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ABBREVIATIONS USED IN LITERATURE REVIEW 

ACC  Acetyl coenzyme A carboxylase 

AMPK              AMP activated protein kinase 

aPKC  Atypical protein kinase C 

AS160  Akt substrate of 160 kDa 
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DP-BB  Diabetes prone biobreeding 
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GLUT4  Glucose transporter 4 

GP  Gastroparesis 

GSK3β  Glycogen synthase kinase 3β   

HbA1c              Hemoglobin A1c 

HOMA  Homeostatic model assessment 

IFG  Impaired fasting glycemia 

IR  Insulin receptor 

IRS     Insulin receptor substrate 

IRS-1                Insulin receptor substrate-1 
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MAPK  Mitogen activated protein kinase 
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mTOR  Mammalian target of rapamycin 
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PI-3,4,5-P3/PIP3 Phosphatidylinositol-3,4,5-triphosphate  

PI-3,4-P2/PIP2          Phosphatidylinositol-3,4-biphosphate 

PI3K                 Phosphatidylinositol (PI) 3-kinase 
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PKB  Protein kinase B 

PPARs              Peroxisome proliferator activated receptors 

PRD                  Proline rich domain 
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RABGAP          Rab- GTPase activating protein 
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SAT                   Subcutaneous adipose tissue 
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SHR   Spontaneously hypertensive rats 

SIDD   Severe insulin deficient diabetes 

SIRD   Severe insulin resistant diabetes 
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T2DM      Type2 diabetes mellitus 
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1. INTRODUCTION 

Diabetes mellitus (DM) is one of the major threats to human health worldwide. Insulin-dependent 

diabetes mellitus (type 1 diabetes mellitus, T1DM) and non-insulin-dependent diabetes mellitus (type 

2 diabetes mellitus, T2DM) are the two primary types of DM1. In T1DM, autoimmune destruction of 

β-cells leads to outright deficiency of insulin resulting into hyperglycemia (critically high levels of 

glucose in bloodstream), whereas T2DM is associated with impaired insulin production and insulin 

resistance leading to an impaired insulin action in glucose metabolism resulting into hyperglycemia2, 

3, 4. In 2010, around 285 million people were living with DM5. In 2017, this number increased to 425 

million people worldwide, 90% of whom were living with T2DM (International Diabetes Federation-

IDF, 2017). In low- and middle-income countries, the increase in number was more prominent, and 

more frequent in men compared to women6. In addition to this, another 350 million people were 

susceptible to develop T2DM in the same year7. By 2045, the number of people (20 -79 years of age) 

with DM is projected to burgeon up to 629 million5. Moreover, gestational diabetes mellitus (GDM), 

which is diagnosed in the second or third trimester of pregnancy, affects large population of pregnant 

women worldwide2, 8. According to the report of IDF in 2017, approximately 14 % live births were 

affected by GDM.  

T2DM is primarily caused by the interplay among genetic risk factors related to 

compromised insulin secretion and insulin resistance, environmental factors such as obesity, stress, 

aging, and several other factors1,9. Due to insulin resistance and high blood glucose level, T2DM 

patient is more prone to macro vascular diseases such as hypertension, strokes, heart attack, vascular 

disease and peripheral vascular diseases, microvascular diseases such as nephropathy, retinopathy 

and neuropathy, and various forms of cancers1. Studies have shown that excessive nutrition in 

individuals susceptible to metabolic diseases causes peripheral tissues to resist insulin action and 

thereby, affect the blood glucose uptake which ultimately raises the level of blood glucose. This 

incident eventually leads to excess secretion of insulin by islet β-cells of pancreas termed as 

‘hyperinsulinemia’10,11,12. However, due to varied experimental observations, there is a debate 

whether insulin resistance is the one that causes hyperinsulinemia or vice versa. Animal studies have 

shown that chronic hyperinsulinemia is associated with reduced insulin sensitivity13, 14,15. Research 

in Lepob/ob mice has shown that insulin resistance, obesity and increased lipogenesis are preceded 

by hyperinsulinemia15, 16,17. This clearly shows that T2DM is linked to malicious complex web.  

At mechanistic level, the pathophysiology of T2DM and associated insulin resistance 

depend on a complex chain of phosphatidylinositol (PI) 3-kinase -Akt-mediated insulin signaling 

pathway in which varied perturbations such as posttranslational modifications and/or mutations in 
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insulin receptors, insulin receptor substrates (IRS) or in downstream molecules could be impetus 

behind the impairment in the pathway. Decreased phosphatidylinositol (PI) 3-kinase (PI3K)/Akt 

activities and impaired expression and function of GLUT4 glucose transporter proteins are the most 

common modifications caused in insulin resistance18. One critical factor that contributes to the 

disturbance of PI3K-Akt pathway is hyperphosphorylation of IRS proteins at Ser/Thr. It eventually 

decreases its interaction with PI3K kinase due to decreased phosphorylation at Tyr and ultimately 

reducing the phosphorylation and activation of Akt kinase19. Moreover, lipid phosphatases such as 3’ 

phosphatase PTEN (Phosphatase and tensin homolog on chromosome 10) and 5’ phosphatase SHIP2 

(the Src homology 2 domain containing inositol 5-phosphatase 2) play vital roles in negatively 

regulating insulin signaling pathway below PI3K by altering phosphatidylinositol- 3,4,5-

trisphosphate (PIP3) levels by hydrolyzing it to phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) or  

phosphatidylinositol- 3,4- biphosphate (PI(3,4)P2) respectively20,21,22. Sasaoka et al (2001) have 

reported that overexpression of SHIP2 inhibits insulin activity via its 5’-phosphatase activity in L6 

myotubes, acting as a negative regulator of PI3K-Akt-mediated insulin signaling pathway23. SHIP2 

has been shown to be upregulated in the skeletal muscle of an insulin-resistant diabetic db/db mice 

model20. Also, insulin sensitizing agents such as Rosiglitazone ameliorate upregulated SHIP2 

resulting in insulin induced Akt activation marking the association of SHIP2 with insulin resistance20. 

Since scientific literature has reported the association of SHIP2 with insulin resistance, 

inhibiting the 5’ –phosphatase activity of SHIP2 could offer a new target for the treatment of T2DM 

with despaired insulin signaling. There are few SHIP2 inhibitors reported in scientific journals in 

recent years24,25,26,27,28. However, due to poor drug like properties of these inhibitors, further 

investigation is needed to identify inhibitors that can be used as medicinal drugs. 
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2. BACKGROUND LITERATURE REVIEW 

 
2.1 Diabetes and its classification  

Diabetes mellitus (DM) is defined as ‘heterogeneous disturbances of metabolism’29. Such 

disturbances are mainly the result of hyperglycemia, possibly leading to diffused vascular impairment 

and multiorgan failure30,31. The cardinal cause for this could be explained by either disturbed insulin 

secretion or disturbed action of secreted insulin hormone or by both29. DM is becoming more and 

more common health issue at global level and no longer limited to just the western lifestyle. 

According to American Diabetes Association (ADA), 2014, DM is not a single disease but consisted 

of several diseases classified by etiology and pathology, such as Type 1 diabetes mellitus (T1DM), 

Type 2 diabetes mellitus (T2DM), gestational diabetes mellitus (GDM) and the class ‘other’ which 

includes monogenic diabetes and cystic fibrosis related diabetes32,33. Insulin deficiency is the most 

common feature in different classes of diabetes syndrome mentioned above34. Among varied classes, 

T2DM affects almost 85-90 % of the population suffering from diabetes, GDM affects ~5-6% of  the 

pregnant females who in most cases show early forms of T2DM, and patients with T1DM account 

for ~5-10%32,34. Since diabetes is heterogeneous and vary significantly, the assigned type of DM to a 

patient is often misleading since it is based on the circumstances at the time of the diagnosis2. 

 Three kinds of complications are associated with diabetes: Macrovascular, 

microvascular and neurologic. Increased blood glucose is the common denominator of all the three 

kinds of complications of diabetes. Long-term prognosis of the patients with diabetes is obscure; 

however, the chances are that the individuals may develop diabetic retinopathy (DR) with possible 

vision impairment, diabetic nephropathy (DN) resulting in renal failure, and neuropathy31. Diabetic 

patients are frequently diagnosed with cerebrovascular, peripheral arterial and atherosclerotic 

cardiovascular disease and often suffer from hypertension and impaired lipoprotein metabolism33. 

