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Plants commonly respond to UV radiation through the accumulation of flavonoids and
related phenolic compounds which potentially ameliorate UV-damage to crucial internal
structures. However, the seasonal dynamics of leaf flavonoids corresponding to epidermal
UV absorbance is highly variable in nature, and it remains uncertain how environmental
factors combine to govern flavonoid accumulation and degradation. We studied leaf UV-A
absorbance of species composing the understorey plant community throughout two
growing seasons under five adjacent tree canopies in southern Finland. We compared the
relationship between leaf flavonol index (Iflav—repeatedly measured with an optical leaf clip
Dualex) and measured spectral irradiance, understorey and canopy phenology, air
temperature and snowpack variables, whole leaf flavonoid extracts, and leaf age.
Strong seasonal patterns and stand-related differences were apparent in Iflav of both
understorey plant communities and individual species, including divergent trends in Iflav
during spring and autumn. Comparing the heterogeneity of the understorey light
environment and its spectral composition in looking for potential drivers of seasonal
changes in Iflav, we found that unweighted UV-A irradiance, or the effective UV dose
calculated according to the biological spectral weighting function (BSWF) for plant growth
(PG action spectrum), in understorey shade had a strong relationship with Iflav.
Furthermore, understorey species seemed to adjust Iflav to low background diffuse
irradiance rather than infrequent high direct-beam irradiance in sunflecks during
summer, since leaves produced during or after canopy closure had low Iflav. In
conclusion, we found the level of epidermal flavonoids in forest understorey species to
be plastic, adjusting to climatic conditions, and differing according to species' leaf
retention strategy and new leaf production, all of which contribute to the seasonal
trends in leaf flavonoids found within forest stands.
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INTRODUCTION

Spectral irradiance changes in forest understoreys by season with
solar elevation angle and with canopy leaf-out, as incident solar
radiation is selectively absorbed in leaves (Grace, 1983; Endler,
1993). Furthermore, spectral regions penetrate differently
through forest canopies and differ in their contribution to
direct and diffuse radiation (Grant, 1997; Hertel et al., 2011;
Dengel et al., 2015). Spring-time changes in deciduous forest
canopies are well-known to affect the species in understorey
plant communities, which adjust to changing light conditions to
optimise their growth strategy and survival (Rothstein and Zak,
2001; Augspurger et al., 2017; Heberling et al., 2019). There is
ample evidence that plants can perceive and respond to changes
in the spectral composition of received irradiance in forest
understoreys (Smith, 1982; Valladares, 2003). However, most
research has focussed on the response of understorey plants to
photosynthetically active radiation (PAR, 400–700 nm), while
ultraviolet radiation (UV-B 280–315 nm, and UV-A 315–400 nm)
in forests has received less attention (Grant, 1997; Flint and
Caldwell, 1998; Grant et al., 2005). UV-B-induced responses in
plants often depend on the interplay between different spectral
regions, namelyPAR,UV-B, andUV-Aradiation, involved inhigh-
light acclimation and repair processes (Caldwell et al., 1994; Jansen
et al., 1998;Verdaguer et al., 2017).Historically,UV-Bradiationwas
perceived as a source of stress and research focused on experiments
exposing plants to high doses ofUV-B radiation, or studying plants
in environments with high UV-B radiation (Rozema et al., 1997;
Searles et al., 2001; Björn, 2015). However, our current
understanding of UV-A and UV-B radiation as triggers of
regulatory responses has shifted emphasis towards studying the
effects of realistic and lowUVdoses on plants (e.g. Kolb et al., 2001;
Hectors et al., 2007; Brelsford et al., 2019). These realistic UV
radiation conditions often act as eustress, stimulating responses and
possible cross-tolerance through mechanisms that are not yet well
elucidated (Hideg et al., 2013).

Plants are known to produce flavonoids and related phenolic
compounds in response to UV-B radiation (Searles et al., 2001).
Flavonoids are considered to have a diversity of functions,
including the potential to act as antioxidants in mesophyll cells
and reducing harmful effects of those reactive oxygen species
(ROS) produced under stress (Hernández et al., 2009; Agati and
Tattini, 2010). Furthermore, these compounds may act as a
selective filter in the leaf epidermis, attenuating most of the
incident UV radiation, preventing cellular damage within (Day
et al., 1993; Ålenius et al., 1995; Cockell and Knowland, 1999).
This feature is common among plant taxa (Robberecht et al.,
Abbreviations: BSWF, biological spectral weighting function; CI, confidence
interval; CWM, community weighted mean; DOY, day of the year; FLAV, UV
action spectrum for accumulation of flavonoids (Ibdah et al., 2002); GEN(G),
mathematical formulation of the generalised plant action spectrum (Green et al.,
1974); HCAs, hydroxycinnamic acid derivatives; Iflav, flavonol index measured
with an optical leaf clip Dualex Scientific+; LBS, Lammi biological station; PAI,
plant area index; PAR, photosynthetically active radiation, 400–700 nm; PG, UV
action spectrum for plant growth (Flint and Caldwell, 2003); UV-A, ultraviolet-A
radiation, 315–400 nm; UV-B, ultraviolet-B radiation, 280–315 nm.

Frontiers in Plant Science | www.frontiersin.org 2
1980; Day et al., 1992; Qi et al., 2010), but although high leaf
flavonoid content is typical of plants growing in high UV
radiation environments (Ziska et al., 1992; Rozema et al.,
1997), many studies have found no-more-than a weak
relationship between UV radiation and UV-screening or
associated flavonoids both in nature and under controlled
conditions (Liakoura et al., 2001; Nybakken et al., 2004b;
Barnes et al., 2016b). Furthermore, the accumulation of UV-
screening compounds can be induced in absence of UV radiation
by low temperature (Bilger et al., 2007) and by PAR in
developing leaves (Barnes et al., 2013). Their multiplicity of
roles complicates our interpretation of the relationship
between flavonoid induction and their function in complex
natural environments. Since flavonoids are a diverse metabolite
group (Harborne and Williams, 2000), many qualitative and
quantitative differences have been found, e.g. seasonally
(Liakoura et al., 2001; Kotilainen et al., 2010), with leaf
longevity (Semerdjieva et al., 2003), with leaf development
(Laitinen et al., 2002), and within same species grown under
differing environments (Comont et al., 2012; Castagna
et al., 2017).

Most studies have found UV-screening in plant species to
adjust to different environments (Krause et al., 2003; Nybakken
et al., 2004a) or to be flexible in short-term (i.e. diurnal changes)
(Barnes et al., 2008; Barnes et al., 2016a), but very few
experiments have tested the extent of plasticity within species.
However, where tested, a few species or populations have been
found to attain high constitutive UV absorbance varying little
with the environment (Ziska et al., 1992; Nybakken et al., 2004a).
Generally, we still lack knowledge of the mechanisms
underpinning variation in leaf UV absorbance among plant
species, and interactions with different environmental factors
that produce such variation in leaf epidermal flavonoids and
related phenolic compounds. Traditionally, UV-screening
studies had to rely on invasive techniques (Day et al., 1992;
Aphalo et al., 2012), but recent developments in optics-based
methods are now enabling repeated in vivo sampling by for
instance Dualex Scientific+ (Cerovic et al., 2012; FORCE-A,
Paris-Orsay, FR) which provides insight into long-term
seasonal trends in epidermal UV absorbance. The resulting
index representing leaf epidermal UV-A absorbance measured
with Dualex Scientific+ is ostensibly controlled by flavonoids,
with potential contribution from hydroxycinnamic acid
derivatives (HCAs) (Cerovic et al., 2005; Agati et al., 2008).

