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Meal timing, meal frequency, 
and breakfast skipping in adult 
individuals with type 1 diabetes – 
associations with glycaemic control
Aila J. Ahola1,2,3, Stefan Mutter1,2,3, carol forsblom  1,2,3, Valma Harjutsalo1,2,3,4 & per-
Henrik Groop  1,2,3,5*

We assessed meal timing, meal frequency, and breakfast consumption habits of adult individuals with 
type 1 diabetes (n = 1007) taking part in the Finnish Diabetic Nephropathy Study, and studied whether 
they are associated with glycaemic control. Data on dietary intake and blood glucose measurements 
were retrieved from food records. HbA1c was measured at the study visit. in the whole sample, four 
peaks of energy intake emerged. energy intake was the greatest in the evening, followed by midday. 
Altogether 7% of the participants reported no energy intake between 05:00 and 09:59 (breakfast 
skippers). While breakfast skippers reported lower number of meals, no difference was observed in the 
total energy intake between those eating and omitting breakfast. in a multivariable model, skipping 
breakfast was associated with higher mean blood glucose concentrations and lower odds of good 
glycaemic control. A median of 6 daily meals was reported. Adjusted for confounders, the number of 
meals was negatively associated with HbA1c, and the mean of the blood glucose measurements, but 
positively associated with the variability of these measurements. our observations support the habit 
of a regular meal pattern, including consumption of breakfast and multiple smaller meals for good 
glycaemic control in adults with type 1 diabetes. However, an increase in the blood glucose variability 
may additionally be expected with an increase in the number of meals eaten.

For adults with diabetes healthy eating patterns, with an emphasis on a variety of nutrient-dense foods in appro-
priate portion sizes, are recommended1. While such a “healthy eating pattern” is expected to address individual 
nutritional needs and take into account personal and cultural preferences, not much is said about meal frequen-
cies or distribution of energy intake throughout the day. Important to individuals with diabetes, recent evidence 
suggests that both meal frequency and circadian energy distribution can influence glycaemic control.

In studies of meal frequency, conducted in individuals with type 1 diabetes, a meal pattern with smaller and 
more frequent meals have been associated with better glycaemic control2–4. Similarly, interventional trials in 
women with polycystic ovary syndrome5 and in people with impaired glucose tolerance or overt type 2 diabe-
tes6, comparing eating patterns with 3 and 6 daily meals have shown more favourable levels of glycaemia with 
higher meal frequencies. On the other hand, Thomsen et al. detected no between-treatment differences in insulin 
sensitivity or the glucose and insulin responses to a test meal following interventions with 3 and 8 daily meals in 
type 2 diabetes7. In line with the observations by Thomsen et al., meal frequency was not associated with the risk 
of incident type 2 diabetes in women participating in the Nurses’ Health Study8. Moreover, in lean healthy men, 
extremely high eating frequency (3 vs. 14) resulted in significantly higher 24-hour glucose concentration9.

Omitting breakfast is traditionally considered an unhealthy habit. In support of this, participants in the 
Nurses’ Health Study with irregular breakfast habits had increased risk of incident type 2 diabetes compared 
with those who regularly consumed breakfast8. In another study of individuals with type 2 diabetes, skipping 
breakfast was associated with an almost 11% increase in HbA1c

10. Moreover, scheduling higher energy intake in 
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the mornings, as compared with evenings, led to overall reduced glucose excursions throughout the day in type 2 
diabetes11. While studies in type 1 diabetes are scarce, there is some evidence from adolescents with type 1 diabe-
tes, that eating breakfast is associated with better glycaemic control2.

Not much is known about the circadian eating pattern of adult individuals with type 1 diabetes and how meal 
frequency and breakfast skipping are related to glycaemic control. Our aim was, therefore, twofold. First, we 
elucidated the distribution of energy and macronutrient intakes over the course of the day in a large sample of 
individuals with type 1 diabetes. Second, we described the meal frequencies and breakfast skipping habits in this 
population and investigated whether they were associated with glycaemic control.

Results
eating pattern of the whole sample. Data were available from a total of 1007 individuals (41% men, 
median age 47 years) with type 1 diabetes (Table 1). Approximately one third of the sample achieved good gly-
caemic control, as defined by HbA1c below 59 mmol/mol (<7.5%). The mean reported daily energy intake of the 
sample was 7988 kJ (Table 2). The highest energy intake, 40.4% of the total energy intake, took place between 
17:00 and 23:59. This was followed by midday with 28.7%, morning with 16.1%, afternoon with 13.6%, and night 
with 1.2% of the total energy intake. Calculated by hourly intake at each of the periods, the largest energy intake 
was observed at midday, followed by evening, afternoon, morning, and night. The distribution of energy intake 
for the entire sample during the whole day revealed four peaks timed at around 06:00–08:00, 11:00, 16:00–17:00, 
and 21:00 (Fig. 1A).

