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Abstract. In this paper we study the reconstruction of moving object densities from un-
dersampled dynamic X-ray tomography in two dimensions. A particular motivation of this
study is to use realistic measurement protocols for practical applications, i.e. we do not
assume to have a full Radon transform in each time step, but only projections in few angu-
lar directions. This restriction enforces a space-time reconstruction, which we perform by
incorporating physical motion models and regularization of motion vectors in a variational
framework. The methodology of optical flow, which is one of the most common methods to
estimate motion between two images, is utilized to formulate a joint variational model for
reconstruction and motion estimation.

We provide a basic mathematical analysis of the forward model and the variational model
for the image reconstruction. Moreover, we discuss the efficient numerical minimization
based on alternating minimizations between images and motion vectors. A variety of results
are presented for simulated and real measurement data with different sampling strategy. A
key observation is that random sampling combined with our model allows reconstructions of
similar amount of measurements and quality as a single static reconstruction.

1. Introduction

Tomographic image reconstruction is probably the most popular inverse problem, with a
mathematical history of now 100 years after the seminal work of Radon [30] and enormous
impact on applications for more than 50 years [11, 34, 37]. Nonetheless, it still offers a wealth
of mathematical problems, most of them being driven by concrete practical issues, e.g. limited
angles or limited field-of-view. A question that receives particular attention in the last years
is dynamic tomography, i.e. time-dependent projection measurements of a non-stationary
object. Of particular interest are moving objects, e.g. organs in medical computerized to-
mography (CT), which can lead to significant artifacts in a stationary reconstruction even in
the case of slow motion. There have been several studies to tackle this problem, for instance
by gating, where projections are either only taken at specific time instances of a periodic
movement or by choosing only those projections after the measurement, typically used for
imaging of the beating heart [1, 41]. More recent studies estimate the motion to perform a
motion compensated reconstruction [4, 28]. The problem of motion compensation is analyzed
in a rigorous mathematical framework in [17, 18, 19]. However, all of the techniques above
aim to reconstruct a static CT image from dynamic data. In this work we are rather inter-
ested in the reconstruction of the object and the dynamics in space and time, and hence are

Date: May 18, 2017.

1

ar
X

iv
:1

70
5.

06
07

9v
1 

 [
m

at
h.

N
A

] 
 1

7 
M

ay
 2

01
7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/287761034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. BURGER, H. DIRKS, L. FRERKING, A. HAUPTMANN, T. HELIN, AND S. SILTANEN

not limited to specific movements. For this purpose we discuss a joint variational approach
that incorporates physical motion models and regularization of motion vectors to achieve
improved reconstruction results. We use the well-known optical flow constraint in spatial di-
mension two, i.e. we assume that the intensity of the images we aim to reconstruct is constant
over time. The approach is however extendable to three-dimensional density reconstruction,
where an even more physical modelling with a continuity equation constraining the dynamics
is possible, reminiscent of optimal transport type approaches (cf. [5]).

A particular goal of our study is to use realistic measurement protocols for practical ap-
plications, i.e. we do not assume to have a full Radon transform in each time step, but only
projections in few angular directions. Obviously in real life tomographs usually acquire one
angular direction after the other, so one would need to work with single angles in an ideal
modeling. However, for a suitable mathematical model we can compare the multiple time
scales appearing during the process: the scale τP needed to take a projection at fixed angle,
the typical time scale τR to perform a rotation, and finally the time scale τM of the object
motion. The latter can be determined as a ratio of the spatial size of the objects one is in-
terested in and their speed. If one finds that one or two of those time scales are smaller than
others by magnitude, they can usually be ignored. For slowly moving objects with τM � τP
and τM � τR, it is indeed realistic to assume that a full (or limited but not small) set of
angles can be acquired in each time step. Even in this case one might be limited by other fac-
tors however, such as dose considerations in medical X-ray tomography,prohibiting to acquire
multiple full X-rays consecutively. Thus, we will focus on the important case of few angles
per time step, which does not allow to perform separate static reconstructions at single steps,
but indeed enforces to perform space-time reconstruction. Without additional prior informa-
tion on the dynamics, the latter is highly underdetermined and hence we shall incorporate
physical motion models into variational regularization methods, which will be based on re-
cently proposed motion corrected image reconstruction techniques, cf. [12, 13, 14, 16, 38]. A
preliminary application similar to ours is discussed in [22]. In order to deal with the different
possibilities to measure few angles, we use a time-dependent forward operator, which is also
the main change in the method compared to [12]. Hence, we will keep the analysis in this
paper rather short and mainly highlight the needed modifications in a time-continuous set-
ting. Moreover, we discuss different time discretizations induced by measurement times and
the corresponding time-discrete motions.

The main focus of the paper is the computational side and a detailed comparison of possible
results in different measurement (sampling) setups, restricting ourselves to a two-dimensional
setup (one projection being a single line integral), which allows to gain good insight into the
problem. We will consider the following realistic cases:

• Small angular increments: In some cases, the object of interest can be very
dynamic in relation to the rotation time scale, i.e. τR � τM . Then, the only way
to obtain information regarding the dynamics is to apply small rotations, e.g. small
increments between the angles in consecutive time steps. If τP < τM , a sufficiently
small angular increment usually achieves τR ∼ τM . Since the object of interest can
evolve quite a lot before 180 degrees of rotation are reached, it is expected that even
with good motion models the reconstructions suffer from similar artefacts as in static
limited angle tomography. Cardiac imaging with a single-source CT scanner provides
an example of this case [31]. Problems with motion artifacts are typically overcome
using gating, or imaging over several heartbeats and synchronizing the data with the
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help of a electrocardiogram. However, the proposed motion model approach paves the
way towards dynamic tomography of one-shot events, such as the entry of contrast
agent into bloodstream in angiography.
• Small angular increments with multiple angles: A modification of the pre-