Early onset atherosclerosis of the coronary arteries is common macrovascular disease among diabetic 

patients and is frequently found to be the primary cause of death of an individual with diabetes34.  

 Numerous risk factors either modifiable, such as life style of an individual, glycemic 

control, dyslipidemia, hypertension, or non-modifiable such as genomic construction, age, duration 

of diabetes, are associated with the pathogenesis of diabetes31. Hyperglycemia is a crucial determinant 

in the development of vascular complications of diabetes, both acute and chronic hyperglycemia have 

lethal effects on diabetic patients30.  
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2.1.1 Type 1 Diabetes Mellitus (T1DM)  

T1DM is a chronic autoimmune disorder involving the selective destruction of insulin-secreting 

pancreatic β cells by a β cell–specific autoimmune mechanism. It is one of the most common chronic 

disorders occurring in children and adolescents, however it can be diagnosed in adults35. β-cells are 

responsible for maintaining glucose level within a narrow physiological range by sensing glucose and 

secreting insulin. Hence, once these cells are destroyed, the maintenance of blood glucose level is 

disturbed resulting in ketoacidosis and severe hypoglycemia. Secondary complications such as renal 

failure, vision loss or heart disease could also occur as consequences. Moreover, T1DM is a 

multifactorial disease making it difficult to elucidate the pathogenesis of the disease36,37. In the 

progression of T1DM, genetic predisposition is crucial, however, the concordance rate was found to 

be only ~40% in the studies of T1DM in identical twins indicating the contribution of nongenetic 

factors in the disease development38. To understand the pathogenesis of human T1DM, the non-obese 

diabetic (NOD) mice models and diabetes prone BioBreeding (DP-BB) rat models have been 

extensively studied. It has been shown that several different immune cell types such as CD4+ and 

CD8+ T cells, B lymphocytes, macrophages, dendritic cells (DC) and β cell autoantigens are involved 

in the β-cell specific autoimmune process39. The immunologically activated CD8+ cytotoxic T cells 

along with activated CD4+ helper T cells destroy β-cells in islets. Moreover, the damage to β-cells is 

also done by granzymes, perforin, reactive oxygen species and synergistic interactions of cytokines40.  

 For T1DM, exogenous insulin administration is quite prominent therapy. However, due 

to precise dosing issues and number of injections and other issues related with the complexity of the 

disease, stem cell based β-cell replacement therapies are under consideration for the treatment of 

T1DM for its cost effectiveness41.  

 

2.1.2 Type 2 Diabetes Mellitus (T2DM)  

T2DM was earlier believed to be an exclusive adult metabolic disease, but, since the beginning of the 

21st century, it has been reported more commonly even in youth and adolescents, and occasionally in 

children42,43. It is associated with obesity and overweight. However, metabolically obese normal 

weight (MONW) individuals with insulin resistance are at higher risk of developing T2DM than 

overweight individuals without insulin resistance or metabolic disorder. The factors responsible for 

metabolic obesity in normal weight individual might possibly involve central obesity, low weight at 

birth, lack of exercise and active routine, and family history44. Hyperglycemia and altered lipid 

metabolism are important characteristics of T2DM resulting from inadequate responses of pancreatic 

islet β cells and adipose tissue to chronic fuel surfeit44. The damaged pancreatic islets and stressed 
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adipose tissues lead to elevated concentrations of inflammatory cytokines in peripheral tissues such 

as skeletal muscle and liver due to nutrient spillover. Thus, metabolic defects such as damaged islet 

cells, impairment of subcutaneous adipose tissue (SAT) expansion, enhanced production of 

endogenous glucose in the liver and peripheral insulin resistance contribute to the development of 

T2DM45,46. 

 Once hyperglycemia is present, insulin resistance is the key predictor of T2DM and 

could be a target of therapeutic interventions. At the pre-onset of T2DM, resistance to insulin leads 

to extra secretion of insulin to compensate slightly high concentration of glucose in blood, ultimately 

leading to hyperinsulinemia. When hyperinsulinemia can no longer compensate insulin resistance, 

diabetic state persists, and hyperglycemia becomes apparent in fasting and post-prandial state. 

Hyperglycemia leads to a diffuse endothelial dysfunction, micro and macrovascular complications of 

diabetes and multiorgan failure30,31. Among several mechanisms by which hyperglycemia contributes 

to vascular complications, polyol pathway is the most crucial mechanism contributing to diabetic 

complications by increasing glucose flux47. Skeletal muscle is the major site of insulin-mediated 

glucose uptake in the post-prandial state. Impaired glycogen synthesis in muscle tissues plays a 

crucial role in the development of insulin resistance. There are three rate controlling steps in the 

metabolism of muscle glucose: GLUT4 glucose transporter, hexokinase, glycogen synthase, which 

have been implicated in impaired glycogen synthesis. Intracellular impairments in glucose transport 

is the rate controlling step for glucose uptake in muscle tissues. Impaired intramyocellular fatty acid 

metabolism could lead to such defects. Through defects in intramyocellular fatty acid metabolism, 

fatty acids could lead to insulin resistance by activating a serine kinase cascade, leading to decreased 

insulin-stimulated (IRS)-1 tyrosine phosphorylation and eventually decreased activity of PI3K 

kinase, which is a key step in insulin-stimulated glucose uptake into muscle48. 

 

2.1.3 Novel classification of adult-onset DM: recent findings 

Ahlqvist et al (2018) recently described a new substratification of diabetes based on six variables: 

glutamic acid decarboxylase antibodies (GADA), age of the patient at the time of diagnosis, HbA1c 

(Hemoglobin A1c – glycated hemoglobin), BMI (Body Mass Index) and homeostatic model 

assessment (HOMA) quantifying insulin resistance and pancreatic β cell function. In their study, they 

used data from four separate populations divided into five cohorts from Sweden and Finland (Figure 

1)48 to substratify diabetes into five clusters49.  
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(A) Traditional classification-based distribution of ANDIS cohort 

 

(B) Distribution of ANDIS cohort based on k-means clustering 

       

Figure 1. Distribution of patients based on classification method by Ahlqvist et al (2018)
49

,  

images modified from the original (License to reuse the image has been obtained from Elsevier) 

LADA: latent autoimmune diabetes in adults. SAID: severe autoimmune diabetes. SIDD: severe insulin-

deficient diabetes. SIRD: severe insulin-resistant diabetes. MOD: mild obesity-related diabetes. MARD: 

mild age-related diabetes. ANDIS: All New Diabetics in Scania
49

. 

 

Cluster 1 (severe auto immune diabetes – SAID) was associated with poor metabolic control, insulin 

deficiency, presence of GADA, relatively low BMI and was found to be an early onset disease. 

Cluster 2 (severe insulin deficient diabetes - SIDD) was an early onset disease with relatively low 

BMI, poor insulin secretion and poor metabolic regulation. Cluster 3 (severe insulin resistant diabetes 

– SIRD) was associated with high insulin resistance and high BMI. Cluster 4 (mild obesity related 

diabetes – MOD) was characterized by obesity. Cluster 5 (mild age-related diabetes – MARD) was a 

late onset disease. In their study, the patients in cluster 3 were at higher risk of diabetic kidney disease 

than patients in other clusters, however, the current treatment did not differ in their prescription. 

Moreover, patients in cluster 2 were most likely to develop retinopathy. Further, they found that a 

T2DM-associated variant in the locus TCF7L2 was linked to SIDD, MOD and MARD whereas a 

T1DM-associated variant in the locus HLA (Human Leukocyte Antigen) was strongly linked to 
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SAID. The researchers could come up with two new severe forms of diabetes: SIDD and SIRD, which 

were traditionally covered under T2DM49. 

This novel classification may assist in individualized medicine – a branch of medicine that takes into 

account the genetic, environmental and lifestyle variability of individuals rather than the one-size-

fits-all strategy to treat this heterogenous disease. The key advantages are its ability to predict diabetic 

nephropathy in SIRD and retinopathy in SIDD49. The clustering in the study of Ahlqvist et al suggests 

to target insulin resistance in randomized trials and enhance insulin sensitivity in SIRD. However, 

there are no potential drugs available to enhance insulin sensitivity except pioglitazone49. 