As seen for the energy intake, the largest amounts of carbohydrates, fats, proteins, and alcohol were con-
sumed in the evening hours (Table 2). For carbohydrates, fats, and proteins, meals eaten at midday contributed 
the second largest portion of the total daily intakes. Morning represented the time with the third largest intakes 
of carbohydrates and proteins. For fats, instead, the third largest intake took place in the afternoon. Followed by 
the evening hours, most of the remaining alcohol was consumed in the afternoon and midday. In the morning 
and night hours, instead, the mean alcohol intake was negligible. The hourly distributions of the macronutrients 
revealed that fat and protein intakes exhibited four peaks similar to those seen for energy intake (Fig. 1B). For 
carbohydrate intake, instead, a fifth smaller peak emerged at 14:00, suggesting an afternoon snack of relatively 

n = 1007

Number of meals 6 (5–8)

Men, % 40.6

Age, years 47 (36–57)

Diabetes duration, years 30 (20–41)

Current smoking, % 10.6

Insulin pump, % 18.5

BMI, kg/m2 25.5 (23.1–28.4)

Weight, kg 75 (65–84)

HbA1c, mmol/mol 63 (55–72)

HbA1c, % 7.9 (7.2–8.7)

HbA1c < 59 mmol/mol (<7.5%), % 33.1

Mean of the BG measurements, mmol/l 8.1 (6.9–9.4)

CV of the BG measurements 0.4 (0.3–0.5)

Triglycerides, mmol/l 0.97 (0.74–1.36)

Total cholesterol, mmol/l 4.5 (3.9–5.1)

HDL cholesterol, mmol/l 1.6 (1.3–1.9)

Systolic blood pressure, mmHg 136 (124–150)

Diastolic blood pressure, mmHg 76 (70–83)

Table 1. Participant characteristics. Data are presented as frequency (%) or median (interquartile range). BMI, 
body mass index; BG, blood glucose; CV, coefficient of variation.

Energy
kJ/hour

Energy
kJ E%

CHO
G

% of 
CHO

Fat
g

% of 
fat

Protein
g

% of 
PRO

Alcohol
g

% of 
ALC

00:00–04:59 18 ± 2 92 ± 12 1.2 3.0 ± 0.4 1.5 0.7 ± 0.1 0.9 0.8 ± 0.1 1.0 0.02 ± 0.02 0.4

05:00–09:59 258 ± 5 1289 ± 25 16.1 39.2 ± 0.8 19.4 10.6 ± 0.3 13.6 12.5 ± 0.3 15.6 0.01 ± 0.01 0.2

10:00–14:00 574 ± 10 2295 ± 39 28.7 56.3 ± 1.0 27.8 23.5 ± 0.5 30.1 24.7 ± 0.5 30.7 0.19 ± 0.05 3.3

14:01–16:59 363 ± 13 1088 ± 39 13.6 27.4 ± 1.0 13.6 10.8 ± 0.5 13.9 11.1 ± 0.5 13.8 0.52 ± 0.13 9.0

17:00–23:59 461 ± 8 3224 ± 57 40.4 76.3 ± 1.4 37.7 32.4 ± 0.7 41.5 31.3 ± 0.7 38.9 5.02 ± 0.47 87.1

24 hours 333 ± 3 7988 ± 79 100.0 202.2 ± 2.4 100.0 78.0 ± 1.0 100.0 80.4 ± 1.0 100.0 5.77 ± 0.50 100.0

Table 2. Energy and macronutrient intakes at different times of the day. Data are presented as mean ± SE or 
percentage of total energy. E%, percentage of total energy; CHO, carbohydrates; PRO, proteins; ALC, alcohol.
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high carbohydrate content. Alcohol intake showed a gradual increase from late afternoon onwards, with the 
highest intakes at 21:00.