Many questions on the ecological role of UV responses
remain unanswered (Barnes, 2016c; Robson et al., 2019),
including how plant secondary metabolite responses
controlling UV absorbance may be modified by climatic and
environmental factors. This consideration is particularly relevant
for forest understorey species whose growth may be limited by
the light environment (Valladares, 2003; Heberling et al., 2019).
As canopy tree species is known to affect spectral irradiance in
the understorey (Canham et al., 1994; Hertel et al., 2011), we
aimed to account for this variation by including different forest
stands with contrasting evergreen and deciduous canopies, of
different ages in our study. To better understand the ecology of
February 2020 | Volume 10 | Article 1762
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understorey plant UV responses we investigated 1) how leaf
epidermal flavonoids change seasonally within and among
different understorey species; 2) whether changes in
understorey plants' epidermal flavonoids relate to changes in
spectral irradiance during spring and summer in different forest
stands; and 3) how other factors that are known to sometimes
interact with leaf flavonoid accumulation (e.g. the timing of leaf
and plant phenology; Table S1), affect seasonal trends in UV-A
absorbance. We focused on seasonal changes within the UV
region measured from forest understoreys i.e. the unweighted or
effective doses of UV radiation calculated according to different
biological spectral weighting functions (BSWF). To answer these
questions, we collected spectral irradiance data ranging from UV
radiation to near infrared radiation (280–900 nm), and optically
measured leaf epidermal UV-A absorbance i.e. Iflav from 35
understorey species over spring and summer.
MATERIALS AND METHODS

Experimental Design and Description of
the Site
Forest stands at Lammi Biological Station (LBS) (N 61°3'14.6”, E
25°2'13.8”) represent typical managed forests in Finland, but have
been left to grow naturally through the latter 20th century. Five
forest stands were chosen based on the canopy species, age, and
stand structure; three different aged deciduous Betula sp. L.
-dominated stands (henceforth: Betula old, young, and mixed
with other canopy species), one deciduousQuercus robur L. stand,
and one evergreen Picea abies (L.) H. Karst. stand. Detailed stand
characteristics are given in Table S2, and the Plant Area Index
(PAI) calculated from hemispherical photographs during spring
and summer 2015 are given in Figure 5 and Supplementary A3.
The Q. robur stand was planted in the 1950's, but was used in our
study due to our particular interest in canopies of different
architecture and phenology. All stands have understorey
vegetation reflecting their edaphic environment and are typical
of forests with these canopy species in Finland. Four
“measurement points” approximately equidistance between the
nearest trees were established in each stand. We considered this
the minimum number of replicate patches required to describe
small scale variation in irradiance (Hartikainen et al., 2018) and in
the plant community in each stand, while remaining feasible to
measure close to solar noon.

Over spring and summer of 2015, four to five repeated sets of
irradiance measurements and corresponding optical leaf trait
measurements were made at each measurement point. Over the
growing season of 2016, optical leaf trait measurements focussed
on six common understorey species in the same stands, beyond a
3-m radius from the measurement points. Daily temperature
(mean, max, min) and snowpack evolution data were recorded
by the LBS weather station managed by the Finnish
Meteorological Institute situated < 600 m from the forest
stands (Table S3). The seasons were defined as periods with
the mean daily air temperature continuously above 0°C (spring),
above +10°C (summer), below +10°C (autumn), or below 0°C
Frontiers in Plant Science | www.frontiersin.org 3
degrees (winter). The respective dates for the two sampling years
are given in Table S3.

Repeated Optical Leaf Trait
Measurements From Understorey Plants
The optical leaf measurements were made on all individual
plants (or possibly ramets) of understorey species growing
within a 3-m radius of the measurement points: ≥ four
individuals per species per measuring point where present.
Absorbance by flavonoids (flavonols in dicots and flavones in
monocots), anthocyanins, and leaf chlorophyll content, was
measured from the leaf adaxial side non-invasively with optical
leaf clip Dualex Scientific + (henceforth Dualex) during 2015. In
2016 measurements were made from both leaf sides (adaxial and
abaxial). Based on the relative change in chlorophyll
fluorescence, the Dualex obtains an index of UV-A absorbance
at 375 nm which lies within the tail of the flavonoid spectral
absorption peak (Cerovic et al., 2012). The three absorbance
indices were considered to be approximately linear compared to
the respective content within a leaf over the range of values
obtained (unpublished data). The measurements were done
around solar noon (approximately ± 3 hours) to exclude
potential major diurnal variation in UV absorbance by
flavonols and chloroplast movement (Williams et al., 2003;
Barnes et al., 2016a). Measurements were made on the first
distal mature leaf of the main stem, usually the 3rd or 4th leaf from
the top which was not shaded by other leaves. Further
measurements were made to compare this standard against
younger and older leaves, to record and account for changes
related to leaf age. These measurements were made in species
with overwintering leaves: Fragaria vesca L., Hepatica nobilis
Schreb., Oxalis acetosella L., Vaccinium vitis-idaea L., and in
summer green species: Campanula persicifolia L. and Convallaria
majalis L. Only visibly healthy leaves were measured to avoid
confounding results due to herbivory or other damage.
Understorey species abundances were recorded within a 3-m
radius of the measurement points, and species' phenology (i.e.
timing of emergence, leaf opening, flowering, seed production,
and senescence) was recorded at the stand level. Community
weighted means (CWM) for flavonol index (Iflav) were calculated
for each measurement point on each DOY, by multiplying
Dualex values by relative abundances of each species measured.

Comparison of Optically Measured Iflav
and Extracted Flavonoids
During the spring and summer of 2016, leaf samples of
understorey species were collected from two contrasting forest
stands, those with a Q. robur and P. abies canopies, to test the
relationship between the flavonoid content measured in intact
leaves using a Dualex and from leaf extracts using a
spectrophotometer. Spectrophotometric readings of extracted
flavonoids were taken from same leaves measured with the
Dualex in three prevalent understorey species: H. nobilis and
O. acetosella from the P. abies stand; Aegopodium podagraria L.
and C. majalis from theQ. robur stand, and Anemone nemorosa L.
from both stands. Fifteen individuals per species per stand were
February 2020 | Volume 10 | Article 1762
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sampled on five to six occasions. Dualexmeasurements were made
in themiddle sectionof the laminaof sampled leavesavoidingmajor
veins, prior to leaf-disk sampling.

Two leaf-disks from each leaf were punched (2 × 0.28 cm2

area) in situ directly into 3 ml of acidified methanol (99,9%
MeOH acidified with HCl 1:200). All samples were kept dark and
on ice in a cold box in the field during sampling and
subsequently at +6°C overnight. Extracts were analysed with a
spectrophotometer (Shimadzu UV-2501 PC UV-VIS, Kyoto,
Japan) recording absorption spectra from 190 to 900 nm using
a quartz cuvette and samples were diluted if necessary to keep
absorbance values ≤ 2. To test the relationship with Dualex
measurements four values were compared: absorbance at
375 nm, mean absorbance within the UV-B spectrum, UV-A
spectrum, and the whole UV (UV-B plus UV-A) spectrum.