 

2.2 Insulin Signaling 

2.2.1 PI3K/Akt mediated insulin signaling pathway and glucose uptake 

Insulin signaling network is complex and has effects on cellular metabolism, growth and 

differentiation. Muscle tissues, adipose tissues, hepatic tissues and neurons are the major sites of 

insulin action50. Insulin performs its fundamental actions by binding to insulin receptors leading to 

the activation of three major pathways: (i) The PI3K-Akt pathway responsible for glucose uptake in 

muscle cells and adipocytes, (ii) The TSC1/2-mTOR pathway important for protein synthesis and 

cellular energy homeostasis, and (iii) The RAS-MAPK (mitogen activated protein kinase) pathway 

responsible for cell proliferation, division and motility51. Insulin regulates glucose homeostasis by 

stimulating glucose transport in insulin sensitive skeletal muscle and adipose tissues. Insulin 

stimulated glucose uptake takes place primarily in skeletal muscle by the translocation of glucose 

transporters, primarily GLUT4, from intracellular locations to the plasma membrane52. The deposited 

glucose is converted into glycogen by glycogen synthase and stored as glycogen in human muscle 

fibers53. 

Insulin-dependent translocation of GLUT4 is initiated by insulin binding to insulin receptor (IR) 

which activates its tyrosine protein kinase-containing intracellular β subunit leading to the receptor 

autophosphorylation on tyrosine residues54. Subsequently, insulin receptor tyrosine kinase 

phosphorylates insulin receptor substrates – IRS1 and IRS2, leading to the activation of the 

phosphatidylinositol (PI) 3-kinase (PI3K) mediated insulin signalling pathway55 (Figure 2).  IRS 

proteins belong to a family of adaptor proteins, which recruit the catalytic subunit of PI3K kinase, 

play a role in converting the signal of tyrosine phosphorylation to the signal of lipid kinase. Class 1a 

PI3K is activated through the binding of its SRC homology 2 (SH2)-domains of the p85 regulatory 
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adaptor subunits to phosphorylated YMXM motifs in IRS-proteins. This results into the activation of 

the p110 catalytic subunit of PI3K.  

 

 Insulin                                               plasma membrane 

 

               IR 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. PI3K mediated insulin signalling pathway (simplified)
50

. 

Once insulin binds to the IR, IR is autophosphorylated and phosphorylates IRS proteins. PI3K 

associates with phosphotyrosine sites on IRSs. Subsequently, PI3K kinase converts PIP2 into PIP3 at 

the plasma membrane. This activates PDK1 that phosphorylates Akt at the Thr308. A second 

phosphorylation takes place at the Ser473 (not shown) by mTOR2. Activated Akt phosphorylates 

downstream molecules including GSKβ and TBC1D4 mediating the effects of glycogen synthesis and 

glucose uptake respectively through their inactivation by Akt 

 

Activated PI3K quickly phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), which further activates PDK-1 (3-phosphoinositide-

dependent protein kinase-1) through its PH domain. Activated PDK1 phosphorylates Akt at Thr-308. 

For the complete activation of Akt, it is further phosphorylated at Ser-473 by the mammalian target 

of rapamycin complex 2 (mTORC2). Thus, Akt is recruited to the plasma membrane from the cytosol 

and activated fully by its phosphorylation at Thr-308 and Ser-47356. Activated Akt Ser/Thr kinase 

phosphorylate downstream substrates such as the forkhead family box O (FOXO) transcription 

factors; the protein tuberous sclerosis 2 (TSC2), glycogen synthase kinase 3β (GSK3β) and Akt 

substrate of 160 kDa (AS160), also called TBC1D4 (the RABGAP TBC1 domain family member 

  

IRS

1/2 

PI3K PIP3 

 

PDK-1 

Akt/PKB 

GSKβ TBC1D4 

Glycogen synthesis Glucose uptake 

PIP2 
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4)50. Serine phosphorylation of GSK3β by Akt leads to its deactivation resulting into the activation 

of glycogen synthase and the synthesis of glycogen from glucose57. TBC1D4, a Rab-GTPase-

activating protein (RABGAP) is the Akt2 substrate responsible for GLUT4 translocation to the 

plasma membrane.  In the unphosphorylated state of TBC1D4, the target RABS are in GDP-bound 

inactive form. In muscle cells, the target RAB isoform is RAB8a166 whereas in adipocytes, RAB10 

is the target of TBC1D450. The phosphorylation of TBC1D4 by Akt kinase leads to the activation of 

RAB proteins resulting into the docking and fusion of GLUT4 vesicles to the plasma membrane. The 

recruitment of GLUT-4 vesicles to the plasma membrane is inhibited in an TBC1D4/AS160 mutant 

lacking Akt phosphorylation sites58. 

 

2.2.2 Negative regulation of insulin action by lipid phosphatases 

2.2.2.1 Phosphatase and tensin homologue on chromosome 10 (PTEN) 

In addition to the regulation of PIP3 synthesis and concentration at the plasma membrane, its 

localization and degradation is regulated by two lipid phosphatases that dephosphorylate PIP3, thus 

negatively regulating the insulin signalling (Figure 3).  

         

         Insulin                                                                                              plasma membrane 

                                 

                  IR     

                                                                                              PTEN 

                                                                                         SHIP2 

  

Figure 3. Negative regulation of PI3K mediated insulin signaling
50

: lipid phosphatases PTEN and SHIP2 

negatively regulate PI3K-Akt mediated insulin signaling pathway through their 3’- phosphatase and 5’-

phosphatase activities respectively. 

Phosphatase and tensin homologue on chromosome 10 (PTEN) is 3’-phosphatase that hydrolyses 

PIP3 into its precursor phosphatidylinositol (4,5)-biphosphate (PI(4,5) P2) and thus it is a negative 

regulator of the PI3K/Akt signalling pathway59. The inhibition of PTEN activity results into enhanced 

glucose metabolism, cell growth and survival pathway through elevated Akt activity49. On the other 

hand, in 3T3-L1 adipocytes, overexpression of PTEN leads to inhibition of GLUT4 translocation to 

the plasma membrane and hence restricts glucose uptake60.  

 

 

  

IRS

1/2 PI3K PDK-1 

PI(4,5)P2 PI(3,4,5)P3 PI(4,5)P2 PI(3,4)P2 
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2.2.2.2 Src homology 2 (SH2) domain-containing inositol 5-phosphatase 2 (SHIP2) 

Another ubiquitously expressed lipid phosphatase, Src homology 2 (SH2) domain-containing inositol 

5-phosphatase 2 (SHIP2), is a 5’-phosphatase that hydrolyses PIP3 into phosphatidylinositol (3,4)-

biphosphate (PIP2) (Figure 3). SHIP2, a 142 kDa protein encoded by INPPL1 gene, is majorly 

expressed in skeletal muscle, cardiac muscle and brain, and consists of an N terminal SH2 domain, a 

C terminal proline rich domain (PRD) and a catalytic 5’- phosphatase core domain (Figure 4)61.  

 

 

                                     N-terminal              Catalytic Core           C-terminal 

Figure 4. SHIP2: A structural illustration. 

The protein consists of an N- terminal SH2 domain, a core catalytic 5’-phosphatase domain and the C-

terminal proline-rich (PRD) domain
61

. 

 

It has histidine (His) and aspartic acid (Asp) active site pair essential for its enzymatic activity60. In 

3T3-L1 cells, SHIP2 attenuates glucose uptake62 whereas in L6 myoblasts, it inhibits phosphorylation 

of Akt and GSK-3β and thus negatively regulates insulin induced glycogen synthesis63. On the other 

hand, the expression of the dominant-negative (DN) forms of SHIP2 lacks its 5’-phosphatase activity 

to hydrolyze PIP3 in 3T3-L1 adipocytes and L6 myotubes and enhances insulin effects in glucose 

uptake and glycogen synthesis through its secondary messenger and intracellular effectors 62,63. SHIP2 

knock out enhances insulin stimulated Akt phosphorylation in mice model. However, glucose 

homeostasis and glucose tolerance remain normal64. Moreover, small molecule inhibitors of SHIP2 

ameliorate the plasma glucose level in the rodent models of diabetes and insulin resistance24. 

Clement et al (2001) generated SHIP2 knockout (SHIP2-/-) mice by deleting exons 19-29 of 

INPPL1 gene including the active Asp site. The deletion also disrupted the second gene locus Phox2a. 

