~r2) |~s1, ~s2〉 . (3.13)

The orbital (position related) part of the wavefunction ψ(~r1, ~r2) has to be included

for symmetry consideration reasons typical to many-body quantum mechanics. The

state of the system is described by the positions ~r1/2 and spin orientations ~s1/2 of
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the particles. Concentrating first only on the spin part |~s1, ~s2〉, it seems that the

obvious choice for the basis vectors, in terms of the z-basis introduced in the previous

section, would be

|↑↑〉 ≡ |↑〉1 ⊗ |↑〉2 ,

|↑↓〉 ≡ |↑〉1 ⊗ |↓〉2 ,

|↓↑〉 ≡ |↓〉1 ⊗ |↑〉2 ,

|↓↓〉 ≡ |↓〉1 ⊗ |↓〉2 , (3.14)

where the symbol ⊗ stands for the tensor product defined as

a
b

⊗
c
d

 ≡



ac

ad

bc

bd


. (3.15)

The four vectors of Eq. (3.14) span the four dimensional Hilbert space C4 = C2⊗C2,

composed of two single-particle Hilbert spaces. The ordered basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}

corresponds to the four possible permutations of the spin-up and spin-down orien-

tations of the particles 1 and 2.

In this basis the spin operator for the particle 1 is constructed as a Kronecker

product of the 2× 2 Pauli vector and unit matrix

~σ1 = ~σ ⊗ Î , (3.16)

where the the Kronecker product [55] of matrices Â and B̂ is defined as

Â⊗ B̂ ≡

A11B̂ A12B̂

A21B̂ A22B̂

 . (3.17)

Conversely, the spin operator for the second particle is the Kronecker product

~σ2 = Î ⊗ ~σ. (3.18)
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Any operators acting on the two-particle states can be expressed using the spin-

specific 4×4 Pauli matrices of Eqs. (3.16) and (3.18). Take for instance the Zeeman

interaction for a two-particle system. By choosing the z-axis to be aligned with the

magnetic field ~B = (0, 0, B), the Zeeman Hamiltonian (3.12) is generalized for two

electrons as a matrix in the ordered basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} as

ĤZ =
∑

l={1,2}
µB ~σl · (0, 0, B)

= µBBZ(σ̂z ⊗ Î + Î ⊗ σ̂z)

= µBBZ(

1 0

0 −1

⊗
1 0

0 1

+

1 0

0 1

⊗
1 0

0 −1

)

= µBB(



1 ·

1 0

0 1

 0 ·

1 0

0 1


0 ·

1 0

0 1

 −1 ·

1 0

0 1




+



1 ·

1 0

0 −1

 0 ·

1 0

0 −1


0 ·

1 0

0 −1

 1 ·

1 0

0 −1




)

= µBB(



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


+ (



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


)

= µBB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2µBB |↑↑〉 〈↑↑| − 2µBB |↓↓〉 〈↓↓| , (3.19)

where in the last line the matrix is written as an outer product of its (non-zero)

basis vectors. As seen, when considering the two spins as a composite system, the

Zeeman interaction only affects the spin-aligned states. The energy of anti-aligned
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states |↑↓〉 and |↓↑〉 does not change in a magnetic field, as the contributions of the

two spins are equal and opposite.

3.3 Singlet-triplet basis

The trivial basis for spin states of two-electron system (3.14), introduced above,

has a subtle flaw in it. It does not take into account the indistinguishable nature of

quantum particles. Particularly, the states |↑↓〉 and |↓↑〉 imply that the first electron

is in spin-up state and the second is in spin-down state or vice versa. One cannot

fundamentally label electrons like that, since they cannot be distinguished in any

way and there is no means of tracking their movement between measurements. It

is therefore more rigorous to say simply that one of the electrons is in spin-up state

and the other one in spin-down state [43].

This can be incorporated in the two-particle spinor by writing it in a way that

is non-committal as to which electron occupies which state i.e. combining the two

midmost states of Eq. (3.14) either as

1√
2

(|↑↓〉+ |↓↑〉)

or
1√
2

(|↑↓〉 − |↓↑〉),

(3.20)

where the coefficient 1√
2 normalizes the states. It turns out that these two superposi-

tion states together with the two spin-aligned states of Eq. (3.14) form an orthogonal

basis for vectors in C4 Hilbert space. This set of vectors is called the singlet-triplet
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basis:

|S〉 = 1√
2

(|↑↓〉 − |↓↑〉),

|T0〉 = 1√
2

(|↑↓〉+ |↓↑〉),

|T+〉 = |↑↑〉 ,

|T−〉 = |↓↓〉 , (3.21)

where |S〉 is the singlet and |T0〉, |T+〉 and |T−〉 are called the neutral and polarized

triplet states, respectively. An important distinction, as will be seen in the next

section, is that the singlet state is antisymmetric under the exchange of the spins,

whereas the triplet states are symmetric.

3.3.1 Exchange interaction

The fact that electrons are fundamentally indistinguishable does not actually matter

if they are located far apart. Only if two particles are close enough for their wave-

functions to overlap, the indistinguishability manifests as an effective force called

the exchange interaction. Being based on the same symmetrization requirement [43],

Ψ(~r1, ~r2, ~s1, ~s2) = ±Ψ(~r2, ~r1, ~s2, ~s1), (3.22)

as the Pauli exclusion principle, the exchange interaction differentiates between two

types of particles. The total wavefunction of a many particle system has to be either

symmetric (bosons) or antisymmetric (fermions) under the simultaneous exchange

of both positions and spins of any two particles. For a system of two fermionic

electrons, this means that the total wavefunction (3.13) has to change sign when the

electrons are interchanged i.e.

ψ(~r1, ~r2) |~s1, ~s2〉 = −ψ(~r2, ~r1) |~s2, ~s1〉 . (3.23)
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As a consequence, either the orbital part ψ(~r1, ~r2) of a two-electron wavefunction is

symmetric and the spin part |~s1, ~s2〉 is antisymmetric (singlet)

Ψ = 1√
2

(ψ(~r1)ψ(~r2) + ψ(~r2)ψ(~r1)) 1√
2

(|↑↓〉 − |↓↑〉) (3.24)

or the orbital part is antisymmetric and the spin part is one of the symmetric triplet

states

Ψ = 1√
2

(ψ(~r1)ψ(~r2)− ψ(~r2)ψ(~r1)) |T0/+/−〉 . (3.25)

The sign of the pseudo-force produced by the exchange interaction depends on the

orbital part of a two-electron wavefunction [56, 57]. If the orbital part is symmetric,

the electrons feel a repulsion and if it is antisymmetric, they feel an attraction. The

symmetry or anti-symmetry of a two-electron orbital wavefunction is directly linked

to their spin configuration (Eqs. (3.24) and (3.25)). Hence, the energies of the singlet

and triplet states will become non-degenerate due to the exchange interaction, given

that the electrons are close enough for their wavefunctions to overlap.

In truth, this is not the situation in a Cooper pair splitter, where the paired

electrons are located in separate islands. However, as will be shown Sec. 4.1, the

Cooper pairs themselves are naturally in the spin-singlet state. This alone makes

the singlet-triplet basis an optimal choice when examining the operation of a Cooper

pair splitter. Moreover, since there is a coupling between the superconductor and

quantum dots only when the electrons on dots are in the spin-singlet state, an

effective exchange interaction lifts the energy degeneracy of the singlet and triplets;

see Sec. 7.2.

To conclude, the spin state of an electron pair on the quantum dots of a Cooper

pair splitter is best described in the singlet-triplet basis. The two-particle Zeeman

Hamiltonian (3.19) carries over unchanged from the trivial basis to the singlet-triplet
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basis

ĤZ =
∑

l={1,2}
µB ~σl · ~B

= 2µBB |T+〉 〈T+| − 2µBB |T−〉 〈T−| . (3.26)

Evidently, the energies of the singlet and neutral triplet states are unaffected by an

external magnetic field, whereas the polarized triplets experience equal and opposite

shift in energy. This will lift the remaining degeneracy of the two-electron states as

all three triplets have different energy from each other and the singlet state. The

evolution of spin states that follows from these state separations will be discussed

in Ch. 7.

The following chapter introduces the superconducting state of metal as a source

of spin-entangled Cooper pairs. Particularly, the way these pairs are exchanged

across a barrier between superconducting and normal conducting material will be

reviewed.



4. Superconductors

Superconductivity was discovered by H. Kamerlingh Onnes [58], who noticed in

the year 1911 that the electric resistivity of mercury suddenly vanishes below 4.2

kelvin. It was soon realized that certain metals undergo a phase transition at cold

temperatures under critical value Tc into a new peculiar state, characterized by this

ability to maintain electric current with zero energy dissipation.

Microscopic explanation for the superconductivity was still lacking almost 50

years after its discovery. There were striking similarities between the non-dissipative

supercurrent and zero-viscosity flow of superfluid helium, observed in 1938 by P. L.

Kapitza [59]. Lev Landau formulated a theory for the helium superfluidity [60] in

1941, defining a threshold value vc for the flow velocity, under which viscosity will

appear. When applied to the Fermi liquid formed of metal’s conduction electrons,

Landau’s theory yields vc = 0, implying viscosity for any flow velocity in the Fermi

system. Thus, Landau’s theory explains the behaviour of bosonic helium atoms but

not fermionic electrons. As demonstrated next, this problem is solved if there is a

way for electrons to form composite bosons in the superconducting state.

4.1 Cooper pairs

In 1950, a new discovery named the isotope effect was made independently by

Maxwell and Reynolds et al. [61, 62]. The critical temperature Tc was found to

depend on the mass of a metal’s lattice-ions. This implies that the microscopic

38
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description of superconductivity must include the crystal lattice of metals in addi-

tion to the free electrons. Indeed, at the same time Fröhlich [63] had come up with

an idea of electron-phonon interactions leading to an effective attraction between

electrons. Indeed, in 1956, Leon Cooper showed that a pair of electrons above the

Fermi surface will form a bound state in the presence of an attractive interaction

[22].

Though quantum mechanical by nature, the concept of the Cooper pairs can

be classically motivated. An electron moving in a crystal lattice attracts the pos-

itive lattice-ions, which creates a local concentration of positive charge around it.

Another electron can feel attraction to this positive charge concentration. Since the

negative charges of the electrons are screened by other electrons and lattice-ions

of the metal, this attraction can overcome the Coulomb repulsion on a long dis-

tance. The electrons can thus be weakly attracted to each other to form shortlived,

long-distance pairs. The following sub-section contains a prove that the pairing

of electrons is indeed energetically favorable, assuming arbitrarily weak attractive

potential.

4.1.1 Electron pairing

A Cooper pair is stable, if its energy is lower than the energy of the electrons in

the ground state of the metal, the so-called Fermi sea. Consider a metal in the

ground state with all energy levels filled up to the Fermi surface and none above it

(no excitations). Let there be two elementary quasiparticle excitations experiencing

Cooper pairing. The total momentum of the bound pair must be zero, suggesting

the pair should consists of excitations with equal and opposite momenta. Since

the momentum of an electron excitation (slightly above Fermi surface) is different

from hole’s (slightly below Fermi surface), only quasiparticles of same kind can form

Cooper pairs [64]. For the sake of brevity, the particles forming a Cooper pair
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are here referred to as electrons, keeping in mind that they could as well be hole

excitations of the Fermi sea.

To describe two-electron excitations as a pair, they are assigned with a two-

particle wavefunction. The electrons in metals can be approximated to be plane

waves. Hence, a suitable ansatz for the orbital wavefunction of the pair is (see

e.g. [65])

ψ0(~r1, ~r2) =
∑
k

cke
i~k·~r1e−i

~k·~r2 , (4.1)

where ck are the probability amplitudes for the first electron having momentum ~~k

and the second one having −~~k. The states below the Fermi surface are all filled,

so ck = 0 for ~k < ~kF . By virtue of the Euler formula, the orbital wavefunction can

be rewritten as

ψ0(~r1, ~r2) =
∑
k

cke
i~k·(~r1−~r2) =

∑
k

ck(cos
(
~k · (~r1 − ~r2)

)
+ i sin

(
~k · (~r1 − ~r2)

)
). (4.2)

The total wavefunction of fermions Ψ = ψ(~r)ψspin has to be antisymmetric with

respect to interchange of two particles (3.23). The cosine term in Eq. (4.2) is sym-

metric under the exchange of ~r1 and ~r2, whereas the sine term is antisymmetric

under the exchange. In view of this, only one of the terms of the ansatz can be part

of the actual wavefunction. The cosine term grows as the distance ~r1 − ~r2 between

the paired electrons gets smaller

lim
~r1−~r2→0

cos(~r1 − ~r2) = 1, (4.3)

corresponding to a higher probability of finding the electrons close to each other.