Additional equivalent leaf-disks were taken to obtain fresh and
dry weights from the same leaves. These leaf-disks were kept in
sealed plastic bags in the cold and dark until weighing for fresh
weight shortly after sampling. Leaf-disk dryweightsweremeasured
after >24 hours drying at +50°C. The absorbance of leaf extracts
was normalised for sample volume and leaf fresh weight.

Irradiance Measurements Below
Forest Canopies
Solar spectral irradiance under the forest canopies was measured
with portable CCD array spectroradiometer Maya 2000 pro
(Ocean Optics, Dunedin, FL, USA) with D7-H-SMA cosine
diffuser (Bentham Instruments Ltd., Reading, UK) with
spectral range of 200–1100 nm. The spectrometer was
calibrated by Finnish Radiation and Nuclear Safety Authority
(Ylianttila et al., 2005; Aphalo et al., 2016; Aphalo, 2017) for
accurate outdoor solar radiation measurement from UV-B to
near-infrared radiation. The detailed measurement and post-
processing protocol used is described in Hartikainen et al. (2018).
The final replicate of irradiance readings from P. abies stand and
three measurement points from Betula young stand are missing,
since the fibre-optic cable to the diffuser broke.

All irradiance measurements were made within 3 hours of
peak solar irradiance at solar noon, under weather conditions that
were as close to clear sky as occurred at the field site each month
(Figure S1). To achieve measurements which encompassed the
range of variation in under-canopy irradiance, three sets of
measurements were made at each measurement point: 1) in a
sunfleck consisting mostly of direct radiation (Smith and Berry,
2013), 2) within an umbra (shade) of a tree trunk consisting of
diffuse radiation, and 3) at a point where radiation penetrated
through a canopy of leaves (henceforth understorey leaf position)
(Hartikainen et al., 2018).

Data Analyses
The stand-related differences in Iflav trends were compared by
inspecting any overlap between 95% confidence intervals (CI)
(Di Stefano, 2004; Martínez-Abraín, 2007) of loess-based fits
(obtained with R function “loess”) based on values from
individual plants and averages per measurement point. The
same approach was used to compare year-to-year consistency
of Iflav trends, species-specific patterns, and differences in trends
Frontiers in Plant Science | www.frontiersin.org 4
in spectral irradiance. Additionally, differences in Iflav, or in
CWMs of Iflav, between stands were tested using ANOVA for
each DOY. Likewise, ANOVAs were used to test for differences
in Iflav between different-aged leaves and species-specific patterns
in Iflav between stands. A two-sample Student's t-test or non-
parametric Wilcoxon test was used to test for differences between
Iflav of the adaxial and abaxial leaf sides. The same approach was
used to test for differences between Iflav of new spring leaves of
H. nobilis at their initial emergence and during summer, and
between Iflav of overwintered leaves at first and last measurement.

Weather station data were compared with Iflav from 2015 and
2016 to test whether temperature was an important driver of the
observed Iflav trend. To assess any differences between the two
consecutive years with respect to the spring onset of the growing
season, the following weather variables were calculated: days post
snowmelt in spring, days prior to first marked snowfall in winter,
days from beginning of thermal growing season, and the effective
temperature sum for a given DOY. The relationship of these
variables with mean Iflav was investigated through Pearson's
correlation. The relationship between leaf adaxial or abaxial Iflav
and minimum daily air temperature was investigated through
generalised additive mixed models (GAMMs, R package NLME,
Pinheiro et al., 2019). As all weather-related variables were co-
linear (Figure S2), we chose minimum air temperature as the
explanatory variable in the model based on its high negative
correlation with Iflav and the expected response of Iflav to low
temperatures. The relationship between different methods of
quantifying leaf flavonoids i.e. Dualex measurements vs. leaf
extracts, was investigated with Pearson's correlation and with
GAMM. Appropriate variance structures were assigned to the
species-specificmodels, allowing for residual spread to change for
different DOY (R function varIdent), over different values of the
explanatory variable (R function varFixed), or for both (R
function varComb), and a temporal correlation structure
(compound symmetry auto-correlation structure, R function
corCompSymm). Equivalent analyses to these were used to test
the relationship between mean Iflav and understorey spectral
irradiance (unweighted and BSWFs) in different understorey
positions (sunfleck, shade, leaf). Different variance structures
e.g. allowing for residual spread to change for different stands
(R function varIdent) and a temporal correlation structure (R
function corCompSymm) were tested. All data exploration and
analysis were performed in R version 3.5.2 (2018, The R
Foundation for Statistical Computing, Vienna, Austria). All
figures were created with R package ggplot2 (Wickham, 2016).
RESULTS

Repeated Optical Leaf Trait
Measurements From Understorey Plants
Seasonal Trends in Iflav From Plants in Forest Stands
Across Consecutive Years
The seasonal trend in Iflav with DOY was similar between
consecutive years, although Iflav was slightly higher in the
spring of 2015 than 2016 (non-overlapping CIs, Figure 1). This
trend differed among stands whereby understorey Iflav was clearly
February 2020 | Volume 10 | Article 1762
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FIGURE 1 | Trends in the leaf adaxial epidermal flavonol index (Iflav) from understorey species growing in total of five forest stands in two consecutive years. The
trend lines are given by a loess fit to the cloud of points for each year with 95% CI (grey band). Data from 2015 include all 35 understorey species at specific
measurement points, whereas data from 2016 comprise of six species growing across the whole of each stand. The vertical grey dotted lines indicate the
approximate beginning of summer and autumn with respective mean daily air temperatures continuously above +10°C degrees and subsequently below +10°C.
Restricting the data fitted by the smoother to the same time period and same species in both years did not affect the result. Further details of weather during the
sampling years are provided in Table S3.
FIGURE 2 | Leaf adaxial epidermal flavonol index (Iflav) from understorey species growing in five forest stands measured during spring and summer in 2015. A total
of 35 understorey species were present in different stands. The trend lines are given by a loess fit to the cloud of points for each stand with 95% CI (grey band).
Each point represents a measurement from an individual plant. The vertical grey dotted line indicates the approximate beginning of summer with respective mean
daily air temperatures continuously above +10°C degrees. Further details of weather during 2015 are provided in Table S3.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 10 | Article 17625
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lowest in the P. abies stand, whereas trends in Iflav were
indistinguishable among the three Betula stands with
considerable 95% CI overlap throughout spring and summer
(Figure 2, Table S4). These differences among stands held
whether comparing individual plants (Figure 2) or averages
across the measurement points (Figure S3), but were slightly
less distinct in 2016 than 2015 (Figure S4). The 2015 trend in
understorey Iflav from the Q. robur stand differed from all the
other stands, since Iflav declined there most gradually (from DOY
142–144 onwards) from its initial spring peak (Figure 2).
However, based on CI-overlap this difference was only evident
on a per plant basis in 2015, not from the measurement point
averages (Figure S3), or per plant basis in 2016 (Figure S4). The
understorey Iflav from each stand followed a similar time course:
initially high values on DOY 114 or 125 with a subsequent decline
to a minimum by DOY 202/206 in the deciduous stands, and by
DOY 156/157 in the P. abies stand (Figure 2, Table S4).