As a result, they reported rapid development of lethal hypoglycemia in the mice which died within 

three days of birth. Further, they noticed increased insulin sensitivity and glucose tolerance in the 

skeletal muscles of adult mice heterozygous for SHIP2 gene (SHIP2+/-), which led to an increased 

plasma membrane translocation of GLUT4 transporter and elevated glycogen synthesis65. In the 

subsequent study of Sleeman et al. (2005), the more viable SHIP2-/- mice without the disruption of 

second locus, when fed on high fat diet, showed obesity resistance and increased insulin sensitivity64.  

Moreover, rats on high fat diet when treated with SHIP2 antisense oligonucleotides (SHIP2-AS) 

showed increased muscle insulin sensitivity and glucose tolerance indicating a critical role of SHIP2 
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in diet-induced obesity and insulin resistance66. The liver specific expression of DN SHIP2 in 

hyperglycemic-hyperinsulinemic KKAy mice model increased hepatic glycogen synthesis and 

improved glucose tolerance67. Nakatsu et al. (2010) demonstrated that SHIP2 performs a role in 

regulating the endocytic clathrin-coated pit dynamics by dephosphorylating PIP2 in addition to PIP3 

and thus defined a major site of its action which could be critical for understanding insulin signaling 

related dysregulation68.  

 

2.2.2.3 Single Nucleotide Polymorphisms (SNPs) of SHIP2  

The human INPPL1 gene is in the chromosome 11q13-14 and is associated with T2DM and metabolic 

syndromes such as hypertension and obesity. Marion et al. (2002) first reported the association of 

INPPL1 gene mutation with T2DM in rats and humans. The authors showed that Goto-Kakizaki (GK) 

and spontaneously hypertensive rats (SHR) with R1142C mutation (substitution of an arginine to a 

cysteine at amino acid 1142) are genetically prone to T2DM and/or insulin resistance due to slight 

impairment of insulin signaling. As a result, they identified a heterozygotic deletion of 16bp sequence 

containing an ATTTA pentamer of an adenylate/uridylate-rich element in the 3’-untranslated region 

(UTR) in one of the eight diabetic subjects. This mutation enhanced the gene expression levels in 

vitro, indicating their importance in mRNA stability and translation efficiency. The researchers also 

determined the frequency of Δ16bp (16 bp deletion) mutated allele in 415 diabetic subjects from the 

United Kingdom and Belgium against 567 healthy controls. They found that 9 subjects carrying the 

mutant allele belonged to the diabetic cohort, versus 3 subjects in the control group.  7 patients out of 

9 were hypertensive and 5 patients were obese69. 

 In the subsequent study, the same group of researchers identified INPPL1 SNPs 

associated with the metabolic syndrome. They resequenced the INPPL1 gene of 15.2 Kb extensively, 

including all introns and exons, in a group of 64 people and further analyzed 11 markers and 

previously published 16bp deleted sequence. They genotyped the chosen markers in 1,304 

participants from 424 British families with T2DM with confirmed Hardy- Weinberg equilibrium. In 

this Diabetes in family (DIF) study collection, hypertension was strongly associated with a group of 

3 SNPs which were also strongly associated with central obesity. Subsequently, the researchers 

genotyped the same polymorphisms in 905 French T2DM patients and 305 control individuals. There 

was no association found between the genotype and haplotype frequencies and T2DM in the case-

control study. Though, when the French diabetic patients with hypertension and without hypertension 

were compared, it showed strong link between the insertion (I) allele and hypertension. Moreover, 

the frequency of the most common haplotype was significantly higher in the French diabetic patients 
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with hypertension than those who had only hypertension but no diabetes70. However, another group 

of researchers could not confirm the significant association between essential hypertension (EH) and 

the 3 SNPs identified by Kaisaki et al. This outcome indicated that the role of SHIP2 variants could 

be specifically limited to hypertensive metabolic syndrome patients71.  

In 2005, Kagawa and colleagues identified 10 additional SNPs with a group of 

haplotypes (SNPs 1-3) and 4 missense mutations-containing SNPs (SNPs 3-6) in a cohort of 106 

T2DM patients and 100 control individuals in a Japanese population. Their analysis revealed that the 

haplotype was more frequent in nondiabetic control than diabetic patients and one SNP, L632I 

(substitution of a leucine to isoleucine at amino acid 632) was located in the 5-phosphatase domain 

of the enzyme suggesting that the mutation might protect against insulin resistance. The protective 

role of SNP3-hSHIP2 (L632I) was confirmed further in vitro, in which insulin signaling was 

enhanced and the inhibition of PIP3 signal and Akt2 phosphorylation was reduced compared to WT-

hSHIP272.  Another study in a Japanese cohort was carried out to identify SNPs on human INPPL1 

gene promoter and in 5’-UTR region73. The researchers found several SNPs in their study, among 

which 3 SNPs formed haplotypes and were associated with impaired fasting glycemia (IFG). Also, 

SNP-hSHIP2 which was present more frequently in IFG group compared to normal group showed 

increased promoter activity in vitro when inserted in luciferase reporter plasmid.  

Hao et al investigated the association between the SNPs on INPPL1 gene and T2DM 

pathogenesis in Chinese Han cohort. In their study, (+1893CC/AA) locus of INPPL1 gene in T2DM 

individuals had significantly different genotype and allele frequency compared to that between the 

healthy control individuals. Moreover, G allele of (+2945A/G) locus was found to make the T2DM 

patients more susceptible to hypertension74. More recently in 2012, Hyvönen et al investigated the 

association of INPPL1 gene SNPs with the metabolic syndrome and diabetic nephropathy in Finnish 

T1D patients. In their study, they identified two SNPs associated with the metabolic syndrome in men 

with T1D but not with diabetic nephropathy75. Interestingly, one of these SNPs was found to be 

associated with the metabolic syndrome in a British cohort analyzed earlier by Kaisaki et al70. These 

genetic studies demonstrate SHIP2 as a crucial therapeutic target of diabetes and warrant further 

research in this area. 

 

2.3 Insulin sensitizing agents/small molecules 

Oral anti-diabetic drugs can be classified into three categories: (1) Insulin sensitizing agents (ISA) 

(biguanide, thiazolidinediones), (2) Insulin secretagogues (glinide, sulfonylurea), (3) α1-glucosidase 

inhibitors76. Apart from oral drugs, incretin mimetics such as exenatide and amylin analogues such as 
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pramlintide are injectable anti-diabetic drugs. Effects of all the oral antidiabetic drugs except α1-

glucosidase inhibitors depend on the enough level of insulin or pancreatic β cell function. The insulin 

secretagogues act primarily by stimulating impaired insulin secretion and thus depend on the 

functional β cells, whereas ISA complement the action of endogenous or exogenous insulin and 

enhance inulin sensitivity to reduce the blood glucose levels. Secretagogues are less recommended 

compared to sensitizers since their effective action depends on the optimal residual β-cell function. 

Moreover, sulfonylurea in combination with insulin often results into marginal failure to produce its 

effects and the metabolic improvements and glycemic control are short-lived and transient. 

Sulphonylureas combined with insulin and glinides do not reduce HbA1c significantly (1-2%) either. 

The use of α1-glucosidase inhibitors as antidiabetic drugs is limited due to their gastrointestinal side-

effects such as stomachache, flatulence, diarrhea76.  

 Besides the established antidiabetic drugs, targeting disordered insulin signaling 

pathway is the new approach in diabetic research. One such approach is to discover novel small 

molecule inhibitors of SHIP2 enzyme which negatively regulates insulin signaling pathway64. For 

instance, Suwa et al first time reported the discovery of novel small molecule inhibitor of SHIP2, 

AS194949024.  

2.3.1 Biguanides  

For the management of T2DM, the first-line prescribed anti-diabetic drug of choice is a biguanide, 

metformin (1,1-dimethylbiguanide) (Figure 5)77,78. The extended-release tablet dosage in the initial 

stages is 500 mg per day, usually with supper. The recommended dosage increment is up to 2000 

mg79. Apart from its use in the management of T2DM, metformin has therapeutic applications in 

other disease conditions such as cardiovascular diseases (CVD), DN, polycystic ovary disease and 

cancer80. It is an antihyperglycemic agent without the risk of overt hypoglycemia found in the case 

of secretagogues such as sulfonylureas.  