Hence, the wavefunction being proportional to the cosine is in congruence with the

assumed attractive interaction, and the sine term is to be omitted from the ansatz

(4.2).

To fulfil overall antisymmetry, the spin wavefunction accompanying the sym-

metric cosine term has to be the antisymmetric spin-singlet (3.3.1). The total wave-



4.1. COOPER PAIRS 41

function of the paired electrons is then

Ψ0 =
∑
k

ck cos
(
~k · (~r1 − ~r2)

) 1√
2

(|↑↓〉 − |↓↑〉). (4.4)

Demonstrably, the Cooper pair has the minimum energy when formed of two elec-

trons (or holes) with equal and opposite momentum and spin. The energy of this

singlet can be solved from the two-particle Schrödinger equation

(Ĥ1 + Ĥ2 + V (~r1, ~r2))Ψ0 = EΨ0, (4.5)

where the Hamiltonians Ĥ1,2 = ~2k̂2
1,2/2m give the energy of the free excited elec-

trons counted from the Fermi level (EF = 0). Since the electrons forming a Cooper

pair have wave vectors of equal magnitude
∣∣∣~k∣∣∣ =

∣∣∣−~k∣∣∣, they have the same energy

Ĥ1,2Ψ0 = εkΨ0. (4.6)

Inserting Eq. (4.4) into the two-particle Schrödinger equation (4.5) yields an equa-

tion for the probability amplitude ck

2εkck +
∑
k′=0

Vkk′ck′ = Eck, (4.7)

where Vkk′ is a matrix element of the interaction between electron states k and k′.

It can be approximated as

Vkk′ =


−V, for |εk| < ~ωD and |ε′k| < ~ωD

0, otherwise.

The negative potential −V is approximated to be constant on an energy strip near

the Fermi level and vanishing beyond a cut-off energy ~ωD, corresponding to the

maximal lattice vibration frequency ωD, called the Debye frequency [66]. Since the

attraction is mediated by lattice vibrations, electrons further than |~ωD| away from

the Fermi surface have too much energy to be paired by the attractive potential. By
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inserting this approximate potential into Eq. (4.7), the amplitude ck can be solved

as

ck = V
∑
k′=0

ck′

E − 2εk
. (4.8)

Introducing ∑k to both sides of the equation and then cancelling ∑k ck and ∑k′ ck′

yields

1 = V
∑
k=0

1
E − 2εk

. (4.9)

The summation over states k can be replaced by an integration over energies εk

∑
k=0
→ N(0)

∫ ~ωD

0
dεk, (4.10)

where N(0) is the electron density of states at the Fermi level for one spin polariza-

tion. The integration results in

1 = V N(0)
2 ln E − 2~ωD

E
. (4.11)

The binding energy of the Cooper pair can be solved from this, in the limit of weak

interaction V N(0)� 1, to be

E = −2~ωDe−2/N(0)V . (4.12)

Therefore, such bound states are indeed energetically favourable to the ground state

of Fermi sea (EF = 0). Note that these bound states are not generally possible

in three dimensions unless the binding interaction −V exceeds a certain threshold.

The bonding due to a weak attractive interaction (such as the phonon mediated

coupling) is possible only because the existence of the Fermi sea structure [67].

4.1.2 Formation of the condensate

The Cooper pairs continue forming among electrons withing a strip of ±~ωD from

the Fermi surface, until equilibrium between the emergent and old phase is reached.
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Electrons deeper in the Fermi sea remain unaffected and bound to their ions as they

do in the normally conducting state. The equilibrium occurs when the state of the

Fermi sea has changed enough not to support the anomalous formation of bound

states under weak attraction in three dimensions [65]. At this point, macroscopic

amount of electrons is bound into pairs of zero total momentum and a coherent

condensate of Cooper pairs has emerged.

To understand why the Cooper pairs condense into a single quantum state,

it is enlightening to consider the spatial extension of the pair. Distance between

the paired electrons can be approximated from their momentum by the use of the

uncertainty principle as

ξ ≡ δr ∝ ~
δp
∝ ~vF

∆ , (4.13)

where the Fermi velocity of an electron is vf ≈ 106m/s and the gap energy ∆ can

be connected to the critical temperature (at which the pair breaks): Ek ∝ kBTc ≈

10−22J (Tc ≈ 10K). The approximation yields ξ ≈ 1µm [17], which by far exceeds

the interparticle distance of the excitations in metal, causing the Cooper pairs in

the metal to be highly overlapping. Though individual electrons are forbidden by

the exclusion principle to enter the same quantum state, Cooper pairs have a total

spin of zero (implying bosonic behaviour) and thus are unrestricted by it. Therefore,

they all occupy the same minimum energy quantum state of zero total momentum

and are described by a macroscopic wavefunction.

4.2 Gap energy

When a Cooper pair is broken, the binding energy of Eq. (4.12) is split evenly

between the constituent particles

∆ ≡ −E/2 = ~ωDe−2/N(0)V . (4.14)
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As will be demonstrated shortly, this energy known as the gap energy ∆, is a key

concept in the theory of superconductors.

The microscopic theory of superconductivity was finally developed by Bardeen,

Cooper and Schieffer in 1957 [23]. The BCS theory approaches metal as a many-

body state of electrons, and approximates all interactions by a mean-field. Then

it applies a variational Hartree-Fock method to formulate the new ground state for

superconducting metal as a phase-coherent superposition of Cooper pairs. As well

as allowing the derivation of thermal and transport properties of superconductors,

BCS theory reproduces the gap energy as a complex parameter

∆(~r) = |∆(~r)|eiϕ(~r). (4.15)

The modulus of the gap energy is generally constant, |∆(~r)| = |∆|. By comparing

Eq. (4.15) to Eq. (4.14), the absolute value of the gap energy can be associated with

the Debye energy |∆| = ~ωD, and the phase with the inverse of the product of the

density of states and binding potential, iϕ(~r) = −2/N(0)V .

4.2.1 Excitations

The excitations of the superconducting ground state are not simple electron or

hole excitations like in normal metals. They are superpositions of the two, called

Bogoliubov quasiparticles after Nikolay Bogoliubov who developed an alternative

approach for obtaining the results of BCS theory [68]. These excitations have energy

Ek = ±
√
ε2k + |∆|2, (4.16)

where εk is energy of an excitation in the normally conducting state. The gap energy

∆ appears as a minimum energy for all excitations in the superconducting state. In

normal metals any amount of energy is enough to excite the Fermi sea ground state

by sending an electron to a vacant state above the Fermi surface. Superconductors

contrast this by requiring a minimum energy of ∆ to excite the ground state. This
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Figure 4.1: Energy spectrum of a superconductor. The figure shows the density of

states vs. energy. The gap energy ∆ defines a region around the Fermi level EF ,

where excitations cannot occur. Reproduced from [69].

creates a gap to the energy spectrum of excitations i.e. an energy interval where no

excitations can occur (see Fig. 4.1). The gap energy depends on the temperature

reaching maximum value of ∆(0) = 1.76kBTc at the absolute zero (see e.g. [67]). At

the critical temperature Tc, the thermal fluctuations have enough energy to break

Cooper pairs, and the superconducting condensate ceases to exist.

Important concequence of the gap energy is the complete suppression of single

electron tunneling events at sub-gap energies. An electron can only tunnel into a

superconductor provided it holds enough energy to reach the allowed energy levels

with energy ∆ above the ground state energy. Electrons tunneling in with energy

Ek = ∆ join the condensate directly, while more energetic electrons become quasi-

particle excitations [65]. Thus, single electron tunneling to a superconductor is

forbidden unless the gap energy is matched by a thermal or electric source.
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4.3 The proximity effect and Andreev reflection

The purpose of a Cooper pair splitter is to extract spin-entangled singlets from

the ground state of a superconductor and gather the split electrons to separate

output terminals. One thus needs to understand the physics at the junction of a

superconductor and normal conductor. Two ultimately equivalent descriptions, the

more phenomenological approach known as the proximity effect and the previously

mentioned Andreev reflection are frequently used to characterize the interface.

The concept of proximity effect was developed in the 1960s by de Gennes

[70, 71] and Werthamer [72]. The distance ξ between particles forming a Cooper

pair, derived in Eq. (4.13), is called the superconducting coherence length. Electrons

can be located within ξ of a superconductor without loosing coherence with the

superconducting ground state. This enables electrons located in a normal conductor

adjacent to a superconductor to remain in a bound pair state. The lattice vibrations

of ordinary conductors are strong enough to break the pairing, causing Cooper pairs

outside superconductors to have a short lifetime of order ~/∆. This penetration

and subsequent breaking of Cooper pairs in normal conductors occurs even if the

Fermi level of the metal is within the superconducting energy gap ∆ and sequential

tunneling is forbidden (see. sec. 4.2.1).

The same transfer of 2e charge across the interface of an ordinary and super-

conductor can be described in an alternative way. In a superconductor, there are

no states available for Bogoliubov quasiparticles at energies below the gap energy

∆. An electron with excitation energy ε < ∆ in the normal conductor, is able to

enter the superconductor only jointly with another electron of opposite spin and

quasimomentum, by forming a Cooper pair that directly joins the condensate. The

electron with opposite quasimomentum ~k′ = −~k resides below the Fermi surface.

As the new Cooper pair is formed, a hole excitation is left in the Fermi sea with

quasimomentum ~k i.e. equal to the momentum of the initial electron excitation.
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4.3.1 Andreev reflection

The above process can be viewed as an unusual scattering event: an electron from the

conductor gets reflected back as a hole from the interface of the superconductor. This

specular reflection is called the Andreev reflection [73]. Since the hole and electron

have an opposite charge, a total of 2e is lost from the normal conductor. This charge

deficit is compensated by a creation of a Cooper pair in the superconductor.

Here the charge transfers in the proximity effect and Andreev reflection were

explained as happening in opposite directions: proximity effect dispatching 2e as

a Cooper pair in to the normal conductor and the Andreev reflection transferring

it to the superconductor. Actually, both of these processes work either way. The

inverse proximity effect describes normal conducting electron states extending over

the interface into the superconductor, where they join the condensate in pairs. For

the Andreev reflection, the inverse process is a hole excitation reflected back as an

electron excitation, accompanied by a removal of a Cooper pair from the supercon-

ducting condensate.

The phases of the electron and hole waves are correlated in the Andreev re-

flection. This phase coherence (see Sec. 2.7) vanishes shortly after the scattering

as the electron and hole move in the normal conductor with slightly different mo-

menta. The coherence length, introduced in the context of proximity effect, matches

exactly the distance the electron and hole can travel before their phase coherence is

lost [74]. It is therefore clear that the proximity effect and Andreev scattering are

equivalent in explaining the charge transfer between a superconductor and normal

state conductor.

4.3.2 Crossed Andreev reflection

The Andreev reflection can be conceptualized as a simultaneous tunneling of two

electrons from normal conductor into a superconductor and the inverse Andreev
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reflection as its opposite: the transport of a Cooper pair from the superconductor

to normal conductor, where it splits to a pair of electrons. The situation where the

electrons each tunnel from (into) a different normal state electrode is called crossed

Andreev reflection [75]. It is the same process as the direct Andreev reflection in

every respect, except for the spatial separation of the electrons in their respective

normal conductors. Hence, this process is also known as the non-local Andreev

reflection.

For the crossed Andreev reflection to be possible, the distance between the

separated normal conductors cannot be much longer than the superconducting co-

herence length ξ. As long as both electrons remain within ∼ ξ from the super-

conductor during the transport, the electron pair can feel the pairing potential and

join (leave) the condensate in the superconductor, regardless of the electrons being

located in different leads at the beginning (end) of the transport.

This is the mechanism behind the extraction of Cooper pairs in Cooper pair

splitters achieving the production of spatially separated entangled electrons. As

will be seen in the next chapter, the crossed Andreev reflection competes with its

direct counterpart, and additionally, with the elastic co-tunnelling (Sec. 2.8) in the

conventional setup of a Cooper pair splitter. The defining building block of Cooper

pair splitters, the one that enables exploiting the crossed Andreev reflection, is the

double quantum dot. The next chapter addresses this nanostructure, and the way it

governs the electron transport in the Cooper pair splitter.