In addition to the seasonal trends, significant differences
among stands in understorey Iflav were identified on each
measurement date (Table S4). When only deciduous stands
were compared, these differences were less evident, but still
significant from DOY 125 onward (Table S4). Measurements
of six species extending late into the 2016 growing season to
DOY 292, revealed that the Iflav of two species with overwintering
leaves had no significant differences among stands by mid-July
(DOY 195–202) when Iflav reached its lowest values in the
deciduous stands, while in the autumn divergent trends in Iflav
among stands resembled those occurring in spring (Table S5).

The seasonal trend in Iflav remained similar irrespective of
whether the composition of the understorey plant community
was accounted for using simple averages, or as a CWMs
(Figure S5 and Table S4). However, stand-related differences
were less distinct as CWMs; whereby all stands were
indistinguishable at the beginning (DOY 114) and at the end
(DOY 202/206) of the 2015 measurement period (Table S4).
Furthermore, the difference between plants growing in the
Q. robur and Betula stands late in the spring was no longer
as evident when CWMs for Iflav were used (Figure S5: overlap
in 95% CIs, Table S4).

Seasonal Differences Between Adaxial and
Abaxial Iflav
The relationship between Iflav measured from the leaf adaxial and
abaxial sides varied seasonally in a species-specific manner
(Figure S6). In A. nemorosa and C. majalis Iflav on either leaf
side differed throughout the growing season, whereas in A.
podagraria this difference was only present during spring
(Figure S6). Furthermore, Iflav differed between leaf sides both
in spring and autumn in species with overwintering leaves, F.
vesca andH. nobilis, although not inO. acetosella which provided
the exception (Figure S6). Among those species where Iflav
differed according to leaf side, values for the adaxial side
typically increased in spring, autumn, or both, and were higher
than those of the abaxial side with a few exceptions at low Iflav
values in F. vesca (Figure S6).
Frontiers in Plant Science | www.frontiersin.org 6
Effect of the Weather in Consecutive Years on
Seasonal Changes in Iflav
Over 2015 Iflav correlated negatively (r = −0.66) with variables
describing progression through the growing season (days prior to
winter snowfall, days post spring snowmelt, days from the
beginning of thermal growing season), while its relationship
with minimum daily air temperature was weaker (r = −0.59)
(Table S6). On the contrary, over 2016 Iflav correlated best with
minimum daily air temperature (r = −0.41) (Table S6). In
comparison to 2015, the relationships between Iflav and other
weather-related variables were weaker in 2016 (Table S6). The
model combining both years with minimum air temperature as
explanatory variable only poorly explained changes in Iflav on
both leaf sides (R2 -values: 0.47; 0.33 for models with adaxial and
abaxial Iflav respectively) (Supplementary A2 and Figure S2).

Understorey Species-Specific Patterns
in Iflav
In both years, Iflav differed significantly among species within
each stand on each DOY (p < 0.001 in each case) with only two
exceptions (in the Betula old stand in 2016: on DOY 131 p = 0.07,
on DOY 141 p = 0.045). The trends in Iflav for five abundant
understorey species in 2015 are highlighted in Figure 3. Of these
species, A. podagraria and Filipendula ulmaria (L.) Maxim.
followed similar patterns to the general trend described above.
Although there were stand-specific differences in Iflav in these
two species, this seasonal pattern was consistent across all stands
where they were measured (Figure 3 and Table S7). There were
also stand-related differences in Iflav trends in A. nemorosa,
which had lowest Iflav values in the P. abies stand, and distinct
trend in the Q. robur stand compared with the Betula stands
from DOY 142–144 onward (Figure 3: no overlap in 95% CIs,
Table S7). C. majalis was the last of the five understorey species
to emerge in spring, and its Iflav attained modest values compared
to other species (Figure 3 and Table S7). New leaves of O.
acetosella were produced later (around DOY 125) in the Q. robur
stand than in the other stands, with only a minor increase in Iflav
throughout summer (Figure 3 and Table S7), thus creating a
very different time-course pattern compared to the same species
growing elsewhere. Species-specific patterns mostly held in the
following year, although more frequent measurements revealed
some additional differences during autumn in species with
overwintering leaves (Figure S7).

Relating Leaf Retention Strategy and Leaf
Age to Iflav
The Iflav differed between concurrently measured leaves of
different ages (Table S8). This was based on the comparison of
two summer green species (Table S8). Furthermore, differences
in the phenology of the four species with overwintering leaves
affected species-specific patterns in Iflav related to the timing of
leaf production, because new leaves produced after the start of
the growing season had significantly lower Iflav values than
mature leaves measured on the same dates (Table S8 and
Figure S8). A lower Iflav in new leaves was found both among
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species producing a distinct cohort of new leaves once during the
growing season (i.e. H. nobilis), and those species producing new
leaves throughout the growing season (i.e. F. vesca) (Table S8).
Similarly, when Iflav of different aged leaves of H. nobilis was
compared during 2016 in four stands, old and new spring leaves
were significantly different (p < 0.01 each time) throughout
spring until the senescence of old leaves (DOY 133–166),
excluding initial emergence of new leaves in the two stands
where no difference was found (data not shown). Further tests of
different aged leaves from this species revealed that Iflav changes
within young spring leaves were largely responsible for the
species' average seasonal decline (Table S9). On the contrary,
the Iflav of the overwintered leaves did not differ during spring in
two stands, and only in overwintering leaves from Q. robur stand
Iflav declined during spring (Table S9).

Comparison of Optically Measured Iflav
and Extracted Flavonoids
The Iflav measured at 375 nm by Dualex, had a stronger
relationship with the absorbance of leaf-disk extracts when
mean absorbance over the spectral regions of UV-B, UV-A or
the entire UV spectrum was used than it did with absorbance of
extracts at 375 nm (Table S10). There were species-specific
differences in the strength of this relationship which was
stronger in general for A. nemorosa and H. nobilis than for C.
majalis (Table S10). The best selected species-specific GAMMs
or GLS for A. podagraria, C. majalis, and O. acetosella used mean
absorbance of extracts over the UV-B region as the explanatory
variable, while for A. nemorosa and H. nobilis mean absorbance
Frontiers in Plant Science | www.frontiersin.org 7
of extracts over UV-A region gave the best fits (all details in
Supplementary A2). However, the highest peak in absorbance in
the UV spectrum was at ~330 nm throughout the spring and
summer season for A. podagraria, A. nemorosa, and H. nobilis,
but this peak was not as distinctive in O. acetosella and C. majalis
(Figure S9).

There were seasonal differences in the relationship between Iflav
and flavonoid extracts over spring and summer (Supplementary
A2, Figure S9). The modest initial early-season peak on DOY 125
in Iflav, found in all species but C. majalis on that date, was only
visible in extracts of H. nobilis and A. nemorosa from the P. abies
stand (Table S10, Supplementary A2). Despite these
inconsistencies, both methods revealed differences in flavonoids
between A. nemorosa growing in those stands with contrasting
light environments (Table S11); which we used to verify the
reliability of these approaches.