Breakfast skipping. A total of 72 individuals (7%) reported no dietary intake between 05:00 and 09:59 and 
were thus defined as those skipping breakfast. Individuals skipping breakfast were younger with shorter diabetes 
duration, and they had a higher mean reported blood glucose concentration, as compared to those who reported 
eating breakfast (Table 3). Although not significant (p = 0.051), there was also a tendency for the breakfast skip-
pers to less frequently reach the glycaemic goal of HbA1c < 59 mmol/mol (<7.5%). While the total energy intakes 
between the two groups were comparable, those skipping breakfast reported higher energy intake at night, after-
noon, and evening (Table 4). Visual inspection of the energy distribution throughout the day suggested that those 
skipping breakfast had relatively high energy intake during midday, afternoon, and evening, with multiple but 
shallower peaks (Fig. 2A). Moreover, compared to those eating breakfast, energy, carbohydrate, fat, and protein 
intakes peaked at an earlier hour in the midday, and at a later hour in the evening (Fig. 2A,B).

Figure 1. Hourly distributions of energy and macronutrient intakes of the whole sample. (A) Energy intake in 
the whole sample. (B) Macronutrient intakes in the whole sample.
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We then investigated whether skipping breakfast was associated with glycaemic control. Adjusted for sex, 
diabetes duration, smoking, energy intake, physical activity and mode of insulin administration, we observed that 
breakfast skipping was associated with reduced odds of achieving good glycaemic control (Table 5). Moreover, 
skipping breakfast was associated with higher mean of the reported blood glucose measurements (adjusted means 
8.8 ± 0.2 mmol/l vs. 8.2 ± 0.1 mmol/l, p = 0.023).

number of meals and glycaemia. The number of reported meals ranged from 3 to 20, with a median of 
6 (interquartile range from 5 to 8). Adjusted for sex, diabetes duration, smoking, energy intake, physical activity 
and mode of insulin administration, the number of meals was negatively associated with HbA1c (B, 95% Wald 
Confidence Interval, −0.615, −1.108 to −0.123, p = 0.014), and the mean of the blood glucose measurements 
(−0.097, −0.166 to −0.028, p = 0.006), but positively associated with the variability of the blood glucose meas-
urements (0.006, 0.001 to 0.010, p = 0.020). Compared with individuals in the highest quartile based on the num-
ber of meals (≥8 meals), those in the lowest quartile (≤5 meals) had significantly higher HbA1c and mean of the 
blood glucose measurements (Table 5).

Discussion
In this sample of Finnish adults with type 1 diabetes, a circadian eating pattern with four major peaks of energy 
intake, timed at breakfast, lunch, dinner, and evening meal, emerged. While protein and fat intakes mirrored 
that of total energy intake, an additional smaller peak of carbohydrate intake was observed in the afternoon. 
Alcohol intake was most pronounced in the evening hours. Altogether, 7% of the sample omitted breakfast. The 
overall circadian profile of the energy intake in those skipping breakfast differed significantly from those report-
ing energy intake in the morning hours. Of interest, the mean energy intake of the breakfast skippers remained 
at high levels throughout the rest of the day, leading to a total energy intake comparable to those who reported 
eating breakfast. Importantly, breakfast skipping was associated with higher mean values of daily blood glucose 
measurements and lower odds of reaching good glycaemic control. A median of 6 daily meals was reported in 
the current study. Higher number of reported meals was associated with higher variability of the blood glucose 
measurements but better glycaemic control, measured as mean of the reported blood glucose concentrations and 
HbA1c.

The question regarding the association between meal frequency and glycaemia has been addressed in a num-
ber of epidemiological studies among individuals with type 1 diabetes. In one such study of adolescents with 
type 1 diabetes, similarly to the current observations, the reported number of meals was associated with lower 
HbA1c

2. Yet in another sample of adolescents with type 1 diabetes, higher number of eating occasions was asso-
ciated with better glycaemic control and, together with BMI, social class, and day-to-day variation in energy 
intake, explained 38% of the variation in the mean HbA1c values of the preceding year3. Øverby et al. investigated 
the dietary practices of 655 children and adolescents with type 1 diabetes4. In their analyses, those who skipped 
meals were observed to have higher odds of suboptimal HbA1c. Among the 687 participants in the intensive treat-
ment arm of the Diabetes Control and Complications Trial, instead, together with adherence to the prescribed 
diet, prompt treatment of hyperglycaemia, and avoidance of overtreatment of hypoglycaemia, avoidance of extra 
snacks appeared beneficial12.