5. Electron transport in a Cooper

pair splitter

5.1 Quantum dots

As discussed in Ch. 2, isolation of (semi)conducting parts of a nanodevice by tunnel-

ing barriers leads to electron confinement in the isolated island. In this situtation,

the number of excess electrons on the island becomes an important factor, since the

Coulomb force of individual electrons affects whether new electrons can enter the

island. In Sec. 2.1, the discreteness of an island’s energy levels was ignored on the

grounds of the charging energy being much larger than the energy level spacing,

EC � δS. This is the case with islands larger than approximately 100 nm in width.

Islands smaller than that have noticeable discreteness of their electron energy levels,

and are termed quantum dots [26, 27].

5.1.1 Quantization of energy levels

Non-negligible energy level spacings of the quantized levels raise the energy cost of

adding an electron to new energy level by δS. To see how the quantum mechanical

effect of discrete energy levels comes about, consider a toy system representing an

island: an electron bound to a two dimensional infinite potential well. Solving the

corresponding Schrödinger equation is an elementary practice in quantum mechanics

49
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(see e.g. [43]). The solutions of the Schrödinger equation are standing waves

ψ(x, y) = 1√
LxLy

sin
(
nxπx

Lx

)
sin
(
nyπy

Ly

)
, (5.1)

where the possible waveforms are labelled by quantum numbers nx and ny. The

eigenenergies corresponding to these electron eigenstates are

Enx,ny = π2~2

2m (n
2
x

L2
x

+
n2
y

L2
y

). (5.2)

The quantum numbers nx,y are linked to a corresponding wave number by

kx,y = πnx,y
Lx,y

, (5.3)

where Lx,y are the dimensions of the island. In order to solve the density of states

ω of the island for some energy interval E1−E2, one finds out the number of states

within the interval. For the sake of convenience, let nx,y be continuous, so that the

number of states is given by the integral

N = 2
∫ E2(nx,ny)

E1(nx,ny)
dnxdny, (5.4)

where the factor of two comes from the spin degeneracy. Changing integration

variables from nx,y to kx,y, using (5.3), and transforming Cartesian coordinates to

polar coordinates
∫
dkxdky →

∫
dkdθ k, yields

N = 2LxLy
π2

∫ √2mE2/~
√

2mE1/~
kdk

∫ π/2

0
dθ = LxLym

π~2 (E2 − E1). (5.5)

The density of states i.e. number of states N per energy E2 − E1 is then

ω = LxLym

π~2 . (5.6)

Evidently, reducing the size of the island LxLy leads to a smaller density of states

and thus larger mean level spacing δs ≡ ω−1. The spacing of the energy levels can

thus be controlled by varying the size of a quantum dot. This enables control over

electrical and optical properties of the dot. The possibility to precisely adjust the
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wavelength of photons emitted by quantum dots [76] has already yielded commercial

applications, like televisions with ultra deep colors [77]. In the field of electron trans-

port, quantum dots are frequently used to confine individual electrons on certain

discrete levels [78].

To maintain the quantization of energy levels in a quantum dot part of a

larger nanodevice, any couplings between the dot and rest of the device need to

be sufficiently weak. If a quantum dot is coupled too strongly to neighbouring

(semi)conductors, the discrete states of the dot will mix with the continuous states of

extended electrons of its neighbours. The limit of sufficient isolation of the discrete

dot levels can be stated formally as a requirement: the conductance of the gap

between the dot and connected electron reservoir has to be significantly smaller

than the conductance quantum G� GQ. Since the same condition ensures that the

charging energy dictates electron transport (see Ch. 2), the discreteness of quantum

dots is guaranteed to hold in nanodevices, that operate in the dynamic Coulomb

blockade regime.

In Cooper pair splitters, the separation of energy levels of quantum dots is

taken to its extreme. Controlled extraction of an individual electron from a super-

conductor can be realized into a quantum dot, when there is only single energy level

available for it. The details of creating such single level quantum dots or resonant

levels are discussed next.

5.1.2 Resonant level

A quantum dot acts as a resonant level when its mean level spacing is larger

than the electric and thermal energy available for electrons in the nanostructure,

δs > min(kBT, eVbias). Electrons from the rest of the nanodevice can then only

tunnel into resonant level whose energy is within kBT or eVbias of their own energy.

Evidently, because of the Pauli exclusion, this level can be occupied at most by two
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electrons (with opposite spins). This is reduced to only one allowed electron, if the

charging energy of the first electron on a resonant level is large enough to prevent the

second electron from tunneling in, EC > min(kBT, eVbias). Just like larger Coulomb

blockade islands, the chemical potential of a quantum dot can be controlled by a

gate electrode (Sec. 2.3).

5.2 Transport through a double quantum dot

The conventional Cooper pair splitter uses two resonant level quantum dots to regu-

late the electron flow from s-type superconductor into two terminal leads. It makes

sense to conceptualize to the two adjacent resonant levels as a double quantum dot,

since they operate mostly as a single component. By virtue of the Coulomb block-

ade, only one Cooper pair can occupy the double dot at time (one electron per dot).

From the double quantum dot, the electrons can independently tunnel further to

the terminal leads. Only at this point the dots have to be considered individually as

the dot-lead tunneling is not synchronized like the superconductor-dots tunneling.

Hence, one of the dots can be occupied while other one is left empty by a sequential

tunneling process into a lead.

These two main transport events for electrons in the Cooper pair splitter are

quite different in nature. The first event, superconductor-dots tunneling, is a coher-

ent exchange of electrons between the superconductor and the double quantum dot

(crossed Andreev reflection, Sec. 4.3.2). The second kind, tunneling events between

the dots and leads, are a form of incoherent tunneling as described in Sec. 2.4.

A brief overview of these tunneling events is now in place, before this chapter is

concluded by energy hierarchy considerations for maximally efficient Cooper pair

splitting.
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Figure 5.1: (Color online.) Cooper pair splitter. Part I: Superconductor (S) and

two quantum dots (DQL,R) form the coherent part of the device. The coupling ΓCPS

denotes the amplitude of crossed Andreev reflection, that hybridises the states of an

electron pair in the superconductor (empty state) and an electron pair in the double

quantum dot(singlet state). The dot energy levels εL and εR (note εL + εR = ν) can

be individually controlled by gate electrodes (not shown in the picture). Part II:

The two normal metal terminals (N) enable the final splitting of a Cooper pair. The

incoherent single-electron transports with rates ΓL,R are directed from the dots to

leads by biasing the chemical energy of the leads below that of the dots.

5.2.1 Superconductor to quantum dots

As stated earlier in Sec. 4.1.2, in the ground state of a superconductor, all conduc-

tion electrons are collected as Cooper pairs at a same energy level. This chemical
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potential of the superconductor µS, is a convenient choice as the reference potential

of the Cooper pair splitter, µS = 0. Now, if located within the superconducting co-

herence length of each other and the superconductor, the quantum dots can accept

Cooper pairs from the coherent condensate via the crossed Andreev reflection.

Higher level formal description of the transport between the superconductor

and double quantum dot is given by a two level quantum system, whose time evo-

lution is encoded in the Hamiltonian

ĤS,DQD =

 µS ΓCPS

Γ∗CPS µDQD

 , (5.7)

where µS = 0 and µDQD are the chemical potential of the superconductor and the

double quantum dot, respectively, and ΓCPS is the amplitude of the crossed Andreev

reflection. The diagonal elements of the Hamiltonian are the energies of the system

in the two possible states (Cooper pair in the superconductor or Cooper pair in the

dots). The off-diagonal amplitudes ΓCPS couple these states by enabling population

transport between the superconductor and dots.

Labelling the states of the system as |0〉 (empty dots) and |S〉 (spin-singlet in

the dots), the solved eigenstates of the Hamiltonian (5.7) are

|S−〉 = a |0〉 − b |S〉 ; |S+〉 = c |0〉+ d |S〉 , (5.8)

with some coefficients a, b, c, d. When the chemical potential of the double quantum

dot matches that of the superconductor, µDQD = µS = 0, the eigenstates |S+〉 and

|S−〉 both become equal superpositions of |0〉 and |S〉 i.e. the coefficients a, b, c, d

become all equal to 1/
√

2. Then the original states |0〉 and |S〉 are said to be

completely mixed, as the Cooper pair exchange is maximised and happens equally

to both directions between the superconductor and the dots, leaving the two-level

quantum system oscillating between the two initial states.

This phenomenon is an instance of resonant transport, where coherent particle

exchange is maximized at an energy resonance (here µDQD = µS). The width of
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the resonance peak i.e. amount of particle exchange at slightly off-resonant energy

values, is determined by the strength of the coupling (here the crossed Andreev

reflection amplitude ΓCPS). An important feature of the resonant transport is the

two-way nature of the tunneling. At the resonance, Cooper pairs are continuously

transported back and forth across the tunneling barrier. The usual way of directing

electron flow, voltage bias, does not work in this case as it brings the system off-

resonance and thus suppresses the transport rate. However, the probabilistic time

evolution of a coherent system can be solved from the Schrödinger equation (see

Sec. 7.1.2), making it possible to predict when the Cooper pair is likely to reside in

the dots.

5.2.2 Quantum dots to lead terminals

Each quantum dot is coupled to a different normal metal lead by a tunneling bar-

rier with conductance less than the conductance quantum, G � GQ. Hence, the

dynamics of the two junctions are driven by sequential tunneling on the dynamic

Coulomb blockade regime. The tunneling rate across dot-lead junction resembles

the case of island-lead tunneling derived in Sec. 2.4. The main difference is that,

as long as the energy conservation is satisfied, the transition rate between a single

level quantum dot and a lead does not depend on the energy difference between the

initial and final states of the transport. For an island-lead junction, growing energy

difference means that more energy states are able to realize the tunneling from the

island. Clearly this is not the case for a dot with just a single relevant energy level,

so the transport rate does not change with increasing energy.

The tunneling rate can be again written in terms of the conductance of the

tunnel barrier G; see Ref. [17]. In the limit of vanishing temperature the rate is

Γdot→lead, = δS
~
G

GQ

Θ(−∆E), (5.9)
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where Θ(−∆E) is the Heaviside step-function. Even for resonant levels, as a con-

sequence of there being multiple states in the lead, any information of the electron

phase gets averaged out and the transport is incoherent. The two sequential trans-

port processes are not a priori synchronized, and can thus leave the double quantum

dot occupied with only one electron for a time. As will be specified next, in the

conventional Cooper pair splitting regime this situation is avoided since the rate of

these sequential tunnelings is the smallest relevant time scale and hence, the system

spends practically no time in a singly occupied state.

However, the purpose of this thesis is to study spin-orbit effects in the quantum

dots, and too fast dot-to-lead rates leave no time for measuring the electron pair

in the dots. In view of this, the next section presents first the conventional way

of setting system parameters for optimised Cooper pair splitting, and introduces

then a slight change, that allows verifying spin-orbit effects on the quantum dots by

making the dot-states long-lasting.

5.3 Energy hierarchy of Cooper pair splitters

Now that all the relevant phenomena related to a conventional Cooper pair splitter

has been addressed, it is time to discuss what should be the relative strengths of

various phenomena when aiming at the optimal performance. Achieving the desired

split flow of pairwise entangled electrons from the superconductor via the quantum

dots to the two leads requires careful tuning of the system parameters.

Gathering from all the topics discussed this far, the relevant system parameters

include (all in the units of energy): the temperature kBT , the superconducting gap

∆, the charging energy EC and the level spacing δS of the quantum dots, the chemical

potentials of all the components µS, µdot1, µdot2, µlead1, µlead2, as well as the transport

amplitudes ΓCPS,ΓL and ΓR. Finally, the spatial separation of the quantum dots d

is to be compared to the coherence length of a Cooper pair ξ.
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The optimal energy hierarchy presented here is suggested by [24]. The aim is to

reach maximal efficiency of Cooper pair splitting by suppressing unwanted transport

phenomena. Indeed, splitting efficiency of ∼ 100% is reported in [79]. Firstly, as

mentioned in Sec. 4.2.1, a large superconducting gap ∆ prevents tunneling that

would result in an excited quasiparticle state in the superconductor. With high ∆

in place, the superconductor can only exchange electrons with the quantum dots via

the Andreev reflection. Now, the Andreev reflection is a coherent transport process,

and thus yields maximal electron exchange when the energies of the participating

energy levels coincide. Therefore, the chemical potential of the superconductor

should match the chemical potentials of the quantum dots, µS = µdot1 = µdot2. This

is achieved by tunable gate electrodes individually coupled to the dots.