Irradiance Measurements Below
Forest Canopies
In general, the irradiance in understorey sunflecks was more
variable across the measured spectrum than irradiance in
understorey shade or in the leaf position (Table 1, Figure S10,
Table S12). Our previous analysis (Hartikainen et al., 2018)
found that the shape of the spectra persisted in sunflecks among
stands and through the spring and summer season, which
suggests this variation stemmed from differences in the size of
the sunflecks. The time-course changes within each spectral
region differed among the stands, especially in understorey
shade, and in particular trends from the P. abies stand differed
FIGURE 3 | Trends in leaf epidermal flavonol index (Iflav) from five understorey species (A. podagraria, A. nemorosa, C. majalis, F. ulmaria, and O. acetosella)
measured on five occasions during spring and summer 2015. The trend lines are given by loess fits to the cloud of points for each stand with 95% CI (grey band).
The vertical grey dotted lines indicate the approximate beginning of summer with respective mean daily air temperatures continuously above +10°C degrees. Further
details of weather during 2015 are provided in Table S3.
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from all the other stands both in shade and in sunflecks (Figure 4
and Figure S10: non-overlapping CIs in early spring). Time-
course changes in irradiance in the P. abies stand mainly
reflected its noticeably higher plant area index (PAI) early in
the growing season in comparison to other stands, and
seasonal differences in solar elevation angle (Figures 4 and 5
and Figure S10).
Frontiers in Plant Science | www.frontiersin.org 8
Otherwise, the UV irradiance trend in shade in the Q. robur
stand differed from the three Betula stands, whereby UV irradiance
was higher on DOY 142/144 in the Q. robur stand (Figure 4 and
Figure S10: non-overlapping CIs on DOY 142/144). However,
unlike trends in UV irradiance, no differences in PAR were found
between the Q. robur and Betula stands (Table 1 and Figure S10).
Time-course changes in irradiance from the Q. robur stand partly
TABLE 1 | Mean (± SE) PAR, UV-B, and UV-A photon irradiance (µmol m−2 s−1) and effective UV dose (µmol m−2 s−1) calculated according to biological spectral
weighting function for plant growth (PG action spectrum, ) measured in understorey sunflecks, shade and leaf positions, where leaf position refers to radiation that is
transmitted through the canopy of leaves. Open reference measurements were taken in an open field area well outside the forest.

Stand DOY PAR (PPFD) ± SE UV-B ± SE UV-A ± SE PG ± SE

Sunfleck Leaf
position

Shade Sunfleck Leaf
position

Shade Sunfleck Leaf
position

Shade Sunfleck Leaf
position

Shade

Betula old 115 882.01 ±
131.97

144.05 ±
8.16

0.60 ±
0.04

0.336 ±
0.005

61.33 ±
6.83

22.47 ±
0.19

1.071 ±
0.110

0.430 ±
0.003

Betula old 142/
144

729.89 ±
205.98

391.82 ±
42.71

85.15 ±
4.75

0.58 ±
0.10

0.43 ±
0.03

0.259 ±
0.013

50.04 ±
11.32

31.41 ±
2.41

14.03 ±
0.46

0.882 ±
0.190

0.577 ±
0.041

0.279 ±
0.010

Betula old 156 1269.03 ±
88.25

627.18 ±
209.19

49.07 ±
4.58

0.89 ±
0.23

0.59 ±
0.16

0.166 ±
0.012

80.87 ±
6.22

43.36 ±
13.01

7.79 ±
0.48

1.418 ±
0.132

0.778 ±
0.229

0.157 ±
0.010

Betula old 202 286.61 ±
64.48

149.75 ±
37.14

17.30 ±
2.26

0.23 ±
0.05

0.19 ±
0.03

0.064 ±
0.014

19.09 ±
3.60

11.61 ±
2.13

3.10 ±
0.54

0.338 ±
0.062

0.219 ±
0.038

0.062 ±
0.011

Betula
mixed

115 519.80 ±
91.63

161.81 ±
10.68

0.44 ±
0.06

0.294 ±
0.007

40.58 ±
5.13

20.94 ±
0.43

0.723 ±
0.089

0.395 ±
0.006

Betula
mixed

142/
144

380.77 ±
102.47

97.63 ±
18.63

54.46 ±
1.63

0.27 ±
0.04

0.13 ±
0.02

0.118 ±
0.016

25.40 ±
5.09

10.08 ±
1.51

7.86 ±
0.61

0.445 ±
0.083

0.187 ±
0.027

0.151 ±
0.013

Betula
mixed

156 570.20 ±
225.01

170.23 ±
22.51

32.31 ±
7.94

0.44 ±
0.17

0.15 ±
0.01

0.049 ±
0.007

35.51 ±
13.60

11.89 ±
1.10

3.25 ±
0.53

0.627 ±
0.242

0.210 ±
0.018

0.061 ±
0.009

Betula
mixed

202 113.80 ±
24.17

17.19 ±
9.65

4.70 ±
0.37

0.06 ±
0.01

0.01 ±
0.01

0.005 ±
0.003

6.46 ±
1.27

1.23 ±
0.59

0.65 ±
0.12

0.109 ±
0.022

0.021 ±
0.010

0.012 ±
0.002

Betula
young

115 963.39 ±
114.98

206.41 ±
22.73

0.78 ±
0.05

0.416 ±
0.008

68.98 ±
6.35

26.10 ±
1.07

1.222 ±
0.105

0.500 ±
0.016

Betula
young

142/
144

1043.08 ±
71.90

557.49 ±
105.01

111.83 ±
2.29

0.88 ±
0.04

0.55 ±
0.09

0.236 ±
0.017

68.66 ±
4.25

40.17 ±
6.41

13.55 ±
0.22

1.225 ±
0.070

0.728 ±
0.115

0.262 ±
0.006

Betula
young

156 746.76 ±
98.06

199.24 ±
65.62

40.21 ±
3.03

0.47 ±
0.04

0.20 ±
0.03

0.105 ±
0.004

46.37 ±
5.32

15.07 ±
3.52

6.00 ±
0.14

0.795 ±
0.088

0.274 ±
0.058

0.118 ±
0.002

Betula
young

202 814.06 140.86 38.74 0.43 0.03 0.076 49.53 9.33 5.01 0.835 ±
0.000

0.156 ±
0.000

0.093

Picea
abies

115 86.42 ±
26.51

20.36 ±
3.11

0.06 ±
0.01

0.040 ±
0.006

6.53 ±
1.58

2.86 ±
0.34

0.114 ±
0.026

0.054 ±
0.007

Picea
abies

142/
144

521.44 ±
75.47

324.60 ±
63.03

29.90 ±
3.77

0.34 ±
0.04

0.16 ±
0.05

0.044 ±
0.005

32.76 ±
4.55

20.84 ±
3.47

3.43 ±
0.19

0.565 ±
0.077

0.353 ±
0.058

0.063 ±
0.004

Picea
abies

156 871.34 ±
128.67

112.52 ±
56.49

17.61 ±
7.66

0.53 ±
0.07

0.07 ±
0.01

0.033 ±
0.009

52.84 ±
7.20

8.25 ±
3.36

2.68 ±
0.30

0.927 ±
0.113

0.142 ±
0.054

0.050 ±
0.004

Picea
abies

202

Quercus
robur

115 1095.77 ±
107.79

190.61 ±
21.70

0.72 ±
0.11

0.319 ±
0.044

74.85 ±
6.41

24.79 ±
1.35

1.301 ±
0.107

0.464 ±
0.026

Quercus
robur

142/
144

1049.05 ±
134.73

93.13 ±
4.15

0.99 ±
0.11

0.423 ±
0.026

76.37 ±
8.41

19.69 ±
1.14

1.371 ±
0.150

0.403 ±
0.024

Quercus
robur

156 756.19 ±
114.37

304.50 ±
117.60

51.45 ±
2.99

0.46 ±
0.05

0.26 ±
0.07

0.127 ±
0.014

46.81 ±
6.20

21.78 ±
7.15

7.32 ±
0.63

0.806 ±
0.104

0.389 ±
0.121

0.144 ±
0.013

Quercus
robur

202 561.53 ±
31.00

207.29 ±
58.54

19.69 ±
0.46

0.47 ±
0.04

0.19 ±
0.05

0.074 ±
0.005

35.39 ±
2.10

14.51 ±
3.77

3.30 ±
0.14

0.625 ±
0.039

0.259 ±
0.067

0.066 ±
0.003

Open Open Open Open
Open 115 1348.59 ± 103.64 1.20 ± 0.07 104.64 ± 5.78 0.095 ± 1.869
Open 142/