vious setup is obtained if we consider small angular increments but with k different
projection angles at each time step with relative angles of 180/k degrees. This is a
model for multi-source imaging systems, such as the classical “dynamic spatial recon-
structor” with k = 23 [32], or more recent dual-source or triple-source CT scanners
[15, 44]. Another possibility is to consider the case of τR + τP � τM even for larger
angles, but a dose constraint allowing only k angles per time step.
• Tracking: Additionally, we consider a case with a possibly different number of

angles measured per time step, taking the extreme case of tracking by starting with
a full data set and then acquiring a single angle over several time steps until the next
full data set is obtained. One motivation for this approach is again dose limitation.
Another one may be processes with inherently different time scales in the dynamics,
a fast part that only allows to take single angles with small increments interchanging
with a slow part such that τM � τR. For example, consider studying fluid flow in
porous media using synchrotron radiation [8]. Before introducing fluid, the sample
is static (τM = ∞) and can be accurately imaged. During fluid flow we have a fast
period with τR � τM . When the voids in the sample are fully occupied by fluid, we
again have τM =∞ and can take a final accurate scan.
• Randomized angles: If τR � τM and one has dose limitations (or if τP � τR)

one can instead consider a setup with arbitrarily different angles in each time step,
which is expected to improve the reconstruction quality if we can obtain a better
sampling of the full 180 degrees in smaller time. Taking into account recent results on
randomized measurements in compressed sensing (cf. [24, 25]) we consider a setup of
randomized angles. For simplicity we restrict ourselves to choosing a single angle in
each time step from a uniform distribution (independent from the other time steps),
which already yields strongly improved results. This measurement setup could be
implemented using arrays of individually flashable small X-ray emitters [43].

In order to perform computational experiments, we use well-designed software phantoms
as well as a hardware phantom measured with a custom-built µCT system at the University
of Helsinki, see [7] for technical specifications. As physical target we choose three small
(∼25 mm2) square ceramic stones that are centered close to the detector. The geometry is
approximately parallel beam with a focus-to-detector distance of 630 mm. The collected data
consists of 30 stop-and-go measurements with 60 different angles acquired in each times step,
which can be considered as a full CT and hence provides some reference reconstructions. All
measurement setups discussed above can be obtained by choosing a subset of the collected
angles.

The remainder of the paper is organized as follows: in Section 2 we introduce a time-
dependent Radon transform and formulate the reconstruction procedure in a time continuous
setting. For estimating the motion we discuss the optical flow constraint and combine both
models to a joint problem for image reconstruction and motion estimation. Subsequently,
we present a possibility to analyze the numerical error by writing the dynamic system as a
state-space model and applying Bayesian inference. In Section 3 we discuss the discretization
of our model as well as practical issues to solve the optimization problem. Results of the
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proposed method are then presented in Section 4 for a simulated and a physical phantom.
We conclude this study with an outlook to future work in Section 5.

2. Variational models for dynamic tomography with motion

In order to introduce variational models for the reconstruction of dynamic X-ray tomogra-
phy data, we start by shortly recapping some basic properties that are needed. At first we
define a time-dependent version of the Radon transform, which is applicable to dynamic data
sets and show its well-definedness. Subsequently, we concentrate on one of the most popular
approaches for estimating motion, which is the optical flow methodology. In principle it is
also possible to use different motion models, e.g. nonlinear models to consider large scale
movements, or continuity equations in a 3D space. However, in this paper we focus on the 2D
optical flow model. We combine the optical flow approach with the time-dependent Radon
transform and hence obtain a model for motion corrected variational reconstruction. In the
end of the chapter we furthermore perform an uncertainty quantification for a state-space
formulation of the introduced model.

2.1. X-ray tomography and Radon transform. In dynamic X-ray tomography one seeks
to determine a time-dependent function u(x, t), where u models the non-negative absorption
of photons on a bounded domain Ω ⊂ R2 at a time instance t ∈ R+, hence u : Ω×R+ → R+.
We consider the measurement model

(1) Au = m,

where the operator A denotes a time-dependent two-dimensional Radon transform

(2) (Au)(θ, s, t) := (RI(t)u(x, t))(θ, s) =

∫
x·θ=s

u(x, t) dx.

Here, I(t) indicates the set of given measurements at time t. The full Radon transform maps
to a parametrization of the infinite unit cylinder denoted by Z2 := {(θ, s) : θ ∈ S1, s ∈ R},
where S1 is the unit circle in R2. For a fixed time t ≥ 0 the obtained measurement m(θ, s; t) =
(RI(t)u(x, t))(θ, s) is called the sinogram, which consists of line integrals over Ω with respect
to the set I(t). The attenuation u(x, t) at each time instance can be uniquely determined
if one has knowledge of the full sinogram for all possible lines, as shown by Radon [30], see
also [29]. However, we are interested in situations of undersampling, such that rather the full
collection m corresponds to the usual sinogram. This is apparent if there is a single angle, i.e.
a unique θ = θ̂(t) for each t. Then the measurement is actually m̃(s; t) = (RI(t)u(x, t))(θ̂(t), s)

In order to give a sound definition of the time dependent Radon transform we introduce
some additional notation and assumptions. In the following we assume that the time interval
is fixed and bounded by the end point T > 0. Furthermore, we assume that the measured
angles might change between time steps and denote I(t) ⊂ Z2 as the set of active measurement
parameters in each time instance. We equip the set of measurement parameters I(t) measured
at time t with a nonnegative Radon measure σt, noticing that in the undersampling situations
we are interested in σt will be a partially discrete measure with respect to θ for each t. We
denote by Θ(t) the set of all θ appearing in I(t). Then, with Ω denoting the bounded support
of u we consider for I(t) ⊂ Z2 the operator

(3) RI(t) : Lp(Ω)→ Lpσt(I(t)), v 7→ (

∫
x·θ=s

v(x) dx)(s,t)∈I(t).
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In order to deal appropriately with the undersampling we define

(4) Ω(t) = {x ∈ Ω | ∃(θ, s) ∈ I(t) : s = x · θ }

and assume that there exists a nonnegative Radon measure ηt on Θ(t) and a bounded (uni-
formly in time) measurable function ρt supported on Ω(t) such that

(5)

∫
I(t)

∫
{x·θ=s}∩Ω

ψ(x, s, θ) dx dσt =

∫
Θ(t)

∫
Ω
ψ(x, θ · x, θ)ρt(x) dx dηt

for all integrable functions ψ. It is straight-forward to construct ηt from σt in the measurement
scenarios outlined above.

