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Interaction between tannins and
fungal necromass stabilizes
fungal residues in boreal forest
soils

Introduction

Boreal forest ecosystems store significant amounts of the global
carbon (C) pool, with a major fraction stored belowground.
Mechanisms controlling the stability of C in belowground organic
matter are not well identified, hindering the understanding of the
global C cycle and how it affects the future climate. Emerging views
accentuate the role of microorganisms in organic matter accumu-
lation. In this work we combine laboratory and field experiments,
and propose a mechanistic explanation for the stabilization of
fungal necromass based on its interaction with tannins, a group of
plant secondary metabolites well-known for their ability to
precipitate proteins and potential role in ecosystem functioning.
In our laboratory study with pine (Pinus sylvestris) microcosms
decomposition of fungal necromasswas decreased by the formation
of complexes with tannins. Our field study demonstrated that
fungal necromass–tannin complexes may be created also under
natural conditions. Our results highlight that interaction between
tannins and fungal necromass as a hitherto overlooked mechanism
that stabilizes microbial-derived C in boreal forest soils.

The need of understanding the mechanisms behind C stabiliza-
tion into slowly cycling pools has become urgent due to the threat of
global climate change (Hopkins et al., 2012, 2014; Liang et al.,
2017). Taken globally, almost one-third of the forest C stock is
stored in boreal ecosystems (Pan et al., 2011), whereof 60% has
accumulated in the soil, mainly in soil organic matter (Lehmann&
Kleber, 2015). However, the fate of this C under climate change is
uncertain as soilsmay shift frombeingC sinks toC sources, thereby
accelerating global warming (Crowther et al., 2016).

Ecologists over the past decades have proposed numerous
hypotheses aiming at deciphering the main sources of persistent
soil C and themechanisms behind its stabilization. Although input
of aboveground plant litter for a long time was considered themain
origin of persistent organic matter, more recent studies point to
plant belowground input and fungal necromass as significant
contributors of the stable organic matter pool in forest soils
(Baldrian et al., 2013; Clemmensen et al., 2013; Ekblad et al.,
2013; Kyaschenko et al., 2017a, 2018; Sun et al., 2018). Persis-
tence of these C inputs may be explained by chemical, environ-
mental and biological factors (Schmidt et al., 2011). It has been

hypothesized that chemically recalcitrant C inputs, i.e. for the
plant litter mainly lignin and lipids (Melillo et al., 1982) and, for
the fungal chemistry, the abundant polysaccharide chitin, and
polymers of phenolic and indolic monomers – melanin form
the most stable organic matter (Fernandez & Koide, 2012;
Clemmensen et al., 2015; Fernandez & Kennedy, 2018). How-
ever, some studies have shown that lignin turnover in the soil is
more rapid than the bulk of the organic matter, and fungal
necromass and chitin degradability is relatively high (Godbold
et al., 2006; Drigo et al., 2012; Fernandez & Koide, 2012, 2014;
Brabcov�a et al., 2018). Moreover, it has been proposed that both
recalcitrant and labile C inputs build up persistent organic matter
and these C inputs can be stabilized by interactions with soil
minerals (Mikutta et al., 2006; Cotrufo et al., 2015). A concept of a
microbial C pump proposes that microbial turnover results in
deposition of microbial-derived C (Liang et al., 2017). Recent
studies in boreal forests highlight enzymatic oxidation and fungal
communities as important regulators of organic matter accumu-
lation in the mor layer (Clemmensen et al., 2015; Kyaschenko
et al., 2017b; Stendahl et al., 2017).