144
1515.90 ± 153.71 1.54 ± 0.26 120.69 ± 12.78 0.247 ± 2.179

Open 156 1477.38 ± 134.60 1.76 ± 0.32 121.44 ± 11.55 0.240 ± 2.238
Open 202 1320.42 ± 136.20 1.64 ± 0.41 108.03 ± 12.73 0.277 ± 1.994
Februar
y 2020 | Vo
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No standard error of the mean is provided for Betula young and no data is provided for Picea abies stands on DOY 202 since the spectroradiometer fibre optic cable broke after first
measurement set from Betula young stand. Otherwise measurements come from 4 measurement points in each stand.
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stemmed from its delayed canopy phenology compared with that
of Betula (Figure S10 and Figure 5), albeit this difference was not
as distinctly reflected in PAI as it was in sunfleck duration and
surveyed phenology (Figure 5 and Figure S11).
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Relating Understorey Iflav and Understorey
Spectral Irradiance
There was a strong positive relationship between mean Iflav and
spectral irradiance measured in understorey shade (Table 2 and
FIGURE 4 | Mean (± SE) of unweighted UV-B irradiance (µmol m−2 s−1) in understorey shade by DOY in five studied stands differing in canopy composition
(deciduous Betula old, mixed and young; evergreen Picea abies; deciduous Quercus robur) measured during spring and summer, 2015. Measurements were made
with a calibrated array spectroradiometer connected via a fibre-optic cable to a levelled cosine diffuser. The trend lines are given by a loess fit for each stand with
95% CI (grey band). The vertical grey dotted lines indicate the approximate beginning of summer with respective mean daily air temperatures continuously above
+10°C degrees. Further details of weather during 2015 are provided in Table S3.
FIGURE 5 | Mean (± SE) sunfleck duration in minutes for each measurement day (black) and corresponding Plant Area Index, m2 m−2 (light grey) in five different
stands (deciduous Betula old, mixed and young; evergreen Picea abies; deciduous Quercus robur) during spring and summer 2015. The data were acquired from
hemispherical photographs and all details of the calculation protocol are provided in Supplementary A3. The vertical grey dotted lines indicate the approximate
beginning of summer with respective mean daily air temperatures continuously above +10°C degrees.
February 2020 | Volume 10 | Article 1762
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Supplementary A2). On the contrary, the relationship between
Iflav and spectral irradiance measured in sunflecks or in leaf
position was mostly weak or non-significant, except for stronger
relationship found from the Betula stands between Iflav and R:
FR-ratio measured in sunflecks (Table 2 and Supplementary A2).
However, stand-related differences conditioned these relationships;
particularly for the P. abies stand where spectral irradiance in
sunflecks was strongly negatively correlated with Iflav (Table 2).
In understorey shade, of all but the Q. robur and Betula
young stands, a positive linear relationship gave a good fit
between different spectral regions and mean Iflav (Figure 6 and
Supplementary A2).
Frontiers in Plant Science | www.frontiersin.org 10
The best selected models used unweighted UV-A irradiation
or the effective UV dose calculated according to BSWF for plant
growth (PG action spectrum, Flint and Caldwell, 2003) which
spans the UV-B and UV-A regions, as explanatory variables for
the changes in Iflav in understorey shade (all details in
Supplementary A2 and Table 2). Model testing for
understorey sunflecks gave similar results to shade, except for
the P. abies stand where contrary to all other stands there was a
negative relationship between Iflav and spectral irradiance in
sunflecks (Table 2 and Supplementary A2). Testing several
models with co-linear explanatory variables can lead to error
propagation, so these results should be treated with caution, and
the relationships do not imply causation.
DISCUSSION

Does UV Radiation Explain the Trends
in Iflav?
We found clear stand-related differences in Iflav of understorey
plants, which were the result of intraspecific and to a lesser extent
interspecific differences among the plant communities in these
contrasting stands. In species with overwintering leaves, this
stand-level divergence was also evident in autumn. Furthermore,
we found a seasonal trend in Iflav of understorey plants which was
consistent among the stands, and which persisted over two
consecutive years despite their differing spring weather. All
these trends point towards a strong role for environmental
factors driving the differences in Iflav especially during spring
and autumn. Stand-related trends in Iflav were related to spectral
irradiance in deciduous stands, particularly to effective UV dose
calculated according to BSWF for plant growth (PG) and
unweighted UV-A, measured in understorey shade. However,
the seasonally higher values of Iflav found during early spring in
plants growing in the evergreen P. abies stand were not related to
spectral irradiance in spring. We might have expected seasonal
changes in Iflav to have correlated better with UV-B than UV-A
radiation, since seasonal variation in UV-B is more pronounced
than that of UV-A (Verdaguer et al., 2017), but this was not the
case. Our results resemble the seasonal trend in flavonoids from
unshaded leaves of Betula pubescens trees growing in Finland, in
which high early season values could not be explained by UV
radiation alone (Kotilainen et al., 2010). Likewise, flavonoid-
glycosides from leaves of B. pubescens subsp. czerepanovii
growing close to the treeline followed a seasonal time-course
from bud burst to senescence (Riipi et al., 2002). Similarly,
seasonal changes in the short-term accumulation of flavonoids
in Arabidopsis were also found to persist even when UV was
attenuated (Coffey et al., 2017). The trends reported in these
studies and ours all point to other environmental factors or
developmental processes that co-vary seasonally with UV
radiation also being implicated in driving trends in flavonoids
(Liakoura et al., 2001; Kotilainen et al., 2010; Nenadis et al., 2015;
Coffey and Jansen, 2019). In the next sections we try to
disentangle these possible mechanisms affecting epidermal UV
absorbance and flavonoid accumulation seasonally.
TABLE 2 | The relationship between flavonol index (Iflav) and spectral irradiance
(µmol m−2 s−1) or effective UV dose calculated according to different spectral
weighting functions in different understorey positions.