The reason for the inclusion of double quantum dot between the supercon-

ductor and the leads is to suppress the direct Andreev reflection, where a Cooper

pair tunnels into a single lead, in favour of the crossed Andreev reflection that pro-

duces split pair into two different leads. In view of this, a pair of resonant level

quantum dots is needed between the superconductor and leads to kill out the direct

Andreev process. As stated in Sec. 5.1.2, single level dots are produced by combin-

ing high charging energy EC and level spacing δS, with weak tunnel-couplings i.e.

low conductance between the dots and superconductor as well as the dots and leads.

Low coupling strengths, ΓCPS,L,R < EC , δS, fulfil the conductance restriction,

Gl � GQ, placing the device in the dynamic Coulomb blockade regime. Further-

more, for the crossed Andreev reflection to be possible, the quantum dots cannot be

placed farther than the coherence length of a Cooper pair ξ apart from each other.

With separation longer than ξ, the crossed Andreev reflection becomes suppressed

exponentially.

The chemical potential of the leads is to be set lower than the superconductor’s

and dots’, by a bias voltage fulfilling ∆µ = µs−µl > 0, in order to have a stationary
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flow of outbound electrons. The temperature of the system is naturally expected

to be low for superconductivity to occur. Low temperature also excludes unwanted

thermally activated transport, e.g. between the leads and dots, that happen when

kBT > ∆µ.

Lastly, at the transport resonance of the crossed Andreev reflection, µS = µdots,

the opposite process carrying electrons from the dots to superconductor, happens at

an equal rate. To mitigate the transport towards the wrong direction, the energies

associated with the dot-lead couplings ΓL,R should be considerably larger than the

energy of the superconductor-dots coupling ΓCPS. Consequently, the rate of the

dot-lead transport is much faster than the dots-superconductor transport, and the

dots will be emptied into the terminal leads as soon as they become occupied by a

Cooper pair. This renders the electron occupancy of the double quantum dot to a

mere virtual state in a complete transport event, that extracts and splits a Cooper

pair from the superconductor to separate electrons into the terminal leads.

5.3.1 Regime of long-lived dot-states

For studying the spin-orbit interaction in a Cooper pair splitter, the mere virtual

occupation of the quantum dots is insufficient. To obtain time-averaged charge

measurements (Ch. 9), the occupation time of the pair in the dots must be increased.

This is achieved by weakening the coupling between the dots and the terminal leads.

In the limit where ΓCPS � ΓL,R, the coherent transport between the superconductor

and dots occurs much faster than the tunneling from dots to leads.

Keeping rest of the system parameters unchanged from the conventional regime

of Cooper pair splitter and inverting the tunnel coupling strengths (ΓCPS � ΓL,R

to ΓL,R � ΓCPS), yields an operational regime, called here the regime of long-

lived dot-states, that allows time-averaged measurements to be performed on the

superconductor-dot system. The active spin-orbit interaction expands the two di-
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mensional Hilbert space of the empty and singlet state with the spin-triplet states

(3.21), rendering the state of the electron pair in general into a coherent superposi-

tion of the now five basis states, {|0〉 , |S〉 , |T0〉 , |T+〉 , |T−〉}. In this regime, the single

electron tunnelings to the terminal leads can be used for tunneling spectroscopy. It

is noteworthy, that the regime of long-lasting dot-states includes in principle also

the singly occupied double quantum dot: there is a time between the two sequential

dot-to-lead tunnelings when only one electron resides on the dots, and can realize

co-tunneling processes between the dots through the superconductor. As shown in

Ch. 9, this transport can be excluded by introducing detuning between the quantum

dots.

In the coming chapters, the state of the electron pair is studied as a delocalized

entity in the superconductor-quantum dots system while the near decoupled terminal

leads are left out of the picture. This enables a convenient analysis of the coherent

evolution of the system. However, prior to that, the mechanism responsible for the

non-trivial time evolution of the system, the spin-orbit interaction, will be discussed.



6. Spin-orbit interaction

The coupling of magnetic fields to the spin of a particle is fairly straightforward

and intuitive process (see Sec. 3.1.1). This coupling is utilized in contemporary

spin-electrical devices such magnetic memory and MRI. Less obvious is the coupling

between electric fields and spin. This relativistic effect is termed spin-orbit inter-

action, since it was discovered by observing electrons in orbital motion in hydrogen

atoms [31, 32].

Before discussing the spin-orbit effect in a Cooper pair splitter, a physical de-

scription of the spin-orbit phenomenon is in place. The mechanism of spin-orbit

coupling will be introduced first in conceptually simpler case of a hydrogen atom,

before delving into its manifestation in crystalline (semi)conductors. The rigorous

derivation of the spin-orbit coupling will be left out, as it requires relativistic quan-

tum theory, arising as a term in the Dirac equation [33].

6.1 Hydrogen atom

The spin-orbit coupling was originally invented to explain an observed shift in spec-

tral lines of hydrogen atom. Semi-classical understanding of the effect can be ob-

tained by considering the Bohr’s hydrogen model in the rest frame of the electron.

In this frame of reference, the stationary electron is orbited by the proton, whose

charge creates a magnetic field ~B. The electron has a magnetic dipole moment ~µ

due to its spin, and thus feels a torque aligning it with the magnetic field of the
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proton. As before (Sec. 3.12), the energy associated with this torque is given by the

Hamiltonian

ĤSO = −~µ · ~B. (6.1)

By identifying the circling proton as a current loop with effective current I = e/T ,

where T is the period of the proton, the magnitude of the generated magnetic field

can be obtained from the Biot-Savart law

B = µ0I

2r . (6.2)

Inserting this into Eq. (6.1) and introducing the angular momentum of the electron

(returning for a moment to the usual frame of reference) L = rmev = 2πmer
2/T , as

well as eliminating the vacuum permeability µ0 in favour of the vacuum permittivity

ε0 via c = 1/√µ0ε0, yields the magnetic field [43]

~B = 1
4πε0

e

mec2r3
~L. (6.3)

The magnetic field points to the same direction as the angular momentum generating

it, i.e. perpendicular to the plane of the proton movement. The magnetic moment

~µ of an electron is given by Eq. (3.9) as

~µ = − ege
2me

~S. (6.4)

Inserting this to the Eq. (6.1) along with the effective magnetic field of Eq. (6.3)

gives

ĤSO = ge
8πε0

e2

m2
ec

2r3
~S · ~L. (6.5)

This result is based only on classical reasoning, apart from the ge correction for

electron spin. In truth, Eq. (6.5) is in need of a further non-classical correction. In

actuality, the orbiting electron cannot be assigned with a constant inertial frame

because of its centripetal acceleration. Proper relativistic considerations modify the
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result with an additional factor of 1/2, known as the Thomas precession correction

[31, 32].

In order to highlight the effect of the spin-orbit Hamiltonian (6.5), the spin-

operator can be written in terms of Pauli matrices and the angular momentum can

be set along z-axis. The Hamiltonian reads then (including the Thomas precession

factor)

ĤSO = ge~
32πε0

e2L

m2
ec

2r3

1 0

0 −1

 . (6.6)

Evidently, a splitting of |↑〉 and |↓〉 states occurs, just as if there was an external

Zeeman magnetic field; see Sec. 3.1.1. This explains the extra spectral lines in the

spectrum of hydrogen atom.

The effective magnetic field, resulting from the spin-orbit coupling, means

that the spin of an electron can be addressed not only by magnetic but also electric

fields. The same phenomenon affects also the conduction electrons in solids, with

few complications arising from the geometry of the crystalline lattice.

6.2 Spin-orbit coupling in solids

The delocalized conduction electrons moving in a crystalline solid feel the spin-orbit

interaction while traversing the electric field produced by the lattice-ions. Again,

the electric field is perceived as an effective magnetic field by the electrons in their

rest-frame. However, whereas electrons orbiting an atom are subjected to a radial

electric field, the field of a symmetric crystal follows the periodic isotropy of the

lattice. Consequently, the net-electric field felt by an electron in a symmetric lattice

adds to zero, nullifying the effect of the spin-orbit coupling [17].

The combination of the inversion symmetry of the lattice and the time-reversal

symmetry of spin-orbit coupling ensures the persistence of spin degeneracy [17].
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Reversing time causes both the electron’s momentum (wave vector) and the spin to

change sign. Evidently, this leaves the spin-orbit energy ĤSO ∝ ~k · ~S unchanged.

The energy of the electron obeys, therefore, the symmetry: E(~S,~k) = E(−~S,−~k).

Combined with the inversion symmetry of the lattice, E(~k) = E(−~k), this invariance

under time-reversal leads to a spin degenerate system. Electrons with the same wave

vector but opposite spins will be equal in energy

E(~S,~k) = E(−~S,~k). (6.7)

Therefore, in solids the spin-orbit effect manifest only when there is some asymme-

tries or impurities in the lattice structure. Active spin-orbit effects are present most

commonly in solids wherein the inversion symmetry is broken either with respect

to the center of the bulk or along some axis. The former case leads to a so-called

Dresselhaus spin-orbit interaction [28]. In lattices with only uniaxial bulk symme-

try or at the surface of a solid, the inversion symmetry is violated in the direction

perpendicular to the special axis/surface, which gives rise to a Rashba spin-orbit

effect [80].

Once the degeneracy of Eq. (6.7) is broken e.g. by the Rashba or Dresselhaus

effects, spin-flip transitions can take place between the split sub-levels. An electron

moving in a non-symmetric potential landscape of a spin-active solid, experiences

changes of velocity and electric field, that create a varying spin-orbit magnetic field.

In such materials, spins of the mobile electrons are subjected to constant rotations.

Spin-orbit length λSO is defined as the average distance the electron needs to traverse

for its spin to rotate π radians [81]. Spin-orbit length thus serves as a measure of the

strength of the spin-orbit coupling, with shorter λSO indicating stronger interaction.
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6.3 Spin-orbit coupling in quantum dots

Being tiny bits of semiconducting solid, quantum dots (Sec. 5.1) exhibit spin-orbit

interaction via the mechanism described above. However, the localization of elec-

trons in a minute dot leads to a suppression of spin-orbit interactions. As the width

of a quantum dot λd is typically less than the spin-orbit length λSO, a suppression

of a power of λd/λSO generally abolishes any spin-orbit effects. The Rashba and

Dresselhaus interactions are not strong enough to significantly lift the degeneracy of

opposing spin states in quantum dots. Hence, an external magnetic field is needed

to achieve noteworthy spin-orbit effects.

For indium arsenide (InAs), the amplitude of spin-orbit coupling is found to

be proportional to the Zeeman effect with a factor of ≈ 0.1 [82]. This gives rise

to a subtlety, discussed properly in Ch. 7, that further limits the manifestation of

spin-orbit interaction. In short, since the energy gap between states split by the

external magnetic field are proportional to the Zeeman energy EZ , and the spin-

orbit amplitude is proportional to 0.1EZ , the coherent transport induced by the

transverse spin-orbit terms seems inherently weak. This issue will be addressed by

bridging the energy gap with tunable gate electrodes.

The reference [83] derives an effective Hamiltonian for spin-orbit interaction

felt by an electron in a two-dimensional quantum dot exhibiting both Rashba and

Dresselhaus interactions. The Rashba and two-dimensional Dresselhaus Hamiltoni-

ans are, up to first order in p,

ĤR = α(p̂xσ̂y − p̂yσ̂x) and ĤD = β(p̂yσ̂y − p̂xσ̂x), (6.8)

where α and β are dimensionless coupling strengths. Having transverse (along spin

x and y directions) terms, these Hamiltonians can induce spin-flips. However, as

discussed in [29, 84, 85], an external magnetic field EZ is required to achieve non-

vanishing effects. Coining the spin-orbit terms (6.8) with static electric field of
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the semiconductor and the Zeeman field yields, after few approximations [83], the

effective Hamiltonian for spin-orbit interaction

ĤSO = µ( ~BSO × ~BZ) · ~σ, (6.9)

where µ is the modulus of the spin magnetic moment, ~BSO ∝ ~v × ~E is the effective

spin-orbit magnetic field and ~BZ is the external Zeeman field. The following chapter

employs this Hamiltonian to study the spin-orbit interaction in the double quantum

dot of a Cooper pair splitter.