The earlier-mentioned framework of C stabilization mecha-
nisms should also incorporate possible biochemical interactions
between microbial and plant C inputs. For example, condensed
tannins are an abundant group of plant polyphenols, which can
affect organic matter decomposition (Northup et al., 1995; Kraus
et al., 2003; Adamczyk et al., 2014; Sun et al., 2018) and nutrient
cycling (H€attenschwiler & Vitousek, 2000) through the forma-
tion of complexes with proteins (Bending & Read, 1996;
Hagerman, 2012) and possibly also with chitin (Adamczyk
et al., 2011, 2013). These complexes of chitin and proteins from
fungal biomass with tannins of plant origin could have a major
role in the stabilization of soil C and the accumulation of organic
matter. This pathway of soil C stabilization could be particularly
important in boreal ecosystems with their typically tannin-rich
plant roots (e.g. Adamczyk et al., 2016) associated with abundant
ectomycorrhizae that can reach a fungal biomass of up to
600 kg ha�1 (Wallander et al., 2004). With reference to these
factors, we tested whether fungal necromass–tannin complex
formation could be a yet overlooked mechanism of organic matter
stabilization. In a laboratory experiment, we compared decom-
position of fungal necromass and fungal necromass–tannin
complexes and the subsequent uptake of nitrogen-15 (15N) by
mycorrhizal pine (Pinus sylvestris) seedlings. We hypothesized that
decomposition and uptake of N from fungal necromass–tannin
complexes would be slower in comparison to uncomplexed fungal
necromass (Hypothesis 1). The field experiment was conducted
using fungal necromass-containing mesh bags. Within the field
experiment, we hypothesized that condensed tannins from roots
would transform fungal residues into more persistent forms
slowing down fungal necromass decomposition (Hypothesis 2),
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and that fungal necromass–tannin complexes would be created
also under natural conditions (Hypothesis 3).

Materials and Methods

Pine (Pinus sylvestris L.) seedlings were placed in Perspex®micro-
cosms filled with sieved material from the soil organic layer
collected from the SMEAR II station, Finland (61°840N, 24°260E)
(Hari et al., 2013). The microcosms were placed in growth
chambers. Wet fungal necromass–tannin complexes in mesh bags
(50 lm mesh size, 1 cm 9 1 cm) were transferred to the micro-
cosms. After the experiment, the soil was thoroughly colonized by
roots and root-associated fungi (Supporting Information Fig. S1).
We used the following treatments: (1) mesh bags with fungal
necromass, (2) mesh bags with fungal necromass together with
bound tannins. We have used five microcosms per treatment. The
fungal biomass (basidiomycete, Dichomitus squalens), used to
obtain fungal necromass, was cultivated on Hagem’s liquid
medium with 15N-labelled ammonium chloride (NH4Cl. For
the field experiment, the fungal biomass was not labelled. Initial
chitin (Ekblad & N€asholm, 1996) and melanin (Fernandez &
Koide, 2014) content of fungal necromass was measured. Com-
plexes between the fungal necromass and condensed tannins were
generated bymixing fungal necromass with condensed tannins (for
tannin purification, characterization and complex preparation see
Supporting Information, Table S1; Figs S2–S5). Soil samples,
mesh bags and plant material were collected from the microcosms
after 3.5 months of incubation.Wemeasured protease, laccase and
chitinase activities (Shah et al., 2013; Adamczyk et al., 2016) and
chitin concentration (Ekblad&N€asholm, 1996; Fig. S6) inside the
mesh bags. The 15N content of seedlings and soil was analysed by
isotope-ratio mass spectrometry coupled to an elemental analyser
(Thermo Finnigan, Hampton, NH, USA).

In the field experiment, we placed fungal necromass (3.0 g dry
weight) into mesh bags and buried them between the organic and
topmost mineral soil horizons relative to the horizon position at
three different sampling sites (within-site replication) at the
SMEAR II station, Finland. We used mesh bags of different mesh
sizes: 1 mm (not limiting root and hyphal in-growth), 50 lm
(excluding roots but not fungal hyphae) and 1 lm (excluding also
fungal penetration). The mesh bags were collected in September
after the first, second and third growing seasons. We measured
mass loss, total amount of tannins inside the mesh bags and the
amount of bound tannins (Hagerman & Butler, 1978; Hager-
man, 2012). Detailed description of the materials and methods
and statistical analysis are given in Supporting Information
(Methods S1, S2).

Results and Discussion

In microcosms, the total mass loss and chitin loss from fungal
necromass were higher for the untreated fungal necromass than
for the fungal necromass–tannin complexes (P < 0.001) (Fig. 1),
which is in line with Hypothesis 1 that slower decomposition of
fungal necromass would occur in the presence of tannins. One
may assume that lower decomposition rate is a result of the

(a)

(b)