Along with the epidemiological studies of meal frequency and glycaemia, the question has also been addressed 
in a number of interventional trials. In these trials, energy intake is typically kept constant with the number of 

Breakfast n = 935 (93%) No breakfast n = 72 (7%) p

Number of meals 6 (5–8) 5 (4–7) <0.001

Men, % 39.9 50.0 0.105

Age, years 48 (37–58) 38 (29–47) <0.001

Diabetes duration, years 31 (20–42) 20 (12–35) <0.001

Current smoking, % 10.7 10.1 1.000

Insulin pump, % 17.8 27.1 0.057

BMI, kg/m2 25.5 (23.2–28.3) 25.6 (22.8–29.1) 0.986

Weight, kg 74 (65–84) 78 (67–90) 0.089

HbA1c, mmol/mol 63 (55–72) 64 (59–74) 0.367

HbA1c, % 7.9 (7.2–8.7) 8.0 (7.5–8.9) 0.367

HbA1c < 59 mmol/mol (<7.5%), % 33.9 22.2 0.051

Mean BG measurements, mmol/l 8.0 (6.8–9.3) 9.2 (7.7–10.1) <0.001

CV of the BG measurements 0.4 (0.3–0.5) 0.4 (0.3–0.5) 0.932

Triglycerides, mmol/l 0.96 (0.73–1.33) 1.10 (0.80–1.48) 0.067

Total cholesterol, mmol/l 4.5 (3.9–5.1) 4.6 (4.1–5.2) 0.175

HDL cholesterol, mmol/l 1.6 (1.3–1.9) 1.5 (1.3–1.8) 0.120

Systolic blood pressure, mmHg 136 (124–150) 132 (122–149) 0.501

Diastolic blood pressure, mmHg 76 (69–83) 76 (72–83) 0.470

Table 3. Participant characteristics divided by breakfast consumption. Data are presented as frequency (%) or 
median (interquartile range). BMI, body mass index; BG, blood glucose; CV, coefficient of variation.
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Energy (kJ) 
Breakfast                          No BF

CHO (g) 
Breakfast                    No BF

Fat (g) 
Breakfast                No BF

Protein (g) 
Breakfast              No BF

Alcohol (g) 
Breakfast                No BF

00:00–04:59 75 ± 10 312 ± 107b 2.7 ± 0.4 7.1 ± 2.2b 0.5 ± 0.1 3.5 ± 1.5b 0.6 ± 0.1 2.8 ± 1.1b 0 0.32 ± 0.32c

05:00–09:59 1389 ± 24 0c 42.2 ± 0.8 0c 11.4 ± 0.3 0c 13.5 ± 0.3 0c 0.01 ± 0.01 0

10:00–14:00 2295 ± 39 2292 ± 189 56.3 ± 1.1 55.7 ± 4.7 23.5 ± 0.6 23.3 ± 2.4 24.7 ± 0.5 25.4 ± 2.8 0.17 ± 0.05 0.45 ± 0.32

14:01–16:59 1051 ± 39 1566 ± 175b 26.3 ± 1.0 42.4 ± 5.0b 10.5 ± 0.5 14.8 ± 2.0a 10.7 ± 0.5 16.2 ± 2.1b 0.56 ± 0.14 0.01 ± 0.01

17:00–23:59 3147 ± 57 4216 ± 295c 74.8 ± 1.4 95.4 ± 7.8a 31.5 ± 0.7 44.1 ± 3.9b 30.8 ± 0.7 38.4 ± 3.4 4.77 ± 0.47 8.30 ± 2.35

24 hours 7957 ± 81 8386 ± 337 202.3 ± 2.5 201.5 ± 10.4 77.4 ± 1.1 85.6 ± 4.7 80.2 ± 1.0 82.8 ± 4.5 5.51 ± 0.51 9.08 ± 2.37

Table 4. Energy and macronutrient intakes at different times of day divided by breakfast consumption status. 
CHO, carbohydrate; BF, breakfast. ap < 0.05, bp < 0.01, cp < 0.001.