Lemma 2.1. Let

L = sup
(θ,s)∈Z2

∫
{x·θ=s}∩Ω

dx <∞.

Then RI(t) is well-defined by (3) and a bounded linear operator for p ∈ [1,∞). The dual

operator R∗I(t) : Lp∗σt (I(t))→ Lp∗(Ω) is given by

R∗I(t)ϕ = ρt(x)

∫
Θ(t)

ϕ(θ, x · θ) dηt

Proof. First of all it is apparent that RI(t) is well-defined on the dense subspace C(Ω). For
continuous v we have∫

I(t)

∣∣∣∣∫
x·θ=s

v(x) dx

∣∣∣∣p dσt ≤ Lp∗
∫
I(t)

∫
x·θ=s

|v(x)|p dx dσt

= Lp∗
∫

Θ(t)

∫
Ω
|v(x)|p ρt(x) dx dηt

≤ Lp∗
∫

Θ(t)
dηt|ρt|∞|v|pp.

Thus, RI(t) is a bounded linear operator defined on a dense subspace and can be extended
uniquely to a bounded linear operator on Lp(Ω). Now consider the duality product

〈ϕ,RI(t)v〉 =

∫
I(t)

∫
x·θ=s

v(x)ϕ(θ, s) dx dσt =

∫
Θ(t)

∫
Ω
v(x)ϕ(θ, x · θ) ρt(x) dx dηt,

then an application of Fubini’s theorem yields the above form of the dual operator. �

Then it follows directly that the operator A : Lp(Ω × [0, T ]) → Lp(∪t∈[0,T ]I(t) × {t}) is
linear and bounded:

Proposition 2.2. Let [0, T ] be a fixed and bounded time interval and Ω ⊂ R2 bounded and
let the assumptions of Lemma 2.1 holds. Then for p ∈ [1,∞) the time-dependent Radon
transform A : Lp(Ω × [0, T ]) → Lp(∪t∈[0,T ]I(t) × {t}), as defined in (2), is a well-defined
bounded linear operator with dual operator

(A∗ϕ)(x, t) = (R∗I(t)ϕ(·, t))(x).

Considering the inverse problem, since we cannot measure the full sinogram in real life
applications, uniqueness of the solution u in (1) is not guaranteed. Furthermore, the mea-
surement m is typically contaminated with noise and we need additional regularization to



6 M. BURGER, H. DIRKS, L. FRERKING, A. HAUPTMANN, T. HELIN, AND S. SILTANEN

obtain a stable reconstruction. A well established approach is to search for a minimizer of a
regularization functional, such as

(6) Jrec(u) :=
1

p
‖RI(t)u−m(t)‖pp + α|u|BV ,

where α is a regularization parameter balancing the two parts. The first term in (6) is the data
fidelity term, which enforces that the sought-for attenuation function is close to the obtained
measurement. The second term is the regularization term enforcing certain features of the
reconstruction. In particular, we are interested in a sparse reconstruction with constant areas
that are divided by sharp edges. For this purpose the so-called total variation is a common
approach. In this study we consider the two choices p ∈ {1, 2}. For p = 2 we have the classical
and well-studied L2-TV model used for tomographic imaging by [21, 23, 26, 36, 39, 40] and
many more, in contrary the L1-TV model is typically not used for X-ray tomography but
tends to reduce streaking artifacts for undersampled data [35]. With (6), reminiscent of the
well-known ROF-model [33], we would obtain separate image reconstructions at different time
steps, which is attractive from a computational point of view, but seems only applicable for
a reasonable amount of measurements. In this study we will supplement the model by an
appropriate time correlation of the image sequence u and evaluate the performance of both
models for extremely undersampled measurement data.

2.2. Motion models. Optical flow is one of the most common methods to estimate mo-
tion between consecutive images. Its performance is based on the assumption of brightness
constancy, i.e. every pixel keeps its intensity over time even if it moves to another position
within the image. Assuming a constant image intensity u(x, t) along a trajectory x(t) with
dx
dt = v(x, t), we obtain

0 =
du

dt
=
∂u

∂t
+

n∑
i=1

∂u

∂xi

dxi
dt

= ut +∇u · v.(7)

The last equation is generally known as the optical flow constraint and v = (v1, v2)T is
the desired vector field. In spatial dimension two, (7) only states one equation per point for
the two unknown components of v and, consequently, the problem is underdetermined. To
overcome this, the optical flow formulation can be used as a data fidelity in a variational
model together with an isotropic total variation term on each of the two flow components to
ensure spatial regularity, i.e.

Jflow(u,v) = ‖ut +∇u · v‖1 + β |v|BV .(8)

In this model, the parameter β > 0 regulates between both parts. In the optical flow setting
the L1 norm has been proven to be more robust with respect to outliers [3], which is an
important characteristic especially in combination with noisy data from real applications.
This model is nowadays one of the most popular models for optical flow, since it has shown
success while tracking constant moving objects over time, see e.g. [42]. The total variation
regularization usually causes piecewise constant vector fields, which allow to distinguish a
moving object from the background.