 

Figure 5. Chemical structure of metformin: two coupled guanidine molecules containing additional 

substitutions
78

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5552828_125_2017_4342_Fig1_HTML.jpg


19 
 

It has been shown that at millimolar concentrations, metformin mediates the 

suppression of hepatic gluconeogenesis and an increase in peripheral glucose uptake by inhibiting 

mitochondrial respiratory chain complex 181,82, by activating the cellular energy sensor AMPK (AMP 

activated protein kinase)83 or by mechanisms independent of AMPK84. Madiraju et al. (2014) 

identified mitochondrial glycerophosphate dehydrogenase (mGPD) as an important molecular target 

of metformin in the liver.  Suppression of mGPD by metformin leads to the inhibition of hepatic 

gluconeogenesis82. Recently the same authors revealed that at clinically relevant plasma and liver 

concentrations of metformin, it suppresses hepatic gluconeogenesis via its inhibitory effects on 

mGPD in a redox-dependent manner in vivo. This revelation indicated the less significance of the 

previously described metformin mechanism of action involving mitochondrial complex I, AMPK-

mediated ACC inhibition or reduced ectopic lipid accumulation in liver in suppressing hepatic 

gluconeogenesis85. However, the authors did not describe the mechanism of action of metformin and 

its direct target in peripheral tissues. 

 Recently, the Lehtonen lab, where this thesis was carried out, revealed for the first time 

the mechanism of action of metformin to increase glucose uptake in peripheral tissues86. Using 

cultured myotubes and db/db mice models, the group has shown that metformin directly targets 

SHIP2’s catalytic phosphatase domain and reduces its activity, but not expression, in cultured 

myotubes and skeletal muscle cells and podocytes of diabetic mice, thereby increases insulin 

sensitivity and glucose uptake in peripheral tissues. However, they revealed that metformin does not 

reduce gluconeogenesis in the liver by suppressing SHIP2 activity, the reasons for which are unclear. 

Moreover, metformin increases GLUT4 translocation at plasma membrane87 and slows down its 

endocytosis86. In the kidneys of patients with T2DM, metformin suppresses the enhanced activity of 

SHIP2. In podocytes too, it normalizes the reduced-Akt activity induced by SHIP2 overexpression, 

thereby acting renoprotectively86. Thus, in the liver, metformin acts in a way to reduce 

gluconeogenesis82, 85, whereas in peripheral tissues, it enhances glucose uptake through suppression 

of SHIP2 activity86.   

2.3.2 Thiazolidinediones (TZDs) 

TZDs are prescribed as ISA to the diabetic patients who are not advised to take metformin as a first 

line anti-diabetic drug88. TZDs are the ligands for peroxisome proliferator-activated receptors 

(PPARs), the transcription factors that upon stimulation by TZDs modify the transcription of genes 

involved in the metabolic pathways of glucose and lipid homeostasis and thus enhance insulin 

sensitivity in muscle cells, hepatocytes and adipocytes89. TZDs cause significant reduction of HbA1c 
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(0.5 % to 1.5%). However, these drugs cause weight gain, peripheral edema and cardiac failure due 

to associated risks of fluid retention. Initially, troglitazone, rosiglitazone and pioglitazone were the 

three TZDs that FDA approved. However, later, troglitazone was withdrawn from the market due the 

associated risk of liver failure. Moreover, meta-analysis studies showed the increased risk of 

cardiovascular events associated with rosiglitazone causing its withdrawal from the market in 2010. 

Later, in 2013, after further research, the restrictions were eased by FDA. Pioglitazone is known to 

decrease the risk of stroke. Though, there is a controversy about pioglitazone’s association with 

increased risk of bladder cancer which needs further studies to clarify90. TZDs are associated with 

increased risk of bone fractures especially in women and elderly men88.  

 

2.3.3 Small molecule inhibitors of SHIP2 

PIP3 is an important secondary messenger of PI3K-Akt mediated insulin signaling pathway, and 

hydrolyzed form of this messenger by SHIP2 shifts the signaling pathway to PI(3,4)-dependent 

pathway. This indicates that SHIP2 is involved in impaired-insulin signaling pathway leading to 

several diseases including T2DM, and inhibiting its 5’ phosphatase activity by small molecule 

inhibitors might be a significant therapeutic strategy91. The synthesis of many small molecule 

inhibitors of SHIP2 has been reported including phosphorylated biphenyl 2,3 ҆,4,5 ,̓6 

pentakisphosphate (biphenyl(2,3 ҆,4,5 ҆,6)P5)25 (1), thiophene carboxamide compounds 

(AS1949490)24 (2) and (AS1938909)26 (3) by Astellas Pharma Inc. (Ibaraki, Japan), a pyrazole based 

drug NGD-6133827 (4) and a pyridin based inhibitor N-[4-(4-chlorobenzyloxy)pyridin-2-yl]-2-(2,6-

difluorophenyl)-acetamide (CPDA)28 (5) (Figure 6)91.  

 Vandeput and colleagues synthesized a series of benzene and biphenyl polyphosphates 

with more rigid phosphate regiochemistry than natural inositol phosphate and with different potency 

of inhibiting inositol 5 phosphatases. In this series, phosphorylated biphenyl compound, biphenyl 

(2,3 ,̓4,5 ҆,6) P5 was found to be the most potent inhibitor of SHIP2 with IC50= 1.8µM. Moreover, this 

inhibitor was not SHIP2 substrate or SHIP2 specific since it was also found to inhibit another 

phosphatase, type I inositol 1,4,5- triphosphate 5-phosphatase. Also, the authors did not discuss the 

selective inhibition of SHIP1 or PTEN or the structures of the inhibitors in their study25. 

 Using high-through put screening, Suwa and colleagues identified highly selective, 

potent and competent SHIP2 inhibitors, thiophene carboxamide compounds (AS1949490) and 

(AS1938909) (Figure 6) with IC50 values 0.62 µM and 0.57 µM respectively24,26. In L6 myotubes, 

both inhibitors enhanced Akt phosphorylation, glucose consumption and glucose uptake. These 
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inhibitors were reported to enhance glucose metabolism in L6 myotubes by significantly inducing the 

mRNA expression of GLUT124,26. However, the analogues of these thiophene lead molecules with 

improved solubility, pharmacokinetic properties and cell permeabilities would need to be prepared as 

thiophenes have limited cell permeability and poor pharmacokinetic properties92. 

 

                                                  

            1. Biphenyl (2,3 ҆,4,5 ,̓6) P5                                        2. AS1949490                                        3. (AS1938909) 

                                       

                             4. NGD-61338                                                                            5. CPDA 

 

 

Figure 6. SHIP2 inhibitors: chemical structures
91

 

Using Automated Ligand Identification System (ALIS), Annis et al., (2009) identified a pyrazole 

based SHIP2 inhibitor, NGD-61338 with IC50=1.1µM, one of the most potent compounds in their 

combinatorial libraries that were screened. The inhibitor binds to the same site as its natural substrate, 

PIP327. However, the researchers did not discuss its selectivity with respect to other phosphatases, its 

effects in cells, bioavailability or in vivo toxicity studies.  

 Having no access to the crystal structure of SHIP2 catalytic domain at the time, Ichihara 

et al. released the data of a novel pyridine-based compound, CPDA using a ligand-based drug 

discovery (LBDD) strategy involving previously published NGD-61338 and AS1949490 as 

templates. Through in vitro assay, they could identify its greater potency to phosphorylate and 

enhance insulin signaling than AS1949490. In diabetic mice model, CPDA was found to ameliorate 

the impaired glucose metabolism significantly28.  
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2.3.4 Need for novel small molecule SHIP2 inhibitors 

Metformin is the first-line prescribed drug for T2DM in the absence of contraindications93. However, 

it is contraindicated in patients with chronic kidney disease (CKD), congestive heart failure and liver 

failure. Major side effects of metformin are gastrointestinal which are persistent in ~8% patients, thus 

the medication is discontinued. In patients with severe renal insufficiency, metformin may lead to 

lactic acidosis94.95. Especially in the case of patients with kidney injury and CKD, regulatory agencies 

have restricted its use. A severe metformin-associated lactic acidosis (MALA) could have lethal 

consequences due to multiple end-organ damage93. Moreover, metformin may interfere with B12 

absorption leading to vitamin B12 deficiency besides the deficiency of folic acid94,95.  

 The second-line agents of T2DM have their own contraindications and adverse effects. 

Hypoglycemia and weight gain are the primary side effects of sulfonylureas (SUs). Non-sulfonylurea 

secretagogues such as the class of medications known as glinides too may lead to hypoglycemia in 

patients with severe renal damages. TZDs are contraindicated in patients with cardiac failure and 

warrant extra caution in patients with peripheral vascular disease. Furthermore, α-glucosidase 

inhibitors have contraindications for gastrointestinal disorders besides liver cirrhosis and renal 

dysfunction. Amylin analog – pramlintide, an injectable drug, has contraindications in patients with 

gastroparesis (GP). It has also other gastrointestinal side effects.  