Figure 2. Hourly distributions of energy and macronutrient intakes divided by breakfast consumption. (A) 
Energy intake by breakfast consumption. (B) Macronutrient intakes by breakfast consumption.
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meals being the only difference between the treatments. In one such study, 15 normal-weight middle-aged men 
and women underwent two 8-week diet interventions during which they consumed all the energy for weight 
maintenance in either 1 or 3 daily meals13. In a randomised cross-over design, the three meals were consumed at 
breakfast, lunch, and dinner, while in the one meal plan all foods were eaten during a four-hour time period in the 
early evening hours. During the one meal dietary regimen, morning plasma glucose concentrations were signifi-
cantly increased. Moreover, while fasting plasma insulin concentrations were not affected, the less frequent meal 
plan resulted in worse glucose tolerance as indicated by significantly greater and more prolonged elevation of 
plasma glucose concentrations. Of importance, the detrimental effects on the glucose tolerance brought about by 
the one meal per day pattern were rapidly reversed upon returning to the thrice a day meal frequency, indicating 
that the diet caused no long-lasting effects on glucose metabolism. In another study of 40 weight-stable women 
with polycystic ovary syndrome a 6-meal pattern significantly improved insulin sensitivity compared to a 3-meal 
pattern5. Yet in another study among healthy lean men, two isoenergetic diets were consumed either over 3 or 14 
daily eating occasions9. In that study, the area under curve of the 24-hour glucose concentration was lower during 
the 3-meal plan, suggesting that extremely high eating frequencies may not be of additional benefit. In another 
study of multiple meals, however, mean blood glucose concentrations of healthy men were no different during 
interventions with 3 and 17 daily meals14. In the same study, during the nibbling diet a 28% decrease in the serum 
insulin level was observed. While we were not able to identify any interventions involving subjects with type 1 
diabetes, a number of trials have been conducted among individuals with type 2 diabetes. In one such study, for 
a duration of two weeks, the daily energy was consumed in random order as either three or eight meals7. In that 
study, different meal frequencies were not associated with insulin sensitivity or the glucose and insulin responses 
to a high-carbohydrate test meal at the end of the intervention. In another randomised crossover trial, individuals 
with type 2 diabetes followed a 12-week weight-maintenance diet with either 3 or 6 daily meals6. Here, compared 
to the less frequent meal plan, following the 6-meal plan significantly reduced HbA1c and plasma glucose concen-
trations at 120 minutes post oral glucose tolerance test. Finally, following an overnight fast, 12 individuals with 
type 2 diabetes were assigned in random order to two 8-hour observation periods15. During these periods, isoen-
ergetic diets as either two or six meals were consumed. Although, during the study period, there was no difference 
in the incremental blood glucose area between the interventions, the postprandial blood glucose fluctuations, 
insulin, and free fatty acid concentrations were lower with increasing meal frequency.

While there are differences in the methods used and populations investigated, in the studies described above, 
a cautious conclusion may be drawn that dividing the daily energy intake into multiple smaller meals may be of 
some benefit for individuals with type 1 diabetes. Our observation showing that a higher number of meals was 
associated with better glycaemic control is in support of this conclusion. A number of phenomena may explain 
the benefit of dividing energy intake throughout the day. First, spreading the nutrients into smaller meals could 
reduce the impact of glycaemic load at individual meals16. Second, distributing the total daily energy into multiple 
meals may be of benefit to individuals administering external insulin, as estimating carbohydrate content of the 
smaller meals is easier17. Finally, the elevated free fatty acid levels related to the increase in meal spacing is known 
to impact glucose metabolism by reducing insulin-mediated glucose disposal in the muscle, stimulating glucone-
ogenesis, and increasing hepatic glucose output. While it is widely acknowledged that good glycaemic control is 
an important factor for the long-term vascular health, large variability of the blood glucose concentrations may 
additionally play a role in the pathology of end-organ damage in diabetes18. Therefore, identifying factors related 
to the blood glucose variability could be of importance. Of interest higher number of meals, in the current study, 
was additionally associated with increased variability of the blood glucose measurements. It has to be acknowl-
edged, however, that no data on hypoglycaemia episodes were available for the current analyses. Moreover, we 
did not identify indications for food intake. Indeed, it is highly probable that a number of eating occasions took 
place in order to treat hypoglycaemia. Therefore, the observations related to the association between the number 
of meals and increased blood glucose variability could reflect the need to correct low blood glucose values upon 
experiencing hypoglycaemia.