7. Spin-orbit interaction in

Cooper pair splitter

This chapter presents a quantitative study of spin-flips experienced by electron pairs

in a Cooper pair splitter during their stay in the double quantum dot coupled to a

superconductor. It is convenient at first to limit the analysis to the part I of the

Cooper pair splitter (see Fiq. 5.1), i.e. the superconductor and the double dots.

Leaving out the terminal leads is legit as long as the regime of long-lived dot-states

(Sec. 5.3.1) is considered. It is assumed that the dot-to-lead tunnelings happen at

much slower rate than the superconductor-dots tunneling and the former can hence

be ignored for now.
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Figure 7.1: (Color online.) Superconductor coupled to quantum dots with active

spin-orbit interaction. In the limit of long-lived dot-states (Sec. 5.3.1), the terminal

leads of the Cooper pair splitter can be ignored when studying the coherent state

delocalized on the superconductor and dots. The quantum dots are subjected to an

external magnetic field ~BZ and they exhibit active spin-orbit interaction, with effec-

tive spin-orbit magnetic fields ~BSO,L and ~BSO,R, for left and right dot, respectively.

The cross products of the Zeeman and spin-orbit fields ( ~BSO,L/R × ~BZ), denoted by

the green arrows, are responsible for the spin-flips experienced by the electrons in

the dots; see the Hamiltonian 7.4.

7.1 Hamiltonian of the two-electron spin states

The complete Hilbert space of two-electron spin states is spanned by the singlet-

triplet basis

|S〉 = 1√
2

(|↑↓〉 − |↓↑〉),

|T0〉 = 1√
2

(|↑↓〉+ |↓↑〉),

|T+〉 = |↑↑〉 ,

|T−〉 = |↓↓〉 . (7.1)
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Together with the empty state |0, 0〉 ≡ |0〉, they constitute the basis vectors for the

double quantum dot-states,

{|0〉 , |S〉 , |T0〉 , |T+〉 |T−〉}. (7.2)

The relationships of the states are decoded in the Hamiltonian of the system. This

can be separated into a spin-independent part and the spin-dependent part, Ĥ =

Ĥ0 + Ĥs. The spin-independent Hamiltonian, Ĥ0 contains the eigenenergies of the

dot-states, in addition to the coupling amplitude ΓCPS quantifying the strength of

the singlet exchange between the superconductor and dots.

The spin-dependent part Ĥs = ĤZ + ĤSO includes the Zeeman Hamiltonian

(Sec. 3.1.1, Eq. (3.12)) as well as the spin-orbit interaction Hamiltonian (Sec. 6.3,

Eq. (6.9)) for both dots (l = {L,R}), respectively

ĤZ =
∑

l={L,R}
µ~BZ · ~σl and (7.3)

ĤSO =
∑

l={L,R}
µ( ~BSO, l × ~BZ) · ~σl, (7.4)

where µ is the modulus of the spin magnetic moment in the dots (assumed identical

in both), ~BZ is the static Zeeman magnetic field, ~σl is the Pauli vector related to

the spin of the electron in quantum dot l. The effective magnetic field ~BSO, l gives

the orientation and relative strength of the spin-orbit effect.

The Hamiltonians (7.3) and (7.4) can be written in the basis of states

{|S〉 , |T0〉 , |T+〉 , |T−〉}, where the empty state is temporarily suspended, by following

the approach of Sec. 3.2, wherein the representation for ĤZ is derived. Similarly,

utilizing ~BZ = (0, 0, BZ) and denoting ~εl ≡ µ( ~BSO, l × ~BZ), ĤSO can be written as

ĤSO = ~εL · ~σL + ~εR · ~σR

= εL,xσ̂L,x + εL,yσ̂L,y + εR,xσ̂R,x + εR,yσ̂R,y. (7.5)

The Pauli matrices of a two-particle Hilbert space spanned by {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}
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are obtained as the tensor products

σ̂L,x = σ̂x ⊗ Î =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


; σ̂L,y = σ̂y ⊗ Î =



0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


;

σ̂R,x = Î ⊗ σ̂x =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


; σ̂R,y = Î ⊗ σ̂y =



0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0


. (7.6)

The Hamiltonian (7.5) reads then

ĤSO =



0 εR,x − iεR,y εL,x − iεL,y 0

εR,x + iεR,y 0 0 εL,x − iεL,y

εL,x + iεL,y 0 0 εR,x − iεR,y

0 εL,x + iεL,y εR,x + iεR,y 0


, (7.7)

which can be written in terms of outer products of the basis states as

ĤSO = (εR,x − iεR,y) |↑↑〉 〈↑↓|+ (εL,x − iεL,y) |↑↑〉 〈↓↑|+

+(εR,x + iεR,y) |↑↓〉 〈↑↑|+ (εL,x − iεL,y) |↑↓〉 〈↓↓|+

+(εL,x + iεL,y) |↓↑〉 〈↑↑|+ (εR,x − iεR,y) |↓↑〉 〈↓↓|+

+(εL,x + iεL,y) |↓↓〉 〈↑↓|+ (εR,x + iεR,y) |↓↓〉 〈↓↑| . (7.8)

A change of basis to the singlet-triplet basis is achieved by substituting

|↑↑〉 = |T+〉 ; |↑↓〉 = (|T0〉+ |S〉)/
√

2

|↓↓〉 = |T−〉 ; |↓↑〉 = (|T0〉 − |S〉)/
√

2. (7.9)
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The spin-orbit Hamiltonian is then

ĤSO =εR,x − iεR,y√
2

|T+〉 (〈T0|+ 〈S|) + εL,x − iεL,y√
2

|T+〉 (〈T0| − 〈S|)+

+ εR,x + iεR,y√
2

(|T0〉+ |S〉) 〈T+|+
εL,x − iεL,y)√

2
(|T0〉+ |S〉) 〈T−|+

+ εL,x + iεL,y√
2

(|T0〉 − |S〉) 〈T+|+
εR,x − iεR,y√

2
(|T0〉 − |S〉) 〈T−|+

+ εL,x + iεL,y√
2

|T−〉 (〈T0|+ 〈S|) + εR,x + iεR,y√
2

|T−〉 (〈T0| − 〈S|). (7.10)

Collecting terms and using a notation that shortens the sum and difference of spin-

orbit fields between the two dots to ~εs,d ≡ ~εL±~εR allows finally writing the spin-orbit

Hamiltonian in a compact form in the singlet-triplet basis (along with the Zeeman

Hamiltonian derived in Sec. 3.2) as

ĤZ =
∑
±
±EZ |T±〉 〈T±| (7.11)

ĤSO =
∑
±

εs,x ± iεs,y√
2

|T0〉 〈T±|+ h.c.

+
∑
±

∓εd,x − iεd,y√
2

|S〉 〈T±|+ h.c., (7.12)

where the Zeeman energy is defined as EZ ≡ 2µ| ~BZ |. Note that the spin-orbit

coupling between the singlet and polarized triplets is proportional to the difference

of the spin-orbit fields of the dots, ~εL −~εR. Hence, for this coupling to be non-zero,

it must be possible to set the spin-orbit fields of the two dots to different values.

Indeed, the experiments done in [86, 82] support the possibility of individually tuning

the spin-orbits fields of each dot by gate electrodes.

Notice the limitations of the spin-orbit coupling terms. They only directly

couple the singlet |S〉 and the neutral triplet |T0〉 with the polarized triplets |T+〉

and |T−〉. This is congruent with the capabilities of a single spin-flip. The singlet

and neutral triplet differ only by the inverted phase of the |↓↑〉 state (see Eq. 7.1)

and hence cannot be changed to each other by a spin-flip. Going from one polarized

triplet to the other requires two spin-flips, so they are not connected in the first

order Hamiltonian (7.13) either.
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7.1.1 Matrix form of the Hamiltonian

The two-particle Hamiltonian Ĥ = Ĥ0+Ĥs can be concisely written in a matrix form

in the ordered basis (that now includes the empty state), {|0〉 , |S〉 , |T0〉 , |T+〉 , |T−〉},

as

Ĥ =



0 Γ∗CPS 0 0 0

ΓCPS ν 0 ε̃∗d −ε̃d

0 0 ν ε̃∗s ε̃s

0 ε̃d ε̃s ν + EZ 0

0 −ε̃∗d ε̃∗s 0 ν − EZ


, (7.13)

where ν = εL + εR is the gate-controllable detuning between the empty and two-

particle states, ε̃d = −(εd,x + iεd,y)/
√

2 is the spin-orbit coupling between |S〉 and

|T±〉, and ε̃s = (εs,x + iεs,y)/
√

2 is the spin-orbit coupling between |T0〉 and |T±〉.

The diagonal elements are the energies of the non-interacting two-particle

eigenstates and the off-diagonal elements are coherent coupling amplitudes that

drive the time evolution of the system. Note the contribution of the Zeeman effect

EZ to the energies of the polarized triplets. Importantly, only the singlet state is

coupled to the empty state, via the crossed Andreev reflection amplitude ΓCPS. As

stated earlier, spin-orbit couplings connect the singlet and the neutral triplet to

the two polarized triplets, with amplitudes proportional to the sum and difference,

respectively, of the spin-orbit fields of the individual dots (ε̃s and ε̃d).

As will be reviewed in the following sections, choosing different pairs of reso-

nant values of the electric ν and magnetic EZ parameters in the Hamiltonian (7.13)

lead to different coherent spin states, as a consequence of a mixing caused by the

spin-orbit coupling ε̃d.
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7.1.2 Coherent evolution

It is helpful here to recap the way that coherent (undisturbed) quantum systems

evolve in time. The state vector of the electron pair on the double quantum dot will

in general be the linear superposition of the basis states

|ψ(t)〉 = c0(t) |0〉+ cS(t) |S〉+ cT0(t) |T0〉+ cT+(t) |T+〉+ cT−(t) |T−〉 . (7.14)

The complex probability amplitudes cX(t) = 〈X|ψ(t)〉, whereX = {0, S, T0, T+, T−},

dictate the weight of the corresponding eigenstates |X〉 in the superposition at any

given time t. According to the Born’s rule, the squared absolute values of the

probability amplitudes are identified with the probability of finding the system in

the corresponding eigenstates. Hence,

|c0(t)|2 + |cS(t)|2 + |cT0(t)|2 + |cT+(t)|2 + |cT−(t)|2 = 1 (7.15)

holds at all times. In the Schrödinger picture [43], the time evolution of the state

vector is generated by the Hamiltonian of the system according to the Schrödinger

equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (7.16)

The solution |ψ(t)〉 = e−iĤ(t−t0)/~ |ψ(t0)〉 indicates oscillating evolution dictated by

the Hamiltonian Ĥ operating on the initial state |ψ(t0)〉. It is insightful to track the

probability of each eigenstate

PX(t) = |〈X|ψ(t)〉|2 (7.17)

to see which states are taking part in the coherent evolution with given system

parameters. For instance, in absence of the spin-orbit couplings the probabilities of

the triplet states are zero. Though the coherent evolution of the state vector itself

cannot be directly observed, measuring consequential physical observables, such as

charge (see Ch. 9), yields information about the electron state on the quantum dots.
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In the following sections the coherent evolution of the superconductor-double

dot system is studied using the above formalism in the regime of long-lived dot-

states. The state and finally the degree of entanglement on the quantum dots at

various values of the electric and magnetic field handles ν and EZ is probed using a

following scheme. Three regimes of detuning between the superconductor and dots

are considered; zero detuning, intermediate detuning and high detuning. Then in

each regime the magnetic field is used to bring the polarized triplets into a resonance

point, wherein the spin-orbit effects manifest.

7.2 Transport resonance

The gate controlled detuning ν dictates the strength of Cooper pair exchange be-

tween the superconductor and the double quantum dot. The degree of coherent

mixing between coupled state vectors depends on the ratio of their energy difference

and the coupling amplitude. In the case of Cooper pair tunneling between the su-

perconductor and dots that is ΓCPS/ν, where ΓCPS is the amplitude of the crossed

Andreev reflection and the denominator is simply the energy of the singlet state ν,

since the energy of the empty state is fixed to zero. At the transport resonance of

the Cooper pair exchange ν = 0, the above ratio implies maximal mixing of the

eigenstates |0〉 and |S〉 via coherent oscillations, which makes the dots to be occu-

pied by an electron pair half of the time on average. Note that in the face of the

zero energy gap of resonant states, any coupling is strong enough to cause complete

mixing (probability of each state oscillates between zero and one). However, the

frequency of the oscillations remains dependent of the coupling amplitude.