We mention that various modifications can be incorporated into our approach in a straight-
forward way. For out of plan motion it may be necessary to include additional source and
sink terms to obtain

ut +∇u · v = S,
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with S becoming another optimization model, ideally regularized by a sparsity prior in the
variational model. For three-dimensional tomography reconstruction it is completely natural
to replace the optical flow constraint by the continuity equation

ut +∇ · (uv) = 0.

2.3. Motion corrected variational reconstruction. From our point of view the problem
of motion estimation is directly connected to the tomographic reconstruction problem because
it requires accurate input images. In many motion estimation applications one first recon-
structs the image sequence using (6) and afterwards estimates the underlying vector fields
using (8). In [12] it has been shown that a joint model that simultaneously recovers an image
sequence and estimates motion offers a significant advantage towards subsequently applying
both methods. In [16] the model proposed in [12] was applied to dynamic X-ray tomography,
resulting in the following joint model:

arg min
u,v

∫ T

0

(
1

p
‖(Au)(·, t)−m(·, t)‖pp + α|u(·, t)|qBV + β|v(·, t)|rBV

)
dt,

s.t. ut +∇u · v = 0

(9)

for p ∈ {1, 2} and q, r ≥ 1. For both image sequence and vector field, the respective total
variation is used as a regularizer and the classical optical flow formulation from (7) connects
image sequence and vector field. From the perspective of image reconstruction the optical
flow constraint acts as an additional temporal regularizer along the calculated motion field v.

Appropriate weak-star compactness of sublevel sets and lower semicontinuity can be de-
duced from the arguments in [9], where the minimization was carried out over the set

(10) D := {(u,v) ∈ Lmin p,q(0, T ;BV (Ω))×Lr(0, T ;BV (Ω) | ‖v‖∞ ≤ cv <∞, |∇·v|E ≤ cd },
where E is a Banach space continuously embedded into Lm(0, T ;Lk(Ω)), with m > q∗ and
k > p. Noticing that BV (Ω) is continuously embedded into Lp(Ω) for p ≤ 2 in two spatial
dimensions, the arguments of [9] can be directly applied for p = 2 and the ones in [16] provide
a similar proof for the case p = 1. Thus, we obtain the following existence result for (9):

Theorem 2.3. (Existence of Minimizers)
For p ∈ {1, 2}, let 1 < q, r and

Jjoint(u,v) =

∫ T

0

(
1

p
‖(Au)(·, t)−m(t)‖pp + α|u(·, t)|qBV + β|v(·, t)|rBV

)
dt.

Furthermore, let RI(t)1 6= 0 for all t ∈ [0, T ]. Then, there exists a minimizer in the constraint
set

S =
{

(u,v) ∈ D
∣∣v · ∇u+ ∂tu = 0

}
.

We mention that the choice q, r > 1 has to be made in the analysis to avoid to deal
with measures in time, in computational scenarios below it is however more efficient to set
q = r = 1.

2.4. Uncertainty quantification for a probabilistic state-space model. Estimating
numerical errors in the problem (9) is challenging due to the inherent nonlinearity of the
problem. Below we provide a probabilistic perspective to error modeling by writing our
dynamic system as a state-space model and applying Bayesian inference [27]. Here, we assume
a time-space discretization which is specified later. Our state variable is ui at time-step i and
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the flow field vi corresponds to a latent variable, although it is naturally of equal interest.
For convenience, let us write Uk = (uj)kj=1 and V k = (vj)kj=1 for the concatenation of the

times series of state vectors until time k. Similarly, we write Mk = (mj)kj=1. Notice that the

flow field v is not estimated at the last time step and therefore Un and V n−1 represent the
full time series. Below, P(w) stands for the probability density function related to random
variable w.

Prior. Suppose our prior information regarding the initial state is given by the formal
probability density

P(u1) ∝ exp
(
−αG1(u1)

)
,

where G1 is the energy functional, e.g. the BV norm in Section 3. The equations governing
optical flow yield the evolution model, which is given by

ui+1 = H(ui,vi) + ξ,

where H corresponds a suitable discretization of (7) specified later and the noise ξ is dis-
tributed according to density P(ξ) ∝ exp(−‖ξ‖1). Clearly, the conditional probability distri-
bution of ui+1 given both ui and vi can be expressed by

P(ui+1|ui,vi) ∝ exp
(
−γ
∥∥ui+1 −H(ui,vi)

∥∥
1

)
.

Here, we make the crucial assumption that ui+1 and vi is a priori independent vi−1. Notice
carefully that this is not the case a posteriori. Moreover, we assume vi is a priori independent
of ui and therefore

P(ui+1,vi|ui) = P(ui+1|ui,vi)P(vi),

Now by assuming P(vi) ∝ exp(−βG2(vi)) for some energy functional G2, it follows that

P(ui+1,vi|ui) ∝ exp
(
−γ
∥∥ui+1 −H(ui,vi)

∥∥
1
− βG2(vi)

)
and the full prior model can be expressed recursively as

P(Un, V n−1) = P(un,vn−1|Un−1, V n−2)P(Un−1, V n−2)

= P(un,vn−1|un−1)P(Un−1, V n−2)

=
n−1∏
i=1

P(ui+1,vi|ui) · P(u1).

Likelihood. Our observation of the system state is obtained via

mi = Aiui + εi,

where εi, i = 1, ..., n are i.i.d. and P(εi) ∝ exp(−1
p

∥∥εi∥∥p
p
) is a random noise vector. Moreover,

we assume virtual zero-observations at time steps 2, ..., n, i.e., we observe

(11) gi = ui − δi,
where {δi}ni=2 are i.i.d., P(δi) ∝ exp(−αG1(δi)) and assume gi = 0 for all i ≥ 2. Notice
that the virtual observations are not necessary for the probabilistic system to be well-defined.
However, observations in (11) state that for the likely values of ui the quantity G1(ui) is small
and, therefore, impose some additional regularity to the system.