Among newer T2DM medications than the described above, Dipeptidyl peptidase -4 

(DPP-4) inhibitors are associated with increased risk of angioedema, upper respiratory tract infection 

(~3.0 – 9.0 % with sitagliptin) and urinary tract infection (~2.0 -5.0 % with sitagliptin)96,97,98. 

Glucagon like peptide -1 receptor agonists (GLP-1 RA) are not prescribed during pregnancy or 

lactation. The GLP-1 RA, Exenatide, is not advised to be prescribed to patients with severe renal 

damage95. Furthermore, sodium glucose co-transporters 2 inhibitors (SGLT2) are contraindicated in 

severe renal diseases. Urinary tract infections are also associated with this class of drugs. Insulin 

injections may precipitate cardiac failure94. Thus, the T2DM drugs that are already being prescribed 

have some common contraindications such as renal impairment and/or gastrointestinal problems. 

Moreover, we still lack SHIP2 inhibitors that have applicable bioavailability, solubility 

and pharmacokinetics properties. Since the first-line prescribed drug of diabetes, metformin, 

enhances glucose uptake in peripheral tissues by reducing the 5’ phosphatase activity of SHIP2 in 

cell cultures and in mice models86, more potent inhibitors targeting the activity of SHIP2 could be 

designed. Especially, the SHIP2 inhibitors that could be applicable in T2DM patients with impaired 
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kidney function are of great interest so that the patients with renal injury or impaired kidney function 

could benefit from the drugs. 

 Hence, searching for novel SHIP2 inhibitors that are specific to SHIP2, have better 

solubility, pharmacokinetic and bioavailability properties with little to no contraindications could be 

a keystone strategy in diabetes research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

3 AIMS OF THE STUDY 

Increasing number of patients with T2DM has necessitated the discovery of novel drug targets of 

T2DM due to lack of current optimal therapeutic options. Since insulin resistance is strongly 

associated with T2DM1 and impaired insulin signaling pathway is one of the most important factors 

behind its causes24, research in this direction could be a key strategy. SHIP2, a 5’phosphatase, is 

known to negatively regulate PI3K-Akt mediated insulin signaling pathway by hydrolyzing PIP3 to 

PIP262. Moreover, overexpression of SHIP2 is associated with insulin resistance66. Hence, inhibition 

of 5’ phosphatase activity of SHIP2 could be an important therapeutic strategy. In the last decade, 

several publications have reported identification of novel SHIP2 inhibitors 24,25,26,27,28. However, they 

still lack drug like properties. In this research scenario, 

the specific aims of the current thesis are: 

1) To identify novel small molecule SHIP2 inhibitors by testing their ability to activate the 

insulin signaling cascade in murine L6 myotubes by measuring Akt activation as an indirect 

measure of SHIP2 inhibition 

2) To test cytotoxicity of selected novel top candidate SHIP2 inhibitors in L6 myotubes 
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4 MATERIALS AND METHODS 

4.1.1 Cell Culture 

4.1.1.1 Maintenance of L6 Rat myoblasts 

L6 Rat myoblasts (CRL-1458™; ATCC®, Manassa, VA) were maintained as described earlier99 in 

high-glucose DMEM medium supplemented with 10% Fetal Bovine Serum (FBS, Sigma, St. Louis, 

MO, USA), 1% Ultraglutamine (Lonza, Basel, Switzerland) and 1% penicillin/streptomycin (P/S) 

(Sigma) in 5% CO2 at +37°C. The medium was changed every 48 hours except on weekends when 

the medium was changed early morning on Mondays. 

4.1.1.2 Splitting 10 cm continuation plate and seeding 12 well and/or 96 well plates 

The myoblasts were washed with ~10 ml sterilized PBS and then detached from the surface of dish 

by adding ~2 ml trypsin. The cells were incubated for around 4 mins at 37°C in the incubator followed 

by addition of ~7 ml fresh proliferation medium to trypsin containing cells once the cells were 

detached and free flowing in the medium. The cells were mixed well in falcon tube and centrifuged 

at 900 rpm for 4 mins. The supernatant was discarded and 4 – 5 ml fresh medium was added to the 

pellets. To count the cells, 10 µl cells were taken on each side of the Bürker chamber. For 10 cm 

continuation plate, ~20 × 104 cells on weekdays or ~18 × 104 cells on weekends were seeded in 10 

ml fresh medium.  For 12 well plates, 2.0 × 104 cells/ml/well or 1.8 × 104 cells/ml/well were seeded 

whereas for 96 well plates, 0.2 × 104 cells/100µl/well or 0.18 × 104 cells/100 µl/well were seeded 

depending on weekdays or weekends. Following formula was used to calculate the volume required 

to seed the respective number of cells.  

Required volume of cells V = (required number of cells ∕ concentration of cells), where concentration 

of cells is the number of cells counted in Bürker chamber  

The cells were split until they reached passage 8.  

4.1.1.3 Differentiation into myotubes 

Differentiation of myoblasts into myotubes for experiments in 12 well or 96 well plates was initiated 

by feeding the myoblasts a fresh differentiation medium (high glucose DMEM supplemented with 

2% FBS, 1% ultraglutamine and 1% P/S) once they reached 60-70% confluence in 12 or 96 well 

plates. The differentiation of L6 myoblasts into myotubes takes around 7-10 days depending on the 

passage number of the myoblasts. Fresh differentiation medium was fed every other day.  
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4.1.1.4 Treatment of myotubes with inhibitors 

4.1.1.4.1 Starvation of myotubes 

Once the myoblasts were completely differentiated into myotubes in 12 well plates after 7-10 days of 

differentiation period, the myotubes were starved at 37°C in starvation medium (SF medium) for 16-

20 hours. To treat the myotubes with inhibitors in the morning, the starvation was initiated in the 

previous evening. The old differentiation medium was aspirated and 1 ml fresh SF medium/well was 

added and the plate was agitated well before incubating for 16-20 hours at 37°C. 

4.1.1.4.2 Inhibitor preparation and treatment 

The novel small molecule inhibitors were prepared in DMSO by the collaborator lab and the stock 

concentration was 100mM. Before the treatment, they were diluted to 1, 10 and 25 µM concentrations 

in SF medium. For control, the same volume of DMSO as the volume of inhibitor to make 25 µM 

was diluted to fresh SF medium. After 16-20 hours of starvation period, the old medium was removed 

and 1 ml SF medium/well containing the inhibitors was added followed by incubation for 15 mins at 

~37°C.  

4.1.1.4.3 Insulin treatment 

After 15 mins of incubation with inhibitors, 10 µl of 1 µM Actrapid® human insulin (stock solution, 

Novo Nordisk Limited, Denmark) was added to each well (final concentration 10 nM) containing SF 

medium + control or inhibitors of three different concentrations and further incubated for 15 mins at 

37 °C.  The experimental scheme of the 12 well plate is following (Figure 7): 

                          3 repeats of each concentration                        Control 

 

             

 

             

 

      

            

Figure 7. Experimental scheme of the 12 well plate: inhibitor treatment 

 

25µM 10µM 1µM DMSO 
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4.2.2 Cell Lysis 

Following insulin stimulation for 15 mins, the myotube plates were immediately kept on ice and the 

cells were washed with ice-cold Phosphate-buffered saline (PBS) for three times while keeping the 

plates on ice box. It was followed by scrapping the cells into ice-cold lysis buffer [1% Nonidet P-40 

(NP40) purchased from BDH, 150mM NaCl salt, Tris-HCl, pH 7.4, 50mM NaF, 1× protease inhibitor 

cocktail (Roche (#04693116001), 1mM Na3VO4] and transferred to Eppendorf tubes to rotate for 15 

mins at 4 °C. Following rotation, the cells were centrifuged at 16,000 g at 4 °C for 10 mins and the 

supernatant was collected to measure the protein concentration.  