The degenerate perturbation theory (see e.g. [43]) proves to be a suitable

tool for analysing the Hamiltonian (7.13) of the system. Based on the estimated

[82] strength of the spin-orbit couplings in InAs ε̃d,s ' 0.1EZ , these terms can be

treated as a small perturbation in the system (provided that the magnetic field
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is not too large, EZ ' ΓCPS). As a first step of the perturbation approach, the

Hamiltonian (7.13) (acting on the basis {|0〉 , |S〉 , |T0〉 , |T+〉 , |T−〉}) is divided into

the unperturbed and perturbing parts Ĥ = Ĥ0 + H̃, where

Ĥ0 =



0 Γ∗CPS 0 0 0

ΓCPS 0 0 0 0

0 0 0 0 0

0 0 0 EZ 0

0 0 0 0 −EZ


, (7.18)

and

H̃ =



0 0 0 0 0

0 0 0 ε̃∗d −ε̃d

0 0 0 ε̃∗s ε̃s

0 ε̃d ε̃s 0 0

0 −ε̃∗d ε̃∗s 0 0


. (7.19)

Note that ν = 0 on the diagonal entries at the transport resonance. It is convenient

to bring also the upper part of the unperturbed Hamiltonian Ĥ0 to a diagonal

form. Diagonalizing Eq. (7.18) yields eigenvalues ν ′∓ = ∓ΓCPS, corresponding to the

normalized eigenvectors

|S−〉 = 1√
2

(|0〉+ |S〉)

and

|S+〉 = 1√
2

(− |0〉+ |S〉). (7.20)

A new diagonalized unperturbed Hamiltonian for the double dot in the basis {|S−〉 , |S+〉 , |T0〉 , |T+〉 , |T−〉}
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reads then

Ĥ0 =



−ΓCPS 0 0 0 0

0 ΓCPS 0 0 0

0 0 0 0 0

0 0 0 EZ 0

0 0 0 0 −EZ


. (7.21)

Importantly, the first two eigenstates |S−〉 and |S+〉 have non-zero eigenenergies.

This makes it possible to tune the external magnetic field such that the polar-

ized triplets |T−〉 and |T+〉 become resonant with the active states |S−〉 and |S+〉.

Evidently, the resonant value for the Zeeman energy equals the crossed Andreev

reflection amplitude EZ = ΓCPS. The symmetry of the eigenenergies with respect to

the zero-energy (see Fig. 7.2), guarantees that at EZ = ΓCPS, two resonances occur

simultaneously. The antisymmetric empty-singlet superposition |S−〉 becomes de-

generate with the |T−〉 triplet at the same Zeeman energy, EZ = ΓCPS, that makes

the symmetric superposition |S+〉 degenerate with the |T+〉 triplet state. As dis-

cussed in the next chapter, this equal treatment of the polarized triplets proves to

be crucial for improving the average entanglement in presence of the spin blockade

on the dots.

7.2.1 The spin blockade

The modest resonant value of the Zeeman energy EZ = ΓCPS indeed justifies the use

of perturbation theory, as it keeps the spin-orbit coupling amplitudes ε̃s,d an order

of magnitude smaller than the energies of the relevant eigenstates. As mentioned

earlier, at a resonance point, the mixing of eigenstates is complete and only the

frequency of the coherent oscillations depends on the coupling amplitude. The state

on the double dot, before introduction of the perturbing spin-orbit coupling, is an

equal superposition of the |S−〉 and |S+〉 states, that themselves are superpositions
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Figure 7.2: (Color online.) Double degeneracy and spin blockade. Left: Energies of

the two-electron eigenstates at the zero detuning regime as a function of the Zeeman

magnetic field EZ . Two degeneracies coincide at a Zeeman energy EZ = ΓCPS.

Right: Coherent evolution (occupation probability vs. time) of the system at the

double degeneracy point in the zero detuning regime (ν = 0, EZ = ΓCPS). The |T−〉

and |T+〉 states are equally activated by the spin-orbit coupling. Note that the latter

is not seen in the plot since it is hidden by the |T−〉 curve.

of the |0〉 and |S〉 states. The first order perturbation ε̃d, connects the singlet |S〉

to both of the polarized triplets |T+〉 and |T−〉. Thus, the states |S−〉 and |S+〉

become coherently hybridized with |T−〉 and |T+〉, respectively. At the resonance

EZ = ΓCPS, this creates complete coherent oscillations of frequency ~/ε̃d, between

the empty-singlet superposition and the polarized triplets.

In view of the original basis states, the evolution of the state vector (7.14)

consists of rapid oscillations of frequency ~/ΓCPS between |0〉 and |S〉 (a singlet

tunneling back and forth between the superconductor and the dots) accompanied

by a slower cycle in and out of an equal superposition of |T−〉 and |T+〉.

Evidently, the empty state |0〉 becomes suppressed (along with the singlet) as

the probability of a spin-flip increases during the coherent evolution of the double

dot experiencing active spin-orbit interaction. The suppression of the empty state

follows from the inability of the electrons in spin-triplet to realize the Andreev
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reflection; see Sec. 4.3.1. Hence, a double quantum dot housing a triplet state will

remain blockaded until a second spin-flip returns the system into singlet state. This

effect, called the spin blockade [35], turns out to increase the average entanglement

available in the double quantum dot of the Cooper pair splitter in the regime of

long-lived dot-states. Description of the increased average entanglement (in Ch. 8),

as well as a way to observe it (in Ch. 9), will be given after rest of the spin-orbit

resonances are discussed. In short, the increase in average entanglement stems from

the fact that the activated equal superposition of the polarized triplets is a maximally

entangled state. Thus, though in general the activation of triplet states reduces

entanglement, in this case the appearance of maximally entangled superposition of

triplets, coinciding with the suppression of empty state, increases it.

7.3 Intermediate detuning

Next regime to consider is that of the intermediate detuning ν ' ΓCPS. Increasing

the chemical potential of the double quantum dot ν above that of the superconductor

(νS = 0) weakens the coherent mixing of the empty and singlet states. Unlike in the

transport resonance, the dot state will now never reach unit probability in regards

of the singlet occupation; see Fiq. 7.3. The decrease in the probability of a Cooper

pair tunneling into the dots is dependent on the width of the resonance peak, i.e.

the crossed Andreev reflection amplitude ΓCPS. For instance, the two lower panels

of Fig. 7.3 indicate that at a detuning ν = ΓCPS, the likelihood of the singlet pair

residing on the dots is approximately 20 %-units less than it was at the zero detuning.

The increased chemical potential of the dots breaks the symmetric energy picture

of the transport resonance; see the topmost panel of Fig. 7.3. The energies of the

empty-singlet superpositions |S−〉 and |S+〉 no longer reside equidistantly below

and above the zero-energy. This asymmetry means that the value of the resonant

magnetic energy EZ does not coincide for the two triplets |T−〉 and |T+〉.
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Figure 7.3: (Color online.) Individual triplet activation. Top: Energies of the two-

electron eigenstates at the intermediate detuning regime (ν = ΓCPS) as a function

of the Zeeman magnetic field EZ . The two resonances occur now at different values

of the Zeeman field. Bottom: The coherent evolution (occupation probabilities

vs. time) at the first, EZ = EZ+, and second resonance, EZ = EZ−, respectively.

The polarized triplets |T+〉 and |T−〉 are activated separately and with different

amplitudes and frequencies. The states are labelled by the same colours as in the

top-figure.

In view of the perturbation theory, the Hamiltonian (7.13) can be treated

exactly as in the zero detuning case, as long as the detuning is not too large, ν '

ΓCPS. Now the eigenstates |S−〉 and |S+〉 and their eigenenergies ν ′+ and ν ′− attain
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more complicated forms in the diagonalization of the unperturbed Hamiltonian,

Ĥ =



0 Γ∗CPS 0 0 0

ΓCPS ν 0 0 0

0 0 ν 0 0

0 0 0 ν + EZ 0

0 0 0 0 ν − EZ


. (7.22)

After diagonalization the two new eigenenergies are

|S+〉 =
−ν −

√
4Γ2

CPS + ν2

ΓCPS

√
4 +

∣∣∣∣ν+
√

4Γ2
CPS+ν2

ΓCPS

∣∣∣∣2
|0〉+ 2√

4 +
∣∣∣∣ν+
√

4Γ2
CPS+ν2

ΓCPS

∣∣∣∣2
|S〉 (7.23)

and

|S−〉 =
−ν +

√
4Γ2

CPS + ν2

ΓCPS

√
4 +

∣∣∣∣ν−√4Γ2
CPS+ν2

ΓCPS

∣∣∣∣2
|0〉+ 2√

4 +
∣∣∣∣ν−√4Γ2

CPS+ν2

ΓCPS

∣∣∣∣2
|S〉 , (7.24)

with eigenenergies

ν ′± =ν/2±
√

(ν/2)2 + |ΓCPS|2. (7.25)

Evidently, these forms reduce to their zero detuning counterparts at ν = 0. Now, the

two Zeeman resonances of the eigenstates of the two-electron system occur at values

EZ+ =
√

(ν/2)2 + Γ2
CPS − ν/2 and EZ− =

√
(ν/2)2 + Γ2

CPS + ν/2 of the Zeeman

energy; see. Fig. 7.3. The former value marks a degeneracy between states |T+〉 and

|S+〉 while the second value, corresponding to a higher Zeeman field, renders |T−〉

degenerate with |S−〉.

The spin-orbit coupling ε̃d involves the polarized triplets into the coherent state

of the dots, around the now separate resonances |EZ −EZ−| ' ε̃d and |EZ −EZ+| '

ε̃d. There are a few distinctions between the coherent dot-states at the resonances

of intermediate and zero detuning regimes, seen in the two lower panels of Fig. 7.3.

In the zero detuning regime the probability of the spin blockade periodically reaches
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unity. However, as a consequence of the decreased weight of the singlet state in the

presence of detuning, the triplet activation, and hence the amount of spin blockade,

remains much weaker. Secondly, the individual activation of the polarized triplets

ruins the entanglement of the electron pair. However, while involving only one

of the polarized triplets destroys entanglement, it also introduces non-zero spin-

polarization in the double dot.

7.3.1 Spin-polarization

Spin-polarization is the degree at which spin is aligned with a given direction [49]. In

the singlet and neutral triplet states each electron spin has a zero polarization, since

they are in a superposition of opposite spins. In contrary, The spins in the polarized

triplets are maximally polarized along external field in |T+〉 and opposite to it in

|T−〉. The average spin-polarization on the double quantum dot over a time-period

τ is quantified by the integral

Pavg = 1
τ

∫ τ

0
dt

PT−(t)− PT+(t)
PS(t) + PT0(t) + PT−(t) + PT+(t) , (7.26)

where PX(t) are the occupation probabilities of the eigenstates of the (non-empty)

dot-state. Fig. 7.4 shows the average polarization as a function of Zeeman energy EZ .

Non-zero polarization appears around the two resonances EZ+ and EZ− as a sign

of the polarized triplet activation. In the left panel, the polarization is weaker since

the singlet state is strongly present in the coherent state. The stronger polarization,

seen in the right panel of Fig. 7.4, is achieved in the third energy regime of the

superconductor-double quantum dot system; the high detuning regime.

7.4 Regime of high detuning

At a high detuning ν � ΓCPS, the empty state gets effectively decoupled from the

two-particle states by a large gate-induced potential energy, which highly suppresses
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Figure 7.4: (Color online.) Spin-polarization. The average polarization (7.26) of

the electron pair on the double quantum dot as a function of Zeeman energy EZ .

Left: At the indeterminate detuning regime ν = ΓCPS the average polarization has

two peaks with opposite signs, centered at the two resonances EZ = E±, where

the polarized triplets |T+〉 and |T−〉, respectively, become dominant in the coherent

state of the electron pair. Right: At the high detuning regime ν = 7ΓCPS, the

second polarization peak becomes greatly emphasized due to suppression of the

singlet state, suggesting that a Cooper pair splitter can function as a source of spin

current.

the mixing of |0〉 and |S〉 states. In the formal treatment of the system, the smallness

of ΓCPS compared to ν implies that ΓCPS should be considered as a perturbing

correction term, rather than part of the unperturbed Hamiltonian. Furthermore, as

will be seen shortly, an interesting time evolution in this regime occurs when the

magnetic Zeeman energy is rather high, EZ ' 7ΓCPS. This causes the spin-orbit

couplings to be comparable with the amplitude of the crossed Andreev reflection

ε̃d/s ' 0.1EZ ' ΓCPS. Hence, it is reasonable to treat them on an equal footing, as
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a perturbation H̃, in Ĥ = Ĥ0 + H̃, where

Ĥ0 =



0 0 0 0 0

0 ν 0 0 0

0 0 ν 0 0

0 0 0 ν + EZ 0

0 0 0 0 ν − EZ


(7.27)

and (7.28)

H̃ =



0 Γ∗CPS 0 0 0

ΓCPS 0 0 ε̃∗d −ε̃d

0 0 0 ε̃∗s ε̃s

0 ε̃d ε̃s 0 0

0 −ε̃∗d ε̃∗s 0 0


. (7.29)

As a result of the gate-induced Coulomb blockade, the mixing of the eigenstates |0〉

and |S〉 is now not present in the unperturbed Hamiltonian. The double quantum

dot remains empty as the Andreev reflection is suppressed. Tuning the |T+〉 triplet

in resonance with the singlet state has no significant effect, due to the suppressed

|0〉 to |S〉 transport.