Under these observations it follows that the likelihood density is of the form

P(Mn | Un) ∝ exp

(
−

n∑
i=1

1

p

∥∥Aiui −mi
∥∥p
p
−

n∑
i=2

αG1(ui)

)
.
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Uncertainty quantification. In this work we consider reconstruction methods based on
smoothing [27], i.e., we estimate all states simultaneously based on the full time-series data.
In this case, the posterior distribution obtained from the state-space model is proportional to
the product of the prior and likelihood densities

(12) P(Un, V n−1 |Mn) ∝ P(Mn|Un)P(Un, V n−1) = exp
(
−J(Un, V n−1;Mn)

)
,

where J is the functional given by

(13) J(Un, V n;Mn)

=
n∑
i=1

{
1

p

∥∥Aiui −mi
∥∥p
p

+ αG1(ui)

}
+

n−1∑
i=1

{
γ
∥∥ui+1 −H(ui,vi)

∥∥
1

+ βG2(vi)
}
,

Our numerical work below on estimating the maximum point of the posterior distribution,
i.e. minimizer of J , corresponds to the weak constraint 4DVAR method [2]. Sampling the full
posterior distribution requires high computational effort and is not explored in this paper.

Notice that the state-space model also enables filtering methods, where one is concerned
by the online estimation of P(ui+1,vi|M i+1) as the observational data is accumulated. The
update from P(ui,vi−1|M i) to P(ui+1,vi|M i+1) is obtained via a prediction step

P(ui,vi−1|M i) 7→ P(ui+1,vi|M i) =

∫ ∫
P(ui+1,vi|ui,vi−1)P(ui,vi−1|M i)duidvi−1

and an analysis step

P(ui+1,vi|M i) 7→ P(ui+1,vi|M i+1) =
P(mi+1|ui+1,vi)P(ui+1,vi|M i)

P(mi+1|M i)
.

These aspects of the stochastic dynamics in optical flow models are studied further in subse-
quent work.

3. Numerical implementation

To handle the numerical implementation of the joint model for motion corrected reconstruc-
tion, we first need to formulate a discrete version. Here we especially focus on the structure
of the time-dependent Radon operator respectively the matrix representing its discretization,
in order to obtain efficient schemes. Afterwards, we split the variational model into two sub-
problems and introduce an alternating approach to solve it. In order to minimize the single
subproblems, we employ iteration schemes based on established primal-dual methods.

3.1. Discretization. In practical applications we cannot measure infinitely many line inte-
grals continuously in time and hence we need to assume a discretization in space and time
to model the measurement process properly. We aim at representing the inverse problem of
recovering the attenuation as a simple matrix-vector equation

(14) Au = m,

with the matrix A representing the discretized Radon transform dependent on time, u being
the attenuation coefficient in each pixel. The measurement m is taken during a fixed time
period [0, T ] as discussed in Section 2.1, and we only measure at certain time instances. We
denote the number of measured time instances by Nt, such that each measurement point in
time is given by tk = kT

Nt
.
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Let us consider one fixed point in time tk. Then for the discretization in space we divide the
domain intoNx pixels such that the attenuation is modeled by a vector u ∈ RNx . Furthermore,
we have a finite set of N` lines `1, . . . , `N` for which we can measure the attenuation. The
total amount of lines depends on the projection angles in each step and is typically a multiple
of the sensor resolution. In case we have only one projection per time step, then N` coincides
with the sensor resolution. The discrete measurement is then given by

(15) mi =

Nx∑
j=1

ai,juj , i = 1, . . . , N`,

where ai,j is the length of the line `i in the jth pixel. The measurement matrix at time tk
denoted by Ak ∈ RN`×Nx is then composed of the coefficients in (15). The matrix for the
projection of all time steps is simply given as the block diagonal matrix

A =


A1 0

A2

. . .

0 ANt

 .(16)

Concerning the entire problem (9), the discretization of the time-interval [0, T ] into Nt steps
leads to Nt images u1, . . . , uNt resp. Nt − 1 vector fields v1, . . . ,vNt−1 between subsequent
frames. Using the previously derived discrete Radon matrix, the time-discrete counterpart of
(9) is hence given by
(17)

arg min
u=(u1,...,uNt )

v=(v1,...vNt−1)

Nt∑
i=1

1

p

∥∥Aiui −mi
∥∥p
p
+α

∥∥∇ui∥∥
2,1

+

Nt−1∑
i=1

γ
∥∥ui+1 − ui +∇ui · vi

∥∥
1
+β

2∑
j=1

∥∥∇vi,j∥∥
2,1
,

where ‖∇u‖2,1 denotes the isotropic total variation, which takes the point wise Euclidean
norm of (ux, uy) ∈ RNx × RNx and afterwards sums up the resulting vector in RNx .

3.2. Minimization. Despite showing the existence of a minimizer, its calculation is numeri-
cally challenging. Problems arise from the non-convexity and non-linearity of the optical flow
term, the non-differentiability of the L1–norm and finally several linear operators acting on
u and v. To address these issues, the joint model (17) can be transformed into a two-step
method

ul+1 = arg min
u

Nt∑
i=1

1

p

∥∥Aiui −mi
∥∥p
p

+ α
∥∥∇ui∥∥

2,1
+ γ

Nt−1∑
i=1

∥∥ui+1 − ui +∇ui · vil
∥∥

1
,(18)

vl+1 = arg min
v

Nt−1∑
i=1

∥∥ui+1
l+1 − u

i
l+1 +∇uil+1 · vi

∥∥
1

+
β

γ

2∑
j=1

∥∥∇vi,j∥∥
2,1

(19)

that alternatingly solves a problem for the image sequence u using information from (19)
and a problem for the flow sequence v using information from (18). Using block diagonal
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operators, see (16), equation (18) and (19) can be simplified into problems of the form

ul+1 = arg min
u

1

p
‖Au−m‖pp + α ‖∇u‖2,1 + γ ‖Tu‖1 ,(20)

vl+1 = arg min
v

∥∥∥T̂v − b∥∥∥
1

+
β

γ

2∑
j=1

∥∥∇vj∥∥
2,1
,(21)

where the operator T depends on vl and T̂ depends on ul+1. The terms ui+1
l+1−u

i
l+1 from (17)

can be combined to the vector b in (21). Due to this transformation, each of these subproblems
is linear and convex but still non-differentiable. Moreover, the alternating scheme tends to
end up in local minima rather than in convergence to the solution of (9).