Stand Spectral
region

Sunfleck Leaf position Shade

r Sig.
level

r Sig.
level

r Sig.
level

Betula old UV-B 0.21 NS 0.41 NS 0.94 ***
UV-A 0.37 NS 0.40 NS 0.96 ***
PAR 0.29 NS 0.31 NS 0.96 ***
FLAV† 0.29 NS 0.44 NS 0.95 ***
PG‡ 0.37 NS 0.42 NS 0.96 ***
GEN(G)§ 0.05 NS 0.37 NS 0.89 ***
R:FR¶ 0.61 * 0.62 * 0.94 ***

Betula
mixed

UV-B 0.50 * 0.51 NS 0.91 ***

UV-A 0.57 * 0.51 NS 0.92 ***
PAR 0.42 NS 0.28 NS 0.91 ***
FLAV† 0.55 * 0.57 NS 0.91 ***
PG‡ 0.57 * 0.54 NS 0.91 ***
GEN(G)§ 0.36 NS 0.39 NS 0.88 ***
R:FR¶ 0.63 ** 0.28 NS 0.92 ***

Betula
young

UV-B 0.50 NS 0.69 * 0.77 **

UV-A 0.38 NS 0.60 NS 0.82 ***
PAR 0.18 NS 0.53 NS 0.86 ***
FLAV† 0.51 NS 0.68 * 0.78 **
PG‡ 0.43 NS 0.62 NS 0.81 ***
GEN(G)§ 0.48 NS 0.70 * 0.70 **
R:FR¶ 0.56 * 0.47 NS 0.76 **

Picea abies UV-B -0.83 ** 0.32 NS 0.25 NS
UV-A -0.88 *** 0.48 NS 0.02 NS
PAR -0.87 *** 0.46 NS -0.02 NS
FLAV† -0.80 ** 0.43 NS 0.22 NS
PG‡ -0.88 *** 0.48 NS 0.08 NS
GEN(G)§ -0.47 NS 0.23 NS 0.23 NS
R:FR¶ -0.81 ** 0.32 NS 0.30 NS

Quercus
robur

UV-B 0.49 NS 0.56 NS 0.63 **

UV-A 0.67 ** 0.57 NS 0.65 **
PAR 0.63 ** 0.51 NS 0.51 *
FLAV† 0.58 * 0.60 NS 0.67 **
PG‡ 0.66 ** 0.58 NS 0.67 **
GEN(G)§ 0.34 NS 0.55 NS 0.53 *
R:FR¶ 0.44 NS 0.32 NS 0.61 *
n = 16, significance levels: * <0.05, **≤0.01, ***≤0.001. Effective doses (µmol m−2 s−1)
calculated according to biological spectral weighting functions for (†) flavonoid accumulation
[FLAV action spectrum, (Ibdah et al., 2002)], for (‡) plant growth [PG action spectrum, (Flint
and Caldwell, 2003)] and for (§) mathematical formulation for generalised plant action
spectrum [GEN(G), (Green et al., 1974)]. The red:far-red photon ratio (¶) was calculated
according to Sellaro et al. (2010).
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Potential Interactions of Seasonal
Changes in Temperature and Solar
Radiation With Trends in Iflav
The seasonal Iflav trend for higher values in spring and autumn, is
likely partly explained by low temperatures experienced by
understorey species in these periods. Our Iflav trends resembled
the seasonal patterns in flavonoids attributed to temperature in
an outdoor experiment attenuating UV radiation from different
Arabidopsis accessions and genotypes (Coffey et al., 2017; Coffey
and Jansen, 2019). Earlier studies have found changes in
epidermal UV-transmittance at moderate temperatures ranging
from + 9 to 21°C (Bilger et al., 2007), which likely falls within the
range of summertime fluctuations in the stands we studied (e.g.
in 2016 on DOY 166: +5.2–19.8°C outside the forest). However,
we did not find that Iflav increased with low summer air
temperatures (Figure S12) and likewise the minimum air
temperature on measurement days had poor explanatory value
in our data both for seasonal changes in adaxial and abaxial Iflav
(Supplementary A2). Low temperature-enhanced flavonol
synthesis is dependent on light (Bhatia et al., 2018), and although
this could have relevance especially in high latitudes with extended
daylight hours during summer, it seems unlikely to be the only
mechanism producing the differences in Iflav between adaxial and
abaxial leaf sides that we found (Figure S6). A combination of harsh
environmental conditions, including excessive irradiance and low
temperatures during early spring, could feasibly explain the trends
in Iflav, as reported for partially exposed plants compared to those
under snowpack in winter (Solanki et al., 2019). This implies that
differences in snow cover and winter PAI between the stands in our
Frontiers in Plant Science | www.frontiersin.org 11
study might to some extent explain early spring stand-level
differences in Iflav.

Understorey Species-Specific
Patterns in Iflav
Interspecific differences in Iflav among understorey species were
significant throughout the season, and variation in Iflav was
found in early spring species as well as in later emerging
species, whereby most later emerging species did have low Iflav
values, but not necessarily lower than other understorey species
in a stand on the same DOY. We found seasonal patterns and
plasticity in both species with summer green and overwintering
leaves, although Iflav and leafflavonoid values remained relatively
high in H. nobilis meaning that its seasonal or stand-related
trends were not as drastic as those of most summer green species
(Figures S7 and S9). Even so, the high early spring Iflav values of
understorey plants found in the P. abies stand may be partly
attributed to species composition, whereby the P. abies stand had
a higher proportion of species with overwintering leaves
compared to other stands. Similarly, the differences between
Iflav of plants growing in the Betula and Q. robur stands were no
longer evident when expressed as CWMs, potentially because of
understorey species with differing phenological strategies
growing in these stands.

Differences in the phenolic profiles of understorey species
probably partly explain the species-specific relationships between
Iflav and mean absorbance of flavonoid extracts in the UV-A and
UV-B region, and some of the seasonal heterogeneity in this
relationship (Supplementary A2). Quantitative measures of total
FIGURE 6 | The relationship between mean adaxial flavonol index (Iflav) and unweighted UV-A irradiance in understorey shade in five different stands (deciduous
Betula old, mixed and young; evergreen Picea abies; deciduous Quercus robur) studied during spring and summer 2015. The trend lines are given by a loess fit to
the cloud of points with 95% CI (grey band). The degree of smoothing is adjusted for each stand (the default value for parameter a = 1, except in Betula mixed a = 2
and in Betula young a = 1.1). Different coloured points represent measurements made on different DOYs.
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flavonoids often do not reflect qualitative compositional changes
(Markham et al., 1998; Stark et al., 2008) which can be
functionally meaningful. Furthermore, UV-B -screening was
found to be consistent compared to UV-A -screening across
multiple species (Robberecht et al., 1980), and within both sun
and shade leaves (Liakoura et al., 2003) which might relate to
qualitative differences. Nevertheless, the seasonal dynamics in
Iflav that we report, resembling for instance those of trees
(Kotilainen et al., 2010), indicates that qualitative differences
alone did not explain species-specific trends in Iflav through the
growing season.