Adjusted means

B 95% CI pBreakfast No BF

HbA1c < 59 mmol/mol (<7.5%) 0.510 0.262–0.994 0.048

HbA1c 64.1 ± 0.5 66 ± 1.7 1.447 −2.090–4.983 0.423

Mean of the BG measurements 8.2 ± 0.1 8.8 ± 0.2 0.609 0.105–1.112 0.018

CV of the BG measurements 0.41 ± 0.01 0.43 ± 0.02 0.019 −0.015–0.053 0.280

≥8 meals ≤5 meals

HbA1c < 59 mmol/mol (<7.5%) 0.741 0.472–1.164 0.194

HbA1c 62 ± 1.0 66 ± 0.9 3.944 1.254–6.633 0.004

Mean of the BG measurements 8.0 ± 0.1 8.6 ± 0.1 0.588 0.209–0.967 0.002

CV of the BG measurements 0.42 ± 0.01 0.40 ± 0.01 −0.022 −0.049–0.005 0.113

Table 5. Associations between breakfast consumption, meal frequency and glycaemic control. Models 
are adjusted for sex, diabetes duration, smoking, energy intake, physical activity, and mode of insulin 
administration. Logistic regression analysis for the dichotomised variable (HbA1c < 59 mmol/mol), and 
generalised linear regression analysis for the continuous variables. BF, breakfast; BG, blood glucose; CV, 
coefficient of variation. In the logistic regression analyses, breakfast = 0, no breakfast = 1; ≥ 8 meals = 0, ≤ 5 
meals = 1.
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To the best of our knowledge, the current study is amongst the first ones to describe the circadian energy 
intake and breakfast habits of adult individuals with type 1 diabetes. From a previously published study of ado-
lescents with type 1 diabetes we learned, however, that 74% of girls and 98% of boys daily consumed breakfast2. 
Lunch and dinner were reported by 48% and 90% of the sample, respectively, with no differences between the 
sexes. Evident in girls, skipping breakfast and lunch were both associated with worse glycaemic control, while 
breakfast omission was additionally associated with higher eating disorder psychopathology including insulin 
omission due to weight concerns. From the previously published studies of non-type-1-diabetes populations we 
additionally learned that in a representative sample of the US adult population nearly 19% omitted breakfast19. In 
a Finnish population-based survey, instead, 97% of men and 96% of women reported eating breakfast20. Finally, in 
a small sample of non-shift-working individuals with type 2 diabetes, approximately 11% self-reportedly omitted 
breakfast10. The current observation of 7% of individuals skipping breakfast falls within the results from these 
previous reports. Similar to the previous observations21, breakfast omission in the current study was associated 
with a lower total number of meals. However, as the energy intake of those reporting and not reporting eating 
breakfast was comparable, those omitting breakfast compensated for the missed morning energy intake during 
the subsequent eating occasions, suggesting a pattern of larger but fewer meals. Subsequently, compared to the 
breakfast eaters who, beyond breakfast, exhibited three major peaks of energy intake, the curve describing the 
mean energy intake in those omitting breakfast had multiple but smaller peaks from 10:00 o’clock onwards. Given 
the lower median meal frequency, this observation suggests that the breakfast skippers of the current study are, 
amongst themselves, quite heterogeneous in their meal timings.

The association between breakfast consumption and glycaemic fate has been investigated in various popula-
tions. In the Health Professionals Follow-Up Study, for example, eating patterns of 29,206 US men were assessed 
and participants were followed-up for 16 years22. Over that period, 1944 incident cases of type 2 diabetes were 
identified. Adjusted for known risk factors for type 2 diabetes, men skipping breakfast had 21% increased risk of 
type 2 diabetes, compared with men who reported eating breakfast. Similarly, in the Nurses’ Health Study, com-
pared to those consuming breakfast 7 times per week, the risk of type 2 diabetes was significantly higher in those 
who consumed breakfast irregularly (≤6 times per week)8. Yet, in another observational study among individuals 
with type 2 diabetes, skipping breakfast was associated with almost 11% higher HbA1c values10. Amongst the 
clinical trials, in this field, is a randomised controlled trial by Betts et al., who investigated the role of breakfast 
in healthy lean adults23. In their study, individuals fasting until noon for a 6-week period experienced increased 
glycaemic variability during afternoons and evenings. Instead, the practice of regularly consuming breakfast 
helped to maintain more stable blood glucose responses. In another study with a randomised crossover design, 
Kobayashi et al. assessed the blood glucose concentrations of eight young men in two experimental conditions24. 
In one of the conditions, participants ate breakfast, lunch, and dinner, while in the other condition the same 
amount of energy was consumed at lunch and dinner times only. Skipping breakfast increased the average blood 
glucose concentration during afternoon and sleep, subsequently resulting in overall increased 24-hour average 
blood glucose concentration. Nas et al. investigated the glucose metabolism of healthy adults in conditions of 
breakfast skipping and dinner skipping25. In their study, compared to omitting dinner, breakfast skipping resulted 
in higher glucose concentrations and insulin resistance after lunch. Moreover, the observed increase in post-lunch 
fat oxidation, occurring despite of increased insulin concentration, was suggestive of metabolic inflexibility after 
prolonged fasting. Also, in type 2 diabetes, omission of breakfast was associated with an increased glycaemic 
response after lunch and dinner, when compared to the glycaemic responses taking place after lunch and dinner 
when breakfast was consumed26.