In order to minimize the single subproblems for reconstruction and for motion estimation,
we use a primal-dual approach, which was introduced in [10]. Therefore, we rewrite the given
problems as saddle point formulations of the form

min
u∈X

max
p∈Y
〈Ku, p〉 − F ∗(p)

and subsequently apply the iteration scheme proposed in [10]. In what follows we address the
problems for u and v in detail. The pseudocode in Algorithm 1 then gives a sketch of the
alternating minimization strategy.

Reconstruction. Within this part we restrict ourselves to the case of an L1 data fidelity
where an extension to an L2 term is straight forward. Since all terms of (18) contain operators,
we dualize each term and obtain the saddle-point problem

min
u

max
p1,p2,p3

3∑
i=1

〈Kiu, pi〉 − F ∗i (pi),

with

K1u = Au, F ∗1 (p1) = δ{p̄1:‖p̄1‖∞≤1}(p1) + 〈p1, f〉,
K2u = ∇u, F ∗2 (p2) = δ{p̄2:‖p̄2‖2,∞≤α}(p2),

K3u = Tu, F ∗3 (p3) = δ{p̄3:‖p̄3‖∞≤γ}(p3).

Here δC denotes an indicator function on the set C defined as

δC(u) =

{
0 if u ∈ C

∞ else
.

An application of the primal-dual method to the above problem yields the following iteration
scheme:

pk+1
1 = π{p̄1:‖p̄1‖∞≤1}(p

k
1 + σuAū

k − σuf),

pk+1
2 = π{p̄2:‖p̄2‖2,∞≤α}(p

k
2 + σu∇ūk),

pk+1
3 = π{p̄3:‖p̄3‖∞≤γ}(p

k
3 + σuT ū

k),

uk+1 = uk − τu(AT pk+1
1 +∇T pk+1

2 + T T pk+1
3 ),

ūk+1 = 2uk+1 − uk,

(22)
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where πC denotes a projection of the input argument onto the set C and σu, τu are valid
stepsizes as explained in [10].

Motion Estimation. The saddle point formulation for the motion estimation problem
can be derived in analogy to the reconstruction problem as follows

min
v=(v1,v2)

max
q1,q2,q3

3∑
i=1

〈Kiv, qi〉 − F ∗i (qi),

where

K1v = T̂v, F ∗1 (q1) = δ{q̄1:‖q̄1‖∞≤1}(q1)− 〈q1, b〉,
K2v = ∇v1, F ∗2 (q2) = δ{q̄2:‖q̄2‖2,∞≤βγ }

(q2),

K3v = ∇v2, F ∗3 (q3) = δ{q̄3:‖q̄3‖2,∞≤βγ }
(q3).

Similar to the reconstruction part, we apply the iteration scheme proposed in [10] to the
given problem and end up with

qk+1
1 = π{q̄1:‖q̄1‖∞≤1}(q

k
1 + σvT̂ v̄

k − σvb),

qk+1
2 = π{q̄2:‖q̄2‖2,∞≤βγ }

(qk2 + σv∇v̄k1 ),

qk+1
3 = π{q̄3:‖q̄3‖2,∞≤βγ }

(qk3 + σv∇v̄k2 ),

vk+1 = vk − τv
(
T̂ T qk+1

1 +

(
∇T 0
0 ∇T

)(
qk+1

2

qk+1
3

))
,

v̄k+1 = 2vk+1 − vk.

(23)

To handle large displacements, the optical flow calculation is incorporated into a coarse-
to-fine pyramid with intermediate warping steps. We refer to [13] for details.

Algorithm 1 Joint Reconstruction: Main Algorithm

function mainFunction(m)
u,v ← 0
Initialize Radon operator A
while rmain > tolmain do

uold ← u
vold ← v
Update operator T using v
u ← Run scheme (22) until converged

Update operator T̂ using u
v ← Run scheme (23) until converged
rmain ← ‖u− uold‖+ ‖v − vold‖

end while
return (u,v)

end function
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4. Experiments

For the evaluation of the proposed motion estimation and reconstruction we consider two
experiments in this section. For a qualitative evaluation we consider a simulated data set of a
moving ball. Since the ground truth is known we can explicitly evaluate the performance of the
L1-TV and L2-TV model as reconstruction functional (6) by evaluating the reconstruction
errors. Based on the knowledge obtained in the simulated experiments we then apply the
reconstruction algorithm to real measurement data from the µCT lab at the University of
Helsinki.

A further aim is to compare the reconstruction quality of the L1 and L2 fidelity terms for
extremely undersampled dynamic data by means of their reconstruction error. Two of the
most common error measures are the l1 distance and the l2 distance between the reconstruc-
tion and the phantom. Thus, we also use both measures to compare the results. However, a
disadvantage of their utilization is that they are not neutral with respect to the chosen norms
of the model. Naturally, the error in l1 is smaller for an L1 data fidelity term, and the error
in l2 is smaller for the L2 model. Thus, it is necessary to use an unbiased technique. For this
purpose, the method of our choice is the Structural Similarity (SSIM) index (cf [6]). The SSIM
index evaluates an image by comparing the structures of two images with a perception-based
model. It includes illumination as well as different contrasts in an image. For two images u1

and u2 the SSIM index is given by

ŜSIM(u1, u2) =
(2µ1µ2 + c1)(2σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
,

where µ1 and µ2 are the averages of u1 and u2, σ1 and σ1 are the variances of u1 and u2,
σ12 is the covariance of u1 and u2, and c1 as well as c2 are constants to prevent a division by
zero. To compare the structures of two entire image sequences, we add up the SSIM index
for every time step and calculate the average, i.e.