Fig. 1 (a) Total mass loss and chitin loss of untreated fungal necromass
comparedwith fungal necromass–tannin complexes, uptake of nitrogen-15
(15N) from labelled fungal necromass by seedlings, and enzymatic activities
inmeshbags containing fungal necromass in laboratorymicrocosmwithpine
(Pinus sylvestris) seedlings growing in organic boreal forest soil. (b) Total
mass loss and chitin loss of fungal necromass compared with fungal
necromass–tannin complexes, soil content of 15N originating from
introduced labelled fungal necromass and enzymatic activities in mesh bags
in nonplanted laboratory microcosms. At the beginning of the experiment
the amount of fungal necromass in the mesh bags was 10mg (dry weight,
DW) and the amount of condensed tannins in the fungal necromass–tannin
complexes was 0.45mg. The chitin and melanin concentration of fungal
necromass at the beginning of the experiment was 12.5% and 7%,
respectively. The error bars indicate� SE of the mean. To determine
significant differences between treatments (fungal necromass and fungal
necromass–tannin complexes) in mass loss, chitin loss, 15N uptake and
enzymatic activities t-tests were used. Significant differences (P < 0.05)
between treatments are indicated by asterisks. FNM, fungal necromass;
FNM–CT, fungal necromass–condensed tannin complexes.
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inhibitory effect of tannins on activities of decomposer enzymes
(Triebwasser et al., 2012; Adamczyk et al., 2017), but we observed
only a slight decrease in activities of some measured extracellular
enzymes in response to the tannin treatment (Fig. 1a). Moreover,
condensed tannins were tightly bound to the fungal necromass
(Figs S2–S4), leaving little opportunity for interaction with
enzymes. These circumstances point to that slower fungal
necromass decomposition emerges rather from the formation of
complexes with condensed tannins, and not from inhibition of
enzymes. Uptake of 15N from labelled mycelium into the
seedlings was always higher from untreated fungal necromass
than from the fungal necromass–tannin complexes (P < 0.05)
(Fig. 1a), which underlines that tannins transform fungal necro-
mass into a less available source of N. The soil was also more 15N
enriched in nonplanted microcosms with untreated fungal
necromass than in those with fungal necromass–tannin complexes
(P < 0.05) (Fig. 1b). Although the results from our microcosm
study proposed that condensed tannins may effectively slow down
fungal necromass decomposition, this mechanism remained to be
confirmed at the field scale.

We assumed that formation of fungal necromass–tannin
complexes may be of particular importance in boreal forests due
to the following reasons: (1) boreal forest plants and soils are
tannin-rich (Smolander et al., 2012) and the purely organic mor
layer is rich in fungal biomass (Wallander et al., 2004), (2) there are
high amounts of tannin-reactive N compounds, that is protein and
chitin, in the fungal biomass (Adamczyk et al., 2011; Zeglin et al.,
2013), (3) soil pH is low, and organic N compounds primarily
interactwith tannins at pH levels below six (Adamczyk et al., 2011),
typical for the boreal forest soil (H€ogberg et al., 2007; Calvo-
Polanco et al., 2017). Accordingly, we sought for direct experi-
mental evidence for the creation of fungal necromass–tannin
complexes at the field scale. We placed fungal necromass intomesh
bags with different mesh sizes to disentangle the effects of bacteria,
fungi, and roots, and buried them in the soil organic layer at the
SMEAR II station, Finland. The rate of fungal necromass
decomposition during the first year, measured as loss of total mass
of mycelium was high (above 85%) in all of the treatments
(Fig. 2a). Fast rates have been observed previously during the initial
phases of fungal necromass decomposition (e.g. Brabcov�a et al.,
2016), in line with that, the C : N ratio of the fungal necromass
used in our study was far lower than that of the soil (13 vs 30),
presumably making the fungal necromass an attractive N source in
generally N-limited boreal soil (Vitousek & Howarth, 1991;
Magnani et al., 2007). After the first year we did not observe
differences between decomposition in 1 lm bags and 50 lm or
1 mm bags. Although the 1 lm mesh size effectively excluded
fungal ingrowth, as indicated by negligible concentrations of
ergosterol (marker of living fungal biomass), the long incubation
time might have concealed potential differences between bacterial
decomposers (1 lm) and fungal decomposers (50 lm and 1 mm).
After the second and third year mass loss continued to progress in
the 50 lm and 1 lm mesh bags (F = 45.90, P < 0.001; F = 50.31,
P < 0.001, respectively) (Fig. 2a), but in the 1 mmmesh bags with
fine root access, no further significant mass loss occurred (F = 0.70,
P = 0.40). This result suggests that tannins from fine root litter

formed complexes with fungal necromass, slowing down its
decomposition, which would agree with Hypothesis 2. It seems
plausible that formation of fungal necromass–tannin complexes
and the subsequent decrease of decomposition rate may have
started even earlier than after one year. Under natural conditions,
decomposition may be hampered also in more freshly formed
mycelial necromass, where mycorrhizal fungi are in closer connec-
tion with tannin-rich roots. As we used 3 g of fungal necromass,
underestimation of mass loss due to ingrowth of fine roots (1 mm)
and mycorrhizal mycelium (1 mm and 50 lm) should be of rather
small importance. The amount of condensed tannins in the mesh
bags was increasing with time of incubation, especially in the 1 mm