Observations related to the breakfast omission, subsequent larger meals timed at later hours, and compro-
mised glycaemic control may be related to a decrease in insulin sensitivity and glucose tolerance towards evening. 
Indeed, independent of the behavioural cycle, postprandial blood glucose concentrations are significantly higher 
in the evening compared to the morning27. Moreover, circadian misalignment by 12 hours tend to increase the 
postprandial glucose concentrations27. Of note, the above variations in glucose tolerance seemed to be explained 
by different mechanisms. The decreased pancreatic beta cell function was effective during the evening, while 
decreased insulin sensitivity seemed to be behind the effect during circadian misalignment. In line with the above 
observations, compared with a high-energy dinner, a high-energy breakfast resulted in greater improvements 
in fasting glucose, insulin, and insulin resistance, despite an overall similar energy intake throughout the day28. 
Moreover, following the lunch of similar energy contents, serum glucose and insulin responses were signifi-
cantly lower when the high-energy breakfast was consumed. The above described reduced glycaemia related to a 
meal consumed after breakfast is known as the second meal phenomenon. This phenomenon could be due to a 
breakfast-induced increase in beta cell responsiveness seen during the second meal. Here, beta cell memory and 
the magnitude of insulin release is enhanced by the earlier glucose exposure. Of importance, the second meal 
phenomenon is not restricted to the post-breakfast lunch, but seems to persist throughout the day as breakfast 
omission not only worsened the postprandial glucose and impaired insulin secretion at lunch, but also at dinner26.

We acknowledge that the current study was observational in nature and applied dietary data collected using a 
self-report method. While some reservations may be related to the self-reported energy intake, we are not aware 
if the self-report method impacts the reporting of meals and their timings. In the current analyses, data from 
only one day per participant were used. Whether the selected day is representative of the dietary practices of the 
participants at large, is not known. HbA1c was measured at the study visit, and was therefore measured prior to 
the dietary assessment. In case the reported dietary practices were not representative of the typical diet, the results 
relying on the reverse assessments of HbA1c and dietary exposure could be biased. The blood glucose measure-
ments were, however, conducted at the time of the dietary assessment. A large study sample of well-characterised 
individuals and the use of a record instead of a memory-relying recall method to collect data on dietary intake 
and blood glucose measurements are also considered strengths of this study.
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In conclusion, large variation in meal frequencies was observed in this sample of adult individuals with 
type 1 diabetes. Despite this, a pattern of 4 major peaks of energy intake was evident in the whole population. 
Individuals reporting and not reporting eating breakfast had comparable total energy intakes but distinctive pat-
terns of circadian distribution of dietary energy. Finally, our observations support the practice of a regular meal 
pattern, with breakfast and multiple smaller daily meals for better glycaemic control.

Methods
Study subjects were participants of the Finnish Diabetic Nephropathy (FinnDiane) Study. Type 1 diabetes was 
defined as diabetes onset before the age of 40 years, and permanent insulin treatment initiated within a year from 
the diagnosis. The Ethics Committee of The Helsinki and Uusimaa Hospital District approved the study protocol. 
The study was carried out in accordance with the relevant guidelines and regulations. Written informed consent 
was obtained from all individuals prior to study participation.

At the FinnDiane Study visit, participants were thoroughly examined. This included measurements of height, 
weight, and blood pressure. From these measurements body mass index (BMI; kg/m2) and the mean of two 
blood pressure measurements were calculated. Non-fasting, early morning blood samples were collected and 
sent to a central laboratory to measure serum lipid and lipoprotein concentrations. HbA1c was measured at 
each study site using a photometric, enzymatic assay. Smoking was self-reported, and those reporting current 
smoking were identified for the analyses. Mode of insulin administration was self-reported. Physical activity was 
assessed using a questionnaire on leisure-time physical activity as previously described29. Here, for the preceding 
12 months, mean frequency, single session duration, and intensity of 21 common forms of leisure-time activities 
were assessed. In order to calculate the physical activity as the metabolic equivalent of task hours (METh), the 
activity- and intensity-specific metabolic equivalents were multiplied by the duration of the activity. The METh 
was used as a continuous variable in the analyses.