SSIM(u1, u2) =
1

T + 1

T∑
t=0

ŜSIM (u1(x, t), u2(x, t)) .(24)

In contrast to the errors in l1 and in l2, the SSIM index is close to one for images that are
similar to the reference image.

4.1. Software experiment: Pinball. The synthetic Pinball data set consists of a two di-
mensional image of 42 × 42 pixels. The image is recorded at 30 consecutive time steps.
Throughout this period of time, a uniform and rigid ball is moving from the left side of
the image frame to the right side. During the whole time, the ball resides in a stationary
ellipse of medium intensity. Figure 1 shows the ground truth images at a selection of time
steps. To avoid inverse crime, we first compute the sinogram from a high resolution image,
add 1% Gaussian noise, and finally downscale it to the size of the corresponding 42 × 42
phantom. The noise level has been chosen to be reasonably low for accurate measurements,
such that the reconstructed features are mainly depending on sampled data and chosen an-
gles. The regularization parameters were chosen such that the `1 error is minimized for the
L1-TV model, `2 for L2-TV respectively. That is α = 0.1, β = 0.2, γ = 0.5 for p = 1; and
α = 0.05, β = 0.2, γ = 8 for p = 2. A full space-time reconstruction takes a few minutes on
a modern CPU.
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Figure 1. Ground truth of Pinball data set. From left to right: time steps
1, 10, 20, 30.

The results of our computations can be seen in Figure 2 for the L1 data fidelity term
and in Figure 3 for L2. Each figure illustrates the four measurement settings mentioned in
Section 1. The results in the top rows are computed with small angular increments, i.e.
single consecutive angles. As previously discussed, the information from a single angle is not
sufficient to obtain a reasonable reconstruction and hence different measurement protocols
need to be considered. The second rows show results calculated assuming small angular
increments with multiple angles, in this case two angles with a 90◦ offset. The results for the
tracking approach are presented in the third rows, i.e. we have a full CT scan of 60 angles
available for the first and last time step. The bottom rows present the results for one single
randomized angle in each time step.

In both examples we can clearly see that the reconstructions from one incremental angle
per time step can not produce satisfactory results. Even though the ellipses are rather well
reconstructed, in case of the L1 fidelty term sharp and for the L2 fidelty term blurred, but
the position and the shape of the balls are incorrect. The balls seems to follow a wave-like
shape, which depends on the measurement angles. By increasing the angles per time step
in the second measurement setup to two angles, the shape and the position of the balls are
already significantly better reconstructed than in the results with only a single angle. How-
ever, for both models there are two tail-like artifacts in direction of the projections. Between
those tails, i.e. in the upper part of the ellipse, edges are not properly reconstructed. If
one considers the tracking approach, both initial and end reconstructions are of course well
reconstructed. However, in the intermediate time steps the position of the balls can not be
reconstructed correctly. Though, the results are considerably more accurate than in the ap-
proach without any a priori information. Finally, for a randomized measurement protocol
with a single angle, the balls are correctly located. For the L1 fidelity term the shape is close
to a square, whereas the L2 fidelity term nicely reproduces a round appearance. The ellipse
is well reconstructed for both fidelity terms. In general we note that the L1 fidelty term
produces sharper results, especially for the stationary ellipse and the L2 fidelty term has a
tendency to blur the background, but keeping the shape of the moving object closer to the
original.

Additionally, to accompany the visual inspection, we computed the relative errors in `1 and
in `2, as well as the SSIM index (see (24)), displayed in Table 1. Comparing the performances
of the L1 and of the L2 data fidelity for each experimental setting reveals that as expected
the error in `1 is always smaller for the results calculated with the L1 data fidelity, whereas
the `2 error is smaller for the results of the L2 data fidelity. However, the SSIM index, which
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Figure 2. Reconstruction result for Pinball data set calculated with L1 data
fidelity. From left to right: time steps 1, 10, 20, 30. From top to bottom:
small angular increments, small angular increments with two angles, tracking,
and randomized angles.

we expect to be more neutral with respect to the chosen norm, indicates that the L1 norm
outperforms the L2 norm for every single approach. This is a consequence of the distinctly
better reconstruction of the ellipses. Concerning different experimental settings, the approach
considering randomized angles achieves the best results by far. For both data fidelities all
error measures indicate that this approach yields the best outcome. Consistent with the visual
inspection, the approach with small angular increments with single angles can be considered
as the worst performing approach.
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Figure 3. Reconstruction result for Pinball data set calculated with L2 data
fidelity. From left to right: time steps 1, 10, 20, 30. From top to bottom:
small angular increments, small angular increments with two angles, tracking,
and randomized angles.

To conclude this chapter, we present in Figure 4 the flow fields corresponding to the ap-
proach with randomized angles and for both fidelity terms. The flow fields generally estimate
the motion in the correct direction. Nevertheless, there are obvious differences between the
flow fields estimated with the L1 and the L2 data fidelity. For the L2 data fidelity the entire
movement of the ball is visible in the flow field. In contrast to the L1 data fidelity, here the
model only recognizes motion at the edges of the ball. For both data fidelity terms the flow
fields for the first time steps are not correctly estimated. The reason for this is the missing
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L1 data fidelity L2 data fidelity
`1 error `2 error SSIM `1 error `2 error SSIM

small incr. (1 angle) 0.4744 0.6485 0.7498 0.8897 0.6962 0.4310
small incr. (2 angles) 0.3828 0.4166 0.7275 0.3329 0.2954 0.7208
tracking 0.3131 0.5177 0.8240 0.4789 0.5042 0.6321
1 randomized angle 0.1978 0.3310 0.8502 0.2223 0.2586 0.8006

Table 1. Calculated relative `1, `2 errors, and averaged SSIM for Pinball reconstructions.