(a)

(b)

(c)

Fig. 2 (a) Loss of total dry mass of fungal necromass (originally 3 g dry
weight, DW), (b) total amount of condensed tannins, and (c) amount of
fungal necromass–bound tannins in mesh bags incubated for up to
three years in the soil of a boreal forest in a Pinus sylvestris stand. The error
bars indicate� SEof themean.Todetermine significantdifferences between
the treatments, we constructed linear mixed-effects models with mesh size
and incubation time as fixed factors and site as a randomfactor. As apost hoc
test we used Tukey test. Site effects were always nonsignificant. Significant
differences (P < 0.05)betweentreatmentswithin the sameyearare indicated
by different letters.
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treatment (F = 32.71, P < 0.001), supporting the possibility of
fungal necromass–tannin complex formation in the presence of fine
roots (Fig. 2b). Also, in the 50 lm and 1 lm treatments tannin
concentrations increased, as themesh bags did not exclude entrance
of condensed tannins from the surrounding soil, but these values
were significantly lower than in the 1 mm mesh bags, especially
after three years of incubation (P < 0.001). Taking into account
previous reports that fine roots contributed two-thirds of the
condensed tannins in the soil (Xia et al., 2015) and that fine roots
were found in all of the 1 mm mesh bags, we conclude that root
ingrowth was the main source of condensed tannins, not the
surrounding soil. To directly confirm that tannins in themesh bags
formed complexes with the fungal necromass we applied a protein-
precipitation method, which is used to estimate protein-bound
tannins (Hagerman, 2012). After removal of potentially unbound
tanninswithwater andwater–methanol, we added triethanolamine
(TEA), which releases bound tannins (Fig. S5). The results
confirmed that the tannins found in the 1 mm bags were bound to
the fungal necromass (Fig. 2c), providing a direct evidence for
fungal necromass–tannin complex formation under field condi-
tions and supporting Hypothesis 3. We recognize that other
processes than fungal necromass–tannin complex formation could
partially have affected mass loss in the 1 mm mesh bags. For
example, competition between roots and decomposers for limiting
N may have resulted in reduction of decomposer activity, but
taking the large amounts of fungal necromass (3 g) into account,
this effect should be of rather minor relevance. In addition, uptake
of water by roots in the 1 mm bags may have affected decompo-
sition, but moisture content in mesh bags after incubation in soil
was at similar levels in all treatments. It is also possible that the
tannins in the mesh bags operated partly via a different route, as
tannins may act as microbial inhibitors or stimulators (Schimel
et al., 1996; Fierer et al., 2001). However, it was shown that low
molecular mass tannin fractions act as microbial stimulators, and
highmolecularmass tannins as inhibitors, but primarily by binding
extracellular substrates (Fierer et al., 2001; Kanerva et al., 2006),
which supports our results. Moreover, according to our results, the
mesh bags contained only fungal necromass-bound tannins,
reflecting our microcosm study, in which interactions with
microbial enzymes were limited.

Conclusions

Overall, our results supported the idea that complex formationwith
root-derived tannins may contribute to stabilization of fungal
necromass in boreal forest soils. Our experiments provide a
potential mechanistic explanation to previously reported stabiliza-
tion of C originating from fungal mycelium and root litter
(Clemmensen et al., 2013), the very slow decomposition of
mycorrhizal first-order roots (Sun et al., 2018) and N retention
driven by root-derived C (Kyaschenko et al., 2018). Decreased
decomposition of fungal necromass by interaction with tannins
also fits well into the recently proposed concept of the microbial C
pump, wheremicrobial turnover results in deposition ofmicrobial-
derived C (Liang et al., 2017). Future studies ought to consider
differences in biochemistry between fungal species, for example,

their content of proteins and polysaccharides, such as chitin, which
may interact with tannins. Also studies of tannin–fungal necromass
stability over long periods (years to millennia) should be taken into
account. In addition, as the fungal necromass decay rate depends on
the microbial communities associated with the decomposing
mycelium (Brabcov�a et al., 2016; Fernandez & Kennedy, 2018),
further research should also involve in-depth studies of decomposer
community structures and their capabilities to attack and brake up
tannin complexes.
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