Two methods were used to assess dietary intake, as described by Ahola et al.30. First, participants completed 
a diet questionnaire, which gives an overall picture of the participants’ dietary practices. In the questionnaire, 
the participants report their customary consumption habits of tea, coffee, liquid milk products, breads, spreads, 
cooking fats, salt, probiotics containing foodstuffs and dietary supplements. Additionally, adherence to any spe-
cial diets and to the dietary recommendations provided by the health-care personnel were queried. Included was 
also a 19-item food frequency questionnaire where, on a 7-level scale, the consumption frequencies of fish dishes, 
meat dishes, poultry, sausages and cold cuts, eggs, legumes, fresh vegetables, cooked vegetables, potatos, pasta 
and rice, fruits and berries, fatty cheese, low-fat cheese, yoghurt and curd, ice cream, soft drinks, sweet pastries, 
sweets and chocolates, and fried and grilled foods were reported. The questionnaire has previously been validated 
in the FinnDiane Study population of participants with type 1 diabetes31. Upon returning the diet questionnaire, 
participants were sent an allocated 3-day diet record covering two weekdays and one weekend day (consecutive 
Sunday-Tuesday or Thursday-Saturday). A second 3-day record (Thursday-Saturday or Sunday-Tuesday, respec-
tively) was completed within 2 to 3 months. In the current study, only data collected with the diet record was 
used. From the completed records, we investigated the dietary intake as reported on the second day of recording. 
The second day was selected over the first one to ensure that participants had also included night-time eating 
in the records. Compared to the later days, which may have been burdened by increasing exhaustion related to 
the record-keeping, the second day was thought to better represent the habitual dietary intake. To investigate 
the energy and macronutrient intakes over the course of the day, we formed five periods as follows: night (from 
00:00 to 04:59), morning (from 05:00 to 09:59), midday (from 10:00 to 13:59), afternoon (from 14:00 to 16:59), 
and evening (from 17:00 to 23:59), modified from the paper by Mathias et al.32. As these periods differed in their 
duration, energy intake per hour was also calculated for each of the five periods. In addition, energy and macro-
nutrient intakes per hour (e.g. intakes reported between 10:00 and 10:59 contributed towards the hour “10:00”) 
were used to plot the intakes in a graph. AivoDiet software (version 2.0.2.3, AIVO, Turku, Finland) was used to 
calculate energy and macronutrient intakes. Data from individuals with reported energy intake between 3347 and 
14644 kJ (800 and 3500 kcal) were included. When choosing the cut-off values, we took note of Willet´s publica-
tion stating that mean daily energy intakes between 500 and 4000 kcal may be considered appropriate33. However, 
upon further considerations based on the characteristics of the current study population (type 1 diabetes, mean 
age and BMI), we chose to use these more conservative cut-off values.

In addition, in order to investigate the circadian energy and macronutrient intakes of the whole population, 
we formed two groups based on the reported energy intake in the morning hours. Those with no reported energy 
intake between 05:00 and 09:59 were considered breakfast skippers, and their energy and macronutrient intakes 
were compared to those of the remaining sample. From the diet record entries, we also calculated the number 
of reported meals. Here, each report of consuming any energy-containing foodstuffs with a distinct eating time 
was considered as a meal. In the analyses, we investigated the association between the eating patterns (breakfast 
skipping and meal frequency) and glycaemic control. As measures of glycaemic control, we included HbA1c as a 
continuous variable, HbA1c as a dichotomised variable (values < 59 mmol/mol [7.5%] representing “good glycae-
mic control”), and the mean and coefficient of variation of the reported daily blood glucose measurements. Data 
for the two latter variables were obtained from the diet records as, in addition to reporting their food intake, the 
participants had also reported the results of their blood glucose measurements.

Statistical analyses. Data concerning the study population are presented as frequencies for categorical 
variables, and median (interquartile range) for continuous variables with skewed distribution. Although, many 
dietary variables also exhibited skewed distribution, we chose to present these data as means ± standard errors, 
instead. This was done because, for a number of these variables, the median for the whole population was zero, 
which was not considered particularly informative. Between-group comparisons were conducted with Chi 
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squared test for categorical variables, and Mann-Whitney U-test for continuous variables. Logistic regression 
analysis and generalized linear regression were used for the respective multivariable analyses. For the analy-
ses, IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp, Armonk, NY, USA) was used. A two-tailed P 
value < 0.05 denoted statistical significance.
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