4.2.3 Bradford assay and sample preparation 

To prepare the samples for immunoblotting, protein concentration was measured using Bradford 

method. For this, 800 µl milli-Q water, 5 µl sample and 200 µl Bradford reagents (Bio-Rad) were 

mixed well in 1 ml plastic cuvettes. For reference reading, 5 µl of lysis buffer was mixed instead of 

cell lysate. The OD595 values of the samples were read after 5 mins of incubation on bench and 

protein concentrations in samples were calculated using a standard curve. Using the protein 

concentration, volume for 20 µg of protein was calculated and diluted with 4 × Laemmli Sample 

Buffer containing 10% β-mercaptoethanol. The samples were boiled at 100 °C for 10 mins and run 

on SDS-PAGE straight away or incubated at 100 °C for 5 mins and frozen at -20 °C to run later.  

4.2.4 Immunoblotting 

Protein samples were separated by 8% SDS-PAGE and transferred onto PVDF-FL membranes 

(Millipore, Billerica, MA) prewetted in MeOH (methyl alcohol) for 1-2 mins and equilibrated with 1 

× transfer buffer [100 ml 10× transfer buffer (19.8mM glycine + 153mM Tris), 200 ml MeOH, 700 

ml milli-Q water)] for ~2 mins, followed by a sandwich assembly of fiber pads, filter papers, gels and 

membranes as shown in figure 8. All the components were well soaked with transfer buffer and locked 

into a transfer cassette as a sandwich. Special care was taken to avoid air bubbles between the 

components of the transfer sandwich. The transfer cassette was immersed in transfer apparatus filled 

with transfer buffer. The transfer apparatus was kept in a box containing ice blocks and the transfer 

of protein samples was carried out at constant 70 V for 2 hours (or at constant 45-55 mAmp for 16-

18 hours or at constant 60 mAmp for 12 hours).   
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Figure 8. Transfer of protein samples from SDS-GEL to PVDF membrane: a sandwich assembly of 

the components of transfer cassette (Laboratory protocol) 

4.2.4.3 Immunodetection: 

Once the transfer was over, the membrane was rinsed with milli-Q water and stained with Ponceau-

S followed by the final rinse with milli-Q water to detect the protein bands. The membranes were cut 

with razor blade to get the required parts of the membranes containing the proteins of interest for 

further treatments and the rest of the membranes were discarded. The membranes were blocked in 

Odyssey blocking buffer (OBB) (LI-COR, Lincoln, NE) (diluted 1:1 with Tris Buffered Saline-TBS) 

for 1 hour at room temperature. Following blocking, the membranes were incubated with primary 

antibodies rabbit anti-phospho-Akt (Ser473) (#9271, Cell Signalling Technology, Danvers, MA) and 

mouse anti-Pan Akt (MAB2055, R&D systems, Minneapolis, MN) (1:1000 in OBB, diluted 1:1 with 

0.2% tween 20 in TBS) overnight at 4 °C. For housekeeping genes, the membranes containing the 

bands around 40-50 kDa were incubated with primary antibodies mouse anti-actin (Sigma, A3853) 

or mouse anti-α-tubulin (Sigma, T6199) (1:2000 or 1:5000 in OBB respectively). The following day, 

membranes were rinsed with TBS + 0.1% Tween 20 and washed for 15 mins three times with TBS 

+0.1 % Tween 20. After getting rid of unbound primary antibodies, the membranes were incubated 

with secondary antibodies Alexa Fluor 680 (#A10038, Invitrogen) donkey anti-mouse and/or IR800 

(#926-32213, LI-COR) donkey anti-rabbit IgGs (1:10000 in OBB, diluted 1:1 with 0.2% tween 20 in 

TBS + 0.01% SDS respectively). Detection and quantitation with an Odyssey Infrared Imager were 

done following the rinsing and washing the membranes thrice with TBS + 0.1% tween 20 for 15 mins. 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjxmK26toHfAhVmtosKHYMZBxsQjRx6BAgBEAU&url=https://openwetware.org/wiki/M465:Western_blots_part_I&psig=AOvVaw2SMl15qscCxpTnRqFcFkoJ&ust=1543849662375441
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4.2.5 Cytotoxicity test 

For alamarBlue® cytotoxicity test, 0.2 × 104 or 0.18 × 104 myoblasts/ well were seeded in 96 well 

plates using multichannel automatic pipette and differentiated into myotubes after 48 hours, which 

took around 7-10 days for myoblasts to differentiate into myotubes as described in 4.2.1. 

4.2.5.1 Preparation of inhibitor dilutions: 

Four different concentrations [50, 100, 200, 300 (µM)] of selected top candidate inhibitors were 

prepared as following: 

C300 – 4.5 µl in 1.5 ml differentiation medium 

C200 – 1 ml of C300 in 500 µl differentiation medium 

C100 – 750 µl of C200 in 750 µl differentiation medium 

C50 – 750 µl of C100 in 750 µl differentiation medium 

4.2.5.2 Treatment with inhibitors and assessment of cell viability using alamarBlue® reagent: 

As shown in figure 9, 100 µl/well of four different concentrations were added in parallel wells for 

each selected inhibitor, each having four repeats. The myotubes were incubated with inhibitors at 37 

°C for 20 hours. Following incubation, 10 µl of alamarBlue® reagent was added in each well and 

fluorescence intensity (excitation wavelength 560nm, emission wavelength 590 nm) was immediately 

measured using the Hidex Sense application, followed by the second measurement at the interval of 

45 mins and the third measurement at the interval of 60 mins. Between the measurements, the 

myotubes were incubated at 37°C. The percentage of living cells was derived by comparing it to the 

control cell. 

                                    DMSO     Inhibitor 1   Inhibitor 2 

                                 Control     µM            µM                  

                                     

Figure 9 Experimental scheme of 96 well plate for alamarBlue® cytotoxicity assay 
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5 RESULTS 

5.1 Treatment of L6 myotubes with SHIP2 inhibitors activates Akt  

Inhibition of 5’- phosphatase activity of SHIP2 enzyme increases the phosphorylation of Akt and its 

activity100. In the present study, 8 novel small molecule SHIP2 inhibitors, #160, #161, #162, #163, 

#167B, #170A, #171, #172 (due to the fact that the inhibitors are not yet secured under intellectual 

property rights, the chemical structures of the inhibitors have not been revealed in this study) were 

tested for their capacity to phosphorylate Akt to pick up the best candidate using the lysates of L6 

myotubes as described in materials and methods. These molecules were modified from the single 

candidate from the original hits found in the structure-based virtual screening86.  

 

Figure 10. Immunoblot detection of insulin-induced Akt phosphorylation in protein lysates of 

L6 myotubes using antibodies that detect phosphorylated Akt and total Akt. Actin and α-

tubulin were used for normalization.  

 

 

Figure 11. Effect of #160 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C indicate the graphs representing the three independent experimental trials each containing 

three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-Akt or pan-

Akt antibodies and the signal output was converted to percent activation by normalizing against 

house-keeping gene actin. The values are the means ± relative standard deviation of three 

experimental repeats in each trial 
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Using immunoblotting, insulin induced Akt phosphorylation on Ser473 was detected by phospho-

Akt (p-Akt) antibody at molecular weight ~60 kDa and was quantified by normalizing against 

housekeeping genes actin or α-tubulin (Figure 10)24.  

Graphs in figure 11 (A, B, C) show the three independent trials of inhibitor #160 

treatment with L6 myotubes. In the first trial (A), the Akt phosphorylation levels in the cells treated 

with 10 µM or 25µM of #160 were greater than 2-fold than in those treated with DMSO (control) 

(Figure 11, A). However, the same results could not be repeated in the subsequent trials (Figure 11, 

B, C).  

   

 

     

Figure 12 Effect of #161 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A 

and B indicate the graphs representing the two independent experimental trials each containing 

three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-Akt or pan-

Akt antibodies and the signal output was converted to percent activation by normalizing against 

house-keeping gene actin. The values are the means ± relative standard deviation of three 

experimental repeats in each trial 

 

In trial A of the treatment with the inhibitor #161, the phosphorylation levels of Akt 

were greater (~1.9-fold greater than control) at 10µM concentration of the inhibitor than at 1 µM 

(~1.3-fold greater than control) (Figure 12, A). However, at 25 µM concentration, the 

phosphorylation levels dropped down to ~1.6-fold compared to the control.  In the subsequent trial 

(Figure 12, B), the Akt phosphorylation was ~3-fold greater than in the control. In two trials (Figure 

12, A, B), the phosphorylation levels of Akt varied at different concentrations of the inhibitor which 

made it difficult to select the inhibitor for further analysis.  

#161  
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The Akt phosphorylation levels were ~1.5-fold greater than in the control or less than 

that in the three different experimental trials when treated with three different concentrations of #162 

(Figure 13, A, B, C).  