Figure 4. Motion estimation results for Pinball data set calculated from ran-
domized angles. From left to right: time steps 1, 10, 20, 29. Top: L1 data
fidelity, bottom: L2 data fidelity.

possibility to use a priori information for the estimation from previous time steps that can
be used as initialization.

4.2. Hardware experiment: Rolling Stones. The Rolling Stones data set consists of
images of size 42 × 42 pixels, measured at 30 consecutive time steps. Even though we aim
at being able to recover continuous movement measured with an extremely limited amount
of angles, the measurements were actually recorded from 60 equally distributed angles in a
stop-and-go approach. This has the advantage that we are able to use the exact same data
set for different arrangements of angles as well as having a reference reconstruction from 60
angles as ground truth. Figure 5 shows the reconstruction from 60 angles for a representative
selection of time steps, computed by a simple smoothed and therefore differentiable L2-TV
variant especially suitable for large-scale data, a detailed description for the used procedure
can be found in [20].

The Rolling Stones data depicts three ceramic stones of approximately 25 mm2, which are
initially located next to each other in the center of the domain. In each time step the stones



18 M. BURGER, H. DIRKS, L. FRERKING, A. HAUPTMANN, T. HELIN, AND S. SILTANEN

Figure 5. Full-angle and high-resolution reconstruction of the Rolling Stones
data. From top left to bottom right: time steps 1, 7, 13, 18, 25, 30.

move further apart from each other to the boundary of the imaging domain. Since the stones
were moved manually during the measurements, the vector and direction of movement differs
for every stone and every time step. We have seen in the software experiments that the L1

data fidelity works best for reconstructing this kind of data and hence we restrict ourselves
in the following to the L1-TV model. In Figure 6 we present the sinograms that are used in
the following for the joint image reconstruction and motion estimation.

We omit the reconstructions for small angular increments with one angle here, since the
reconstructions were simply not satisfactory. On the other hand for small angular increments
with two angles we obtain quite informative reconstructions, as displayed in Figure 7. The
reconstruction results for the tracking setting can be seen in Figure 8 and the corresponding
reconstructions for the randomized angles are presented in Figure 9.

For all three measurement setups presented we can reconstruct the position of the stones
quite clearly. Especially in case of small angular increments with two angles and randomized
angles, we can separate the stones already from the beginning and clearly track the movement.
For the tracking approach the initial and end states are clearly reconstructed due to the full
angle data, but the position of the stones during the movement can only be identified after
they have separated sufficiently.

The randomized angles provide a superior reconstruction quality with respect to the amount
of used data. The motivation of this study is to reduce the amount of necessary measurements
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Figure 6. Measured sinograms of the Rolling Stones data set. Top: Tracking
approach with 60 angles at the first and last time step. Bottom from left to
right: small angular increments with one angle, small angular increments with
two angles, one randomized angle per time step

for dynamic data as far as possible and hence the randomized angles are most successful. We
point out that we only have one projection image per time step and hence we are not able to
reduce the data any further. However, we try to lower the amount of used projections even
more by reducing the time steps and hence increasing the spacial offset between frames. In
Figure 10 reconstructions for a total of 15 and 8 time steps are presented. For 15 projec-
tions, the separation as well as the position of the stones are still well reconstructed, just a
slightly stronger blurring occurs due larger movements between frames. Regarding the results
calculated from only 8 projections, the blurring has strongly increased and the shape of the
stones is not clear anymore. This could be considered as the limit of our approach to produce
reasonable results.
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Figure 7. L1-TV reconstruction result for the Rolling Stones from small
angluar increments with two angles per time step. From top left to bottom
right: time steps 1, 7, 13, 18, 25, 30.

5. Conclusions and outlook

We introduced a framework to combine motion estimation and reconstruction in X-ray
tomography in a joint model. The aim of this study is to illustrate that one can estimate
the motion from the measured data in a variational framework in order to reconstruct the
dynamics of the measured object in space-time. For estimating the motion we utilized the
optical flow framework, which is already well-established in image registration, but has been
only recently introduced to inverse problems. The forward problem in our framework is
modeled by a time-dependent Radon transform that is well-defined in a finite time setting.
We then combined the reconstruction task and the motion estimation to a joint model, which
can be solved in an alternating way with modern optimization techniques. Additionally, we
propose a probabilistic perspective on error modeling that will be studied further in future
research.

The proposed model has been applied to simulated and real phantoms with extremely
undersampled data, i.e. we went as low as one projection per time step and yet were able to
produce informative results capturing the dynamics of the system correctly. The experiments
showed that an L1-TV model for the reconstruction is most powerful for this kind of data.
Furthermore, we obtained the best results with randomly chosen projection angles in each
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Figure 8. L1-TV reconstruction result for the Rolling Stones from tracking.
From top left to bottom right: time steps 1, 7, 13, 18, 25, 30.

time instance. This will be of special interest for further studies in the context of compressed
sensing in X-ray tomography in particular for dynamic systems.

Optical flow respectively the continuity equation as motion model is rather restrictive in
the context of some inverse problems in medical imaging, since one cannot introduce new
mass to the system, e.g. in terms of tracers or signals. Hence it is important to investigate
different motion models. A first extension that comes to ones mind is to allow input to the
system by considering non-zero Neumann boundary conditions. Relevant applications include
cardiac scans, where a tracer is injected to the patients blood stream to monitor blood flow
through the heart. Many imaging modalities also include diffusion processes and, therefore,
are not suitable for the optical flow model. We leave this and further extensions to future
research.
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Figure 9. L1-TV reconstruction result for the Rolling Stones from one ran-
domized per time step. From top left to bottom right: time steps 1, 7, 13, 18,
25, 30.
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