Understorey Species-Specific Differences
Between Adaxial and Abaxial Iflav
The relationship between Iflav from the leaf adaxial and abaxial
side changed seasonally in a species-specific manner (Figure S6).
The greatest differences between leaf sides were during spring and
autumn, suggesting that flavonols located in the epidermis (and
possibly immediate subepidermal cells) were primarily
responsible for the high Iflav during spring, and in autumn for
species with overwintering leaves. In contrast, during summer Iflav
was low and no differences were detected between leaf sides.
However, the stronger correlation in most species between
flavonoid extracts and Iflav during this period, compared to early
spring, indicates that in summer epidermal flavonoids (though
low) contributed a large proportion of the whole leaf soluble
flavonoid content (Table S10 and Supplementary A2). In some
circumstances epidermal flavonoids can represent only a small
fraction of the whole leaf flavonoids (Csepregi et al., 2019), while
in others they can be a major constituent (e.g. Burchard et al.,
2000; Bilger et al., 2007). One potential explanation for the
seasonally variable relationship that we found between Iflav and
flavonoid extracts (e.g. inA. podagrariaduring early spring) is that
the proportion of the whole leaf flavonoid pool found in the
adaxial epidermis changes seasonally. Such a pattern could be
created by e.g. flavonoid relocation within the leaf tissue,
conformational changes (Barnes et al., 2008; Julkunen-Tiitto
et al., 2015) or differing proportions of insoluble phenolics
(Semerdjieva et al., 2003). The species-specific differences in Iflav
of leaf adaxial and abaxial sides may also stem from anatomical
differences, e.g.O. acetosellawhichmostly had similar Iflav on both
leaf sides, has thin leaves and convex epidermal cells focusing
direct light to mesophyll (Myers et al., 1994).

Effects of Leaf Retention Strategy, Leaf
Age, and Climatic Factors on Trends in Iflav
We found that the seasonal trend for decreasing Iflav in summer
persisted both when comparing leaves of different ages and leaves
of standardised age (Table S8 and Figure 2). Although many
leaves of summer green species were still immature at the very
beginning of the sampling period and leaf age has been found to
affect flavonoids in some species (Liakoura et al., 2001; Laitinen
et al., 2002), this did not appear to distort our results. Similarly,
although in the autumn some old leaves of A. podagraria and
H. nobilis became damaged with age, which could affect the Iflav,
on testing we did not find this to have any major effect on Iflav.
Frontiers in Plant Science | www.frontiersin.org 12
Overwintering leaves of V. vitis-idaea maintained high Iflav until
new leaves with significantly lower Iflav were produced (DOY
156/157). Therefore, during spring the relatively large differences
between stands in Iflav of V. vitis-idaea mainly derived from old
leaves (Figure S8). Hence, while leaf age was an important
contributor to the seasonal trend in Iflav, the flavonoid content
of leaves was responsive to the prevailing environment either
mainly during leaf development, or throughout leaf lifespan.
Seasonal variation in flavonoids and related phenolics have
sometimes been attributed to leaf surface features such as
pubescent or glabrous leaves, changing with leaf age e.g. in
some Mediterranean species (Liakoura et al., 2001). Among the
species we surveyed, leaf characteristics may vary, and for
instance the overwintering leaves of F. vesca have more leaf
hairs than leaves produced during summer (Åström et al., 2015).
However, the consistent seasonal Iflav trend we found from
species with varying leaf phenology (e.g. continuous leaf
production during spring and summer) suggests that leaf
morphological features contributed little to these seasonal
trends in leaf flavonoids.

The rate of accumulation of leaf flavonoids often varies over a
period of a few days to over a week in response to UV-B radiation
(Sullivan et al., 2007; Hectors et al., 2014), but far less is known
about the rate of their down-regulation or degradation (Olsen
et al., 2009). The noticeable late spring decline in Iflav that we
report may be partly related to leaf production and the
subsequent acclimation of new leaves or individuals to their
environment according to their prevailing conditions (e.g.
temperature, spectral irradiance, canopy closure). However, the
significant differences in Iflav between spring and summer (>20
days) among new spring leaves of H. nobilis, suggests down-
regulation or degradation of flavonoids within a same leaf or
individual in this species (Table S9).

Effect of Transient Light in the
Understorey on Trends in Iflav
Mature leaves acclimated to low irradiance can increase their
UV-screening when exposed to high irradiance (Barnes et al.,
2013; Talhouët et al., 2019), as might happen after canopy leaf
fall, compounded by temperature fluctuations, in our deciduous
stands. In comparison, leaves acclimated to high irradiance
conditions are often found to maintain high UV-screening
across various species in nature (Krause et al., 2003; Liakoura
et al., 2003), or even when plants acclimated to high irradiance
are transferred to conditions with low irradiance (Barnes et al.,
2013). This along with our results implies that any damage
induced by infrequent high irradiance from sunflecks or
sunpatches after canopy closure may be ameliorated by the
activation of photoprotection mechanisms independent of
flavonoid accumulation. Supporting this assertion, in the
evergreen P. abies stand the effective UV dose calculated from
the spectral irradiance in sunflecks according to BSWF for
flavonoid accumulation (Ibdah et al., 2002) indicated a trend
of increasing flavonoids towards the highest mid-summer
irradiance (Figure S10). Although this result is expected in the
evergreen stand where understorey irradiance is mostly defined
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by seasonal changes in solar elevation angle, this increasing trend
was the opposite of the decreasing trend in Iflav we recorded. It is
noteworthy that many brief or less intense sunflecks than those
we measured pass through the understorey, and that after canopy
closure a larger proportion of the sunflecks will be penumbral
compared to direct beam radiation (Chazdon and Pearcy, 1991;
Smith and Berry, 2013). Furthermore, overcast weather decreases
the occurrence of direct-beam radiation sunflecks in the
understorey (Way and Pearcy, 2012). Many plant physiological
and morphological features under a closed canopy understorey
are acclimated to shaded conditions (Pearcy and Sims, 1994),
and more rapid high-light response mechanisms e.g. chloroplast
relocation (Williams et al., 2003; Way and Pearcy, 2012) or nastic
movement as in O. acetosella (Kumke, 1982) may be used during
sunflecks to adjust to transient high irradiance. A combination of
these explanations could explain why Iflav seems not to be
adjusted to high irradiance in sunflecks during summer in the
understorey species we studied. However, since seasonal
variation in Iflav was consistent among understorey plant
communities, it seems their level of flavonoids was sufficient to
minimise damaging effects of high spectral irradiance, or at least
that lower flavonoids during summer did not result in a
significant trade-off increasing photodamage and repair, and in
turn reducing fitness. In line with this, previous studies suggest
plants rarely experience severe damage due to UV-B radiation in
nature (Paul and Gwynn-Jones, 2003). Furthermore, low UV
radiation might provide cross-tolerance to high UV-B radiation
(Hideg et al., 2013; Coffey et al., 2017), or high solar irradiance in
general (Klem et al., 2015), which might be beneficial during
infrequent high irradiance sunflecks or sunpatches.
CONCLUSIONS

We found that consistent seasonal trends and stand-related
differences in the epidermal UV-A absorbance of understorey
species, reflected climatic conditions, species leaf retention
strategy, and new leaf production. Furthermore, we found that
understorey plants adjust their epidermal flavonoids to low
background shade irradiance compared to infrequent high
direct irradiance in sunflecks after canopy closure during
summer. Climate change is expected to: 1) affect phenology by
extending deciduous canopy cover, hence potentially negatively
affecting carbon gain of some understorey plants, and 2) increase
the probability of frost damage because of reduced snow cover
during winter. In the context of our results, these two effects
would result in reduced investment in photoprotective secondary
Frontiers in Plant Science | www.frontiersin.org 13
metabolites, such as leaf flavonoids, among understorey species
with summer green leaves, but increasing allocation to
flavonoids, especially during autumn and winter, in species
with overwintering leaves.
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