However, there is a peculiar way around the Coulomb blockade. Subjecting

the quantum dots to a magnetic field with Zeeman energy EZ = EZ− ' ν brings

the |T−〉 triplet into resonance with the empty state, as depicted in the left panel of

Fiq. 7.5. There is no direct coupling between the two states, as they are separated

by two spin-flips, but a second order transport occurring via virtual singlet state

indeed connects them. This mechanism enables extraction of strongly spin polarized

currents from a Cooper pair splitter.
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Figure 7.5: (Color online.) Resonance point and coherent evolution at a high de-

tuning ν = 7ΓCPS. Left: At a high value of Zeeman energy, EZ = ν, the polar-

ized triplet |T−〉 becomes degenerate with the empty state. Right: The spin-orbit

coupling enables rotations to the polarized triplet state |T−〉, even though the usual

tunnelling of singlet Cooper pairs is suppressed by the high detuning. This exchange

is maximized at the sweet-spot of ν = 7ΓCPS.

7.4.1 Spin current

The amplitude of the second order tunneling process between |0〉 and |T−〉 is calcu-

lated in a manner resembling the single-electron co-tunneling (2.31).

ε̃eff ≡〈T−| H̃
1

E0 − Ĥ0
H̃ |0〉

= 〈T−| H̃
1

E0 − Ĥ0
ΓCPS |S〉 where E0 = 〈0| Ĥ0 |0〉 = 0

= ΓCPS

−ν
〈T−| H̃ |S〉

= ΓCPS

−ν
〈T−| (Γ∗CPS |0〉+ ε̃d |T+〉 − ε̃∗d |T−〉)

= ε̃∗dΓCPS

ν
. (7.30)

Though the amplitude of this transport is ε̃∗d/ν times smaller than the that of the

first order Cooper pair exchange ΓCPS, at the resonant Zeeman energy EZ = ν, it

dominates the coherent evolution while the Andreev reflection is suppressed by the

high detuning. Note that the coherent oscillations between the empty state and

polarized triplet happen at a slower frequency than the Cooper pair transfer at its
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resonance, ε̃eff/~ ≡ ε̃∗dΓCPS/ν~ ' ΓCPS/7~.

Further subtlety follows from the |0〉 to |T−〉 transport being also dependant

of the ratio ΓCPS/ν, that limits the |0〉 to |S〉 part of the transfer. The suppression

of the Andreev reflection carries over to the second order process, and consequently,

for too high detuning ν, the mixing of |0〉 and |T−〉 becomes partial even at the

resonance. The sweet spot for the detuning and corresponding resonant Zeeman

energy that realizes the complete mixing seems to be around ν = EZ ' 7ΓCPS.

At a higher detuning the mixing becomes weaker as transport to |S〉 diminishes

further. At a detuning lower than ν = EZ ' 7ΓCPS, the singlet activation starts to

become too strong and the system returns to the intermediate detuning regime of

the previous section.

Interestingly, the spin-orbit interaction, that was in the previous chapter used

to reduce the tunneling between superconductor and the dots (in favour of higher

double dot occupancy), now works to lift a tunneling blockade. The spin-orbit res-

onance, occurring at ν = EZ ' 7ΓCPS, subverts the blockade with the price of only

allowing |T−〉 state on the dots. Evidently, this guarantees high spin-polarization of

the electrons on quantum dots (see right panel of Fiq. 7.3.1).

This novel observation suggests that a type-I superconductor can be compelled

to yield electron pairs in the triplet state with nearly a unit probability. Furthermore,

the triplet is guaranteed to be the one anti-aligned with the external field, |T−〉.

This means, remarkably, that further coupling the double quantum dot to drain

leads leads to a spin current. More specifically, a Cooper pair splitter can be used

as a source of correlated spin-polarized twin currents.

This concludes the discussion of the effects of spin-orbit coupling at various

resonances, that were found by varying the electric and magnetic fields, namely the

detuning ν and Zeeman energy EZ inflicted to the dots. Next chapter addresses

entanglement, the desired outcome of Cooper pair splitting.



8. Entanglement

Entanglement is a central feature of quantum mechanics, arguably on par with

the uncertainty and superposition principles. Entanglement refers to a non-local

correlation between seemingly distinct physical systems. It arises in situations where

some restriction, say the Pauli exclusion principle or a conservation law, is combined

with the quantum uncertainty associated with superposition states.

As an example, consider two electrons that can occupy the same energy state

only if they have opposite spins, as dictated by the Pauli exclusion. Unobserved spin

of an electron does not have a fixed value, but exists in a coherent superposition of

eigenstates (Sec. 3.1). Thus, the total spin of an electron pair sharing an energy level

is known to be zero, but the value of each individual spin is undetermined. Once

either of the spins is measured, the value of the other spin becomes also immediately

known.

The significance of the phenomenon is highlighted by considerations of entan-

gled pairs separated by long distances. The measurement of one particle determines

the state of the other with superluminal speed. The effort to capitalize these non-

local correlations has motivated the field of quantum information processing, where

entanglement is used, for instance, as a resource for new more powerful computa-

tional algorithms and encryption methods [11]. Consequently, the production of

particles with entangled quantities is an important endeavour for photonics and

solid-state physics alike.

85
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8.1 Formalism

Formally, entanglement is a property of a state vector of composite systems, that

consists of two or more subsystems. By definition, a composite state is entangled

if it cannot be expressed as a single tensor product of states of its subsystems. In

view of the two-electron states on double quantum dot, it suffices to restrict to

two-component, i.e. bipartite composite systems. For the state vector of the double

quantum dot, the subsystems are the electrons on each single level dot. The states

of these electrons are superpositions of the two possible spin orientations along the

measuring field

|ψ1〉 = α1 |↑〉+ β1 |↓〉

and

|ψ2〉 = α2 |↑〉+ β2 |↓〉 , (8.1)

respectively for the left and right dot. The composite state vector of the two-electron

system is then produced as a tensor product (3.15) of the |ψ1〉 and |ψ2〉 states.

Coming back to the definition of entanglement, according to the Schmidt de-

composition [87], every composite system can always be expressed as a sum of sub-

system tensor products. A state of a bipartite system, such as the double quantum

dot can be expressed as

|ψ〉12 =
2∑
i,j

γij |i〉1 ⊗ |j〉2 , (8.2)

where the γij ∈ C are normalized probability amplitudes of the composite states

and |i〉1 and |j〉2 are the eigenstates of the subsystems one and two. Now, if a

composite state can be expressed as exactly one tensor product of its subsystem i.e.

it has a single-term Schmidt decomposition, the state is not entangled. In contrast

to these product states, the entangled states are composite states whose Schmidt

decomposition has more than one term. In view of these definitions, writing the
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sum of Eq. (8.2) in the spin-notation,

|ψ〉12 = γ11 |↑〉 ⊗ |↑〉+ γ12 |↑〉 ⊗ |↓〉+ γ21 |↓〉 ⊗ |↑〉+ γ22 |↓〉 ⊗ |↓〉 , (8.3)

makes it evident that the singlet and neutral triplet are entangled while the polarized

triplets are non-entangled product states.

8.1.1 Bell states

The bipartite system with two-level subsystems is the simplest system to exhibit

entanglement. There are four maximally entangled bipartite states that span the

space of maximally entangled states in composite Hilbert space C2⊗C2. Known as

the Bell states, they are written in the spin notation as

|ψBell1 〉 = 1√
2

(|↑↓〉+ |↓↑〉)

|ψBell2 〉 = 1√
2

(|↑↓〉 − |↓↑〉)

|ψBell3 〉 = 1√
2

(|↑↑〉+ |↓↓〉)

|ψBell4 〉 = 1√
2

(|↑↑〉 − |↓↓〉). (8.4)

Evidently, the first and second Bell states are the neutral triplet |T0〉 and singlet |S〉

states of the two-electron system and the latter two are symmetric and antisymmet-

ric superpositions of the polarized triplets; 1√
2(|T+〉+ |T−〉) and 1√

2(|T+〉 − |T−〉).

A general quantum state in C2 ⊗C2 space is a superposition of the entangled

Bell states and non-entangled product states. Consequently, such states can be

only partially entanglement. Indeed, the degree of entanglement i.e. non-classical

correlation in the measurements outcomes is a continuous variable. In a maximally

entangled system, the outcomes of subsystem measurements correlate perfectly, but

entanglement can also manifest more subtly as a statistical phenomenon. This

calls for a continuous measure of entanglement. While the Von Neumann entropy
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[88] is perhaps the most renown measure, a quantity called the concurrence [89] is

convenient for two-level systems.

8.1.2 Concurrence

The concurrence is defined for pure (as opposed to mixed) bipartite states as [14]

C = 2
√
Det(γγ†), (8.5)

where the matrix γ = ∑
ij γij |i〉 〈j| , with i, j = {↑, ↓}, contains the probability

amplitudes of the superposed two-level states and is normalized by the relation

Tr(γγ†) = 1. Concurrence varies from 0 for product states to 1 for maximally

entangled states. Thereby, the Bell states (8.4) and their linear combinations have

a unit concurrence, whereas superpositions involving both Bell states and product

states have concurrence less than one.

Tracking the concurrence of the electron pair on the double quantum dot of

a Cooper pair splitter requires writing the matrix γ(t) in the basis of spin con-

figurations {↑↑, ↑↓, ↓↑, ↓↓}. In terms of the time-dependent amplitudes cX(t) =

〈X|ψ(t)〉 , for X ∈ {S, T0, T+, T−} it reads

γ(t) =

 cT+(t) 1√
2(cT0(t) + cS(t))

1√
2(cT0(t)− cS(t)) cT−(t)

 . (8.6)

The coherent evolution of the concurrence (8.5) can be now compared to the evolu-

tion of the two-electron wavefunction occupation probabilities (7.17). Furthermore,

a time-averaged concurrence can be defined as

Cavg = 1
τ

∫ τ

0
dt 2

√
Det[γ(t)γ†(t)], (8.7)

where τ is a macroscopic measuring time.
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8.2 Concurrence and spin-orbit interaction

The Cooper pairs supplied by the superconductor are in a spin-singlet state and

thus maximally entangled with C = 1. In the conventional regime of Cooper pair

splitting, these entangled singlets are immediately collected to the terminals. How-

ever, in the regime of long-lived dot-states, the coherent evolution occurs faster than

the dot-lead tunnelings and a hybridisation of basis states takes place in the double

dots and superconductor. In absence of spin-orbit effects, this superposition is a

mixture of the empty state and singlet state. At the transport resonance ν = 0, the

superposition is equal, and the average concurrence on the dots is Cavg = 0.5 (the

empty state is defined as having zero concurrence for obvious reasons.)

The results of the spin-orbit interaction are seen in the concurrence of the sys-

tem. As stated earlier, the activation of the polarized triplets |T+〉 or |T−〉 generally

reduces the average entanglement available in the double quantum dot. Indeed, the

left panels of Fig. 8.1 shows a decline of concurrence at the two resonances EZ+ and

EZ− in the regime of intermediate detuning ν = ΓCPS, where the polarized triplets

are separately activated. This is contrasted by the resonance at the zero detuning

regime, where the equal activation of the polarized triplets introduces an entangled

state, 1√
2(|T+〉 + |T−〉), to the coherent superposition of the electron pair. This

equal superposition of triplets can be identified as a fully entangled Bell state from

Eq. (8.4). Therefore, as demonstrated by the right panels of Fig. 8.1, the average

concurrence of the two-electron state is increased due to the spin blockade.

The next chapter describes how information on the state of the electron pair

can be obtained through charge measurements. It turns out that it is possible to

distinguish between the coherent states of the quantum dots, discussed in previous

sections, by looking at the average charge.
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Figure 8.1: (Color online.) Average concurrence. Top: The degeneracy points at

intermediate (ν = ΓCPS) and zero (ν = 0) detuning regimes, respectively. Bottom:

Corresponding graphs of the average concurrence (8.7) as a function of Zeeman

energy. The average concurrence degreases at the degeneracy points EZ = EZ+ and

EZ = EZ−, due to activation of triplet states by the spin-orbit coupling. At zero

detuning the average concurrence increases on the resonance ν = ΓCPS, where the

triplets are activated equally in an entangled superposition.
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Figure 8.2: (Color online.) Concurrence stabilization. Left: At the transport

resonance ν = 0 the polarized triplets are activated equally at the double degeneracy

point (the probabilities of |T+〉 and |T−〉 are on top of each other in the graph).

Right: The oscillations of concurrence (8.6) decrease as the 1√
2(|T+〉 + |T−〉) state

gains presence in the coherent state of the system. The fact that the concurrence

stabilizes to unit value at the peak of spin blockade implies that the spin-orbit

interaction can indeed produce maximally entangled state.



9. Detection

Spin of a particle is a well isolated quantity due to a weak coupling to the en-

vironment, that warrants long coherence times of spin states. Though this allows

production of systems well resistant to external disturbances, it also makes the read-

out of a spin state harder to achieve. The magnetic moment generated by spin is of

the order of Bohr magneton (3.11), so its detection by magnetic fields is challenging.

This chapter illustrates how information of the spin state on the double quan-

tum dot of a Cooper pair splitter can be obtained indirectly by looking at the time

averaged charge on the dots (in the regime of long lived dot-states; see Sec. 5.3.1).

The charge state can be studied either directly by real-time charge detection using a

quantum point contact [36, 37] or by performing tunnel spectroscopy i.e. measuring

the current arriving to the terminal leads; see Fig. 9.1.
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Figure 9.1: (Color online.) Cooper pair splitter and charge measurement. Supercon-

ductor (S) and two quantum dots (QDL,R) form the coherent part (I) of the device.

The crossed Andreev reflection ΓCPS, electric potentials of the quantum dots εL,R,

external static magnetic field ~B and spin-orbit fields ~γL,R × ~B define the state of

the coherent system of part (I). Information of this state can be obtained by weakly

coupling the dots either to a capacitive charge measurement device (center of part

II) or normal metal leads (N), set to lower potential than the dots. In the regime

of long-lived dot-states (Sec. 5.3.1), the coherent state and average entanglement on

the dots can be deduced from the current arriving to the lead terminals, or charge

measured by capacitive charge measuring device.
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9.1 Tunnel spectroscopy

The charge measurements yield information about the spin state for the following

reason. Because of the spin blockade effect discussed in Sec. 7.2.1, the probability

that the quantum dots are in the empty state anti-correlates with the probability of

them being in any of the triplet states. From a charge detection viewpoint, a lower

measured average charge implies more time spend in the empty state. Hence, as

the empty state can only be reached from the singlet state (with the exception of

the spin-orbit transport resonance, introduced in Sec. 7.4.1), greater time-averaged

charge can be seen as a sign of the spin blockage resulting from the activation of

the triplet states.

9.2 Real-time charge detection

The time-averaged charge on the dots can be quantified as,

Qavg = 2e
τ

∫ τ

0
dt[PS(t) + PT0(t) + PT−(t) + PT+(t)], (9.1)

where τ is macroscopic measurement time. Equivalently, the average charge can be

connected to the probability of the dots not being empty, Qavg = 2e
τ

∫ τ
0 dt[1−P0(t)].

In absence of the spin-orbit effects, the time-averaged charge on the double quantum

dot is the electron charge e, as the system oscillates symmetrically between the

empty state (0e) and the singlet (2e). The average charge increases when spin-

orbit coupling is active at the resonance points, discussed in Secs. 7.2-7.4, and spin

rotations to the spin blockaded triplet states (2e) are occurring.

Fig. 9.2 shows the average charge (9.1) plotted as a function of the Zeeman

energy EZ in the three detuning regimes discussed in Ch. 7. Corresponding concur-

rence plots are shown also. In all of the regimes, the average charge on the quantum

dots peaks at the resonant values of Zeeman energy. The width of the peak is given

by the strength of the spin-orbit coupling εd.
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Figure 9.2: (Color online.) Average charge and concurrence. Top: average charge

(9.1) on the double quantum dot of the Cooper pair splitter at three different detun-

ing regimes: zero detuning, intermediate detuning and high detuning, respectively

from left to right. Bottom: Corresponding plots of average concurrence (8.7). The

average charge can be used to acquire information of the degree of entanglement. In

the zero detuning regime the concurrence increases as the average charge grows due

to spin-blockade. In the intermediate detuning regime the opposite is seen: concur-

rence decreases when average charge increases (effect of the individual activation of

the polarized triplets). In the high detuning regime the average concurrence remains

close zero at all times as the double dot is either empty or houses a non-entangled

|↓↓〉 triplet state.

When only one of the polarized triplets is activated at a given time, as hap-

pens with the intermediate and high detuning, the concurrence of the electron pair

decreases. Thus, in these regimes the increase of average charge marks a drop in

concurrence as a result of spin blockaded product state |T+〉 or |T−〉 occupying the

double dot. At the zero detuning, however, the concurrence increases along with

the average charge. This is in agreement with the notion of equal activation of the

polarized triplets as an entagled state (|T+〉+ |T−〉)/
√

2.

In the regime of long-lived dot-states, the weak coupling between dots and
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terminal leads motivates the treatment of the superconductor and double quantum

dot as a single hybridized system that outputs electrons to the two leads with rates

ΓL,R (see the single electron tunneling in Sec. 2.4). Since the tunneling rates from left

dot to left lead and right dot to right lead are probabilistic and non-correlated, the

double dot will at times hold an unpaired electron. Another Cooper pair can enter

the dots from the superconductor only when the lone electron has also tunnelled

into a lead. Single electron on the double dot can become de-localised as a result of

co-tunneling (Sec. 2.8) through a virtual state in the superconductor.

In view of this, when taking the terminal leads into consideration, the superconductor-

dots system is described by an effective non-perturbed Hamiltonian for the even and

odd occupation states, Ĥ(0)
CPS = Ĥe ⊗Ho, with

Ĥe =

 0 ΓCPS

(ΓCPS)∗ εL + εR

 ; (9.2)

Ĥo =

 εL ΓEC

(ΓEC)∗ εR

 , (9.3)

where ⊗ signifies the direct product, εL and εR are chemical potentials of the left

and right dots and the coupling matrix elements ΓCPS and ΓEC are the amplitudes

of crossed Andreev reflection and co-tunneling, respectively. The Hilbert bases of

the Hamiltonians are {|0, 0〉 , |1, 1〉} and {|1, 0〉 , |0, 1〉} for even and odd occupation,

respectively. Luckily, the co-tunneling appearing in the odd occupation Hamiltonian,

Ĥo, can be suppressed by sufficiently detuning the chemical potentials of the dots

|εL−εR| � 1. This does not affect the evolution of the even occupation Hamiltonian,

Ĥe, since there only the sum of the chemical potentials has significance. For instance,

the transport resonance for Cooper pair exchange, εL + εR = 0, can be reached even

if the dots are detuned, εL 6= εR [90].

For this reason, the electron co-tunneling can be left out of consideration when

deriving a formula for the current resulting from electrons tunneling into the terminal



9.2. REAL-TIME CHARGE DETECTION 97

leads. The double dot will simply deplete its electrons, one to each of the terminals,

in a time scale given by dot-lead tunneling rates ΓL,R. The resulting tunneling

spectroscopy current is given by the charge entering the leads per unit of time.

The charge in question is the average charge on the double dot determined by

the coherent evolution of the superconductor-dots system in its even occupation

space i.e. Eq. (9.1). On the other hand, the rate associated with the probing

current is independent of the fast coherent evolution induced by ΓCPS as well as the

perturbations ε̃d,s included in the complete Hamiltonian (7.1). By the bottle-neck

principle, the rate through the device is equal the slowest rate, that are in this case

the dot-to-leads rates ΓL,R. Hence, in the limit of long-lived dot-states, the current

to the terminals is

IN = QavgΓN , (9.4)

where the subscript N refers to the combined contribution of the terminal leads

(IN = Il + Ir and ΓN = ΓL + ΓR). So, using the weakly coupled terminal leads

to measure the tunneling current from the quantum dots yields information on the

charge state, and thus the spin state and entanglement, on the double quantum dot.

That is assuming that the tunneling rates ΓL,R are known.

In conclusion, evidence of the spin blockade, and arguably of the entangle-

ment, can be obtained by utilizing one of the two schemes presented here, real-time

charge detection and tunneling spectroscopy. Both methods work on the limit of

weak coupling between the double quantum dot and the terminal leads. The final

chapter of this thesis will review the most important results and discuss the impli-

cations of active the spin-orbit interaction in the Cooper pair splitter. In particular,

the possibility for manipulation of the spin states by time-varying electric fields is

considered.



10. Conclusions

The purpose of Cooper pair splitters is to provide spin-entagled electron pairs. In

these devices, the spin-entangled Cooper pairs, occurring naturally in superconduc-

tors, are made to tunnel through quantum dots into two separate lead terminals.

This scheme enables the splitting of Cooper pairs to spatially separated entangled

electrons.

The semiconducting quantum dots, used to filter out other transport processes

than the desired split tunneling (inverse crossed Andreev reflection), can be made

to exhibit active spin-orbit interaction. Spin-orbit interaction is a relativistic effect,

where the spin of an electron couples to an electric field (here of the ions of the

quantum dot) and rotates as the electron moves in it. Active spin-orbit interaction

is achieved by subjecting quantum dots fabricated of specific material, such as InAr

or GaAr, that are already commonly used in Cooper pair splitters, to an external

static magnetic field.

This thesis investigated the effects of spin-orbit interaction to the state of

the electrons in the double quantum dot of a Cooper pair splitter. To enable the

measurement of the state in the double quantum dot, the transport through the

device is slowed down by suppressing the tunneling between the dots and terminal

leads. It was shown in Ch. 9 that measuring the average charge (either capacitively

or by tunnel spectroscopy) yields information on the spin state of the electrons in the

dots. This is possible due to the spin blockade i.e. the limitation that electron pairs
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in the dots that are in the triplet state cannot tunnel back to the superconductor

(until spin-flip back to singlet state occurs), and hence occupation of triplet states

leads to an increased average charge. Clear fingerprint of the spin-flipping is seen

at the transport resonance of the Cooper pairs in Sec. 7.2.1, where the detuning

of the quantum dots with respect to the superconductor is zero, when the external

Zeeman magnetic field is set equal to the Cooper pair splitting amplitude ΓCPS.

Under these conditions, the polarized triplets |T+〉 and |T−〉 both become de-

generate with an eigenstate (|S+〉 and |S−〉 respectively) of the superconductor-dots

system. At this resonance, the perturbative spin-orbit coupling terms can hybridize

the eigenstates with the triplets, introducing a maximally entangled component

(|T+〉+ |T−〉)/
√

2 in the coherent superposition of the system. Hence, with the con-

trol handles set to ν = 0 and EZ = ΓCPS, the increase in the average charge on the

dots implies equal increase in the average entanglement; see Ch. 8.

The possibility of utilizing the active spin-orbit interaction of the quantum

dots to produce spin-polarized currents was discussed in Sec. 7.4.1. This can be

achieved in the regime of high detuning (suppressed singlet-exchange) ν = 7 ΓCPS,

when the polarized triplet |T−〉 is brought to resonance with |S−〉 by Zeeman energy

EZ = 7 ΓCPS.

In addition to proposing a way to validate the presence of spin-orbit interaction

in the Cooper pair splitter, through charge measurements that observe the spin

blockade, the findings of this thesis imply possibility of spin-manipulation in the

device. The magnetic and electric fields (gate voltages) considered in this thesis were

time-independent. It seems plausible that using time-varying gate-voltages would

allow for spin-manipulation via the spin-orbit couplings ε̃s,d(t) ∝ ~BSO(t) ∝ ~v× ~E(t).

This would give complete control over the spin state of the electron pair extracted

from the Cooper pair splitter. Results of such spin control could then in principle

be confirmed using the same charge measurement schemes that were presented here.
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