  

 

Figure 13. Effect of #162 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C indicate the graphs representing the three independent experimental trials each containing 

three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-Akt or pan-

Akt antibodies and the signal output was converted to percent activation by normalizing against 

house-keeping gene actin. The values are the means ± relative standard deviation of three 

experimental repeats in each trial 

 

 

 

Figure 14. Effect of #163 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C and D indicate the graphs representing the four independent experimental trials each 

containing three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-

Akt or pan-Akt antibodies and the signal output was converted to percent activation by 

normalizing against house-keeping gene actin. The values are the means ± relative standard 

deviation of three experimental repeats in each trial  

#162 

#163 
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Inhibitor #163 increased the phosphorylation of Akt in a concentration dependent 

manner. The phosphorylation levels were ~3-fold or greater than 3-fold at 25 µM concentration of 

the inhibitor compared to the control in trials A, C and D when normalized against actin (Figure 14, 

A, C, D). The result could not be repeated in one of the four trials (Figure 14, B) where increase in 

Akt phosphorylation was less than 2-fold compared to the control. Though, the inhibitor #163 was 

selected for cytotoxicity test as the results were consistent in three trials (Figure 14, A, C, D). 

The results of the trials with inhibitor #167B were highly inconsistent and could not be repeated 

(Figure 15).  

 

 

 

 

Figure 15. Effect of #167B on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C, D and E indicate the graphs representing the five independent experimental trials each 

containing three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-

Akt or pan-Akt antibodies and the signal output was converted to percent activation by 

normalizing against house-keeping gene actin. The values are the means ± relative standard 

deviation of three experimental repeats in each trial 

 

#167B 
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Treatment with Inhibitor #170A increased the phosphorylation of Akt in a concentration 

dependent manner in trial A (Figure 16, A) which was consistent with the treatment with #163 (Figure 

14, A, C, D). However, the trials could not be repeated (Figure 16, B, C). Inhibitor #170A was chosen 

nevertheless along with inhibitor #163 to assess the cytotoxicity test after discussing the results with 

the other members of the lab working on the same project.  

 

 

 

Figure 16. Effect of #170A on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C indicate the graphs representing the three independent experimental trials each containing 

three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-Akt or pan-

Akt antibodies and the signal output was converted to percent activation by normalizing against 

house-keeping gene actin. The values are the means ± relative standard deviation of three 

experimental repeats in each trial  

 

In order to investigate the stability of the house-keeping gene expression under the 

current experimental conditions in L6 myotubes to get reliable results, I decided to normalize the test 

results of #171 and #172 with actin as well as α-tubulin. The graphs in figure 17 (A) shows ~ 1.75-

fold increase in the Akt phosphorylation level compared to control at 10 µM concentration of #171 

when the values were normalized against both actin and α-tubulin house keeping genes separately in 

the same blot. The graph patterns looked similar when normalized against two different house keeping 

genes. The inhibitor showed reduced Akt phosphorylation at 25 µM compared to the control when 

normalized against actin, whereas, it slightly enhanced the Akt phosphorylation at the same 

concentration compared to the control when normalized against α-tubulin (Figure 17, A). However, 

in the subsequent trial, Akt phosphorylation was enhanced at 1 µM concentration whereas at higher 

concentrations, it was lower than the control when normalized against actin or α-tubulin (Figure 17, 

B). Graphs in figure 17 (C) show ~4.5-fold increase in Akt phosphorylation at 10 µM concentration 

and ~3.5-fold increase at 25 µM concentration when normalized against α-tubulin whereas when actin 

#170A 
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was used for normalization, no differences were observed. In the fourth trial (D), the phosphorylation 

level of Akt increased ~1.25 fold only at 25 µM when the signal was normalized against actin.  

 

 

 

Figure 17. Effect of #171 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control). A, 

B, C and D indicate the graphs representing the four independent experimental trials each 

containing three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-

Akt or pan-Akt antibodies and the signal output was converted to percent activation by 

normalizing against house-keeping gene actin or α-tubulin. The values are the means ± relative 

standard deviation of three experimental repeats in each trial 

 

Akt phosphorylation level in myotubes treated with #172 was around control level or 

below control level when normalized against actin or α-tubulin (Figure 18, A). In the subsequent trial 

(B), the Akt activity was ~1.25-fold greater than in the control at 10µM when normalized against 

actin. In the same trial, at 25 µM, Akt activity was reduced compared to the control. However, 

normalization against α-tubulin showed that the phosphorylation level of Akt was lower than in the 

control at all concentrations. Interestingly, in the third trial, Akt phosphorylation was enhanced the 

most at 25µM concentration whereas none of the concentrations of the inhibitor enhanced the 

phosphorylation of Akt above the control when normalized against α-tubulin. It is noteworthy that in 

#171 
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the fourth attempt, the Akt phosphorylation level was almost 1.5-fold greater than in the control at 1 

µM when normalized against actin and almost 2.0-fold greater when normalized against α-tubulin at 

the same concentration. In comparison to 1µM concentration, higher concentrations in the fourth 

attempt did not differ much in relation to earlier attempts for the same inhibitor.  

 

 

 

Figure 18. Effect of #172 on insulin-stimulated Akt phosphorylation in L6 myotubes. The level 

of Akt phosphorylation in myotubes treated with DMSO (vehicle) was set to 100% (control) (A, 

B, C and D indicate the graphs representing the four independent experimental trials each 

containing three repeats. The L6 myotube lysates were immunoblotted (not shown) against p-

Akt or pan-Akt antibodies and the signal output was converted to percent activation by 

normalizing against house-keeping gene actin or α-tubulin. The values are the means ± relative 

standard deviation of three experimental repeats in each trial 
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5.2 Biological evaluation of inhibitors #163 and #170A using cell viability test 

 

(1) #163                                                                                   

alamarBlue® cytotoxicity assay of the inhibitor #163 

 

(2) #170A 

 

alamarBlue® cytotoxicity assay of the inhibitor #170A 

 
 

Figure 19. Analysis of alamarBlue® cytotoxicity assay of (1) #163 and (2) #170A. Graphs show 

the combined average results of the four different experimental trials for two different 

inhibitors on different days, where X-axis represents the four different concentrations 50, 100, 

200, 300 (µM) of the inhibitors and Y-axis represents viability of L6 myotubes (% of control) 

after 20 hours of incubation with inhibitors. The error bars indicate relative standard deviation 

of the four different experimental trials at each concentration value.  

 

 

Figure 19 (1) and (2) show the graphical analysis of alamarBlue® cytotoxicity assay of the inhibitors 

#163 and #170A that were selected for the assay out of the eight inhibitors studied in the present 

thesis. In total, four experimental trials were carried out for both the inhibitors on different days.  
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L6 myotubes treated with the increasing concentrations of the inhibitor #163 

proliferated above control level (>100%) indicating the inhibitor did not affect the growth of the cells 

negatively (Figure 19.1). The viability ranges from ~111% at 50 µM to ~113% at 300 µM suggesting 

that #163 is not toxic to myotubes. In Figure 19.2, the cell viability decreases with the increasing 

concentrations of the inhibitor #170A. The viability ranges from ~96% at 50 µM to ~70 % at 300µM 

(Figure 19.2). At 300 µM, the myotubes are not killed at least 50% of the initial population suggesting 

that the median lethal dose (LD50) of the inhibitor #170A is above 300 µM. Thus, the results indicate 

that since the LD50 values are greater than 300 µM for both the inhibitors, at the experimental doses 

selected for Akt activation in L6 myotubes, the inhibitors are not toxic to myotubes.  
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6. DISCUSSION 

Insulin signaling pathway is one of the most interesting research areas for novel drug 

targets of T2DM associated with insulin resistance. Moreover, an association between a novel cluster 

of T2DM known as severe insulin resistant diabetes (SIRD) and diabetic kidney disease has been 

reported in a Swedish research, though the new classification has not yet been implemented into 

clinical use49. At mechanistic level, intracellular lipid phosphatase, SHIP2, negatively regulates 

PI3K-Akt mediated insulin signaling pathway by catalyzing the hydrolysis of PIP3 to PIP2 upstream 

of Akt, and hence inhibits its activation63. In dysregulated insulin signaling pathway, this may lead to 

disease conditions including insulin resistance and T2DM. Hence, inhibition of SHIP2 might prove 

to be a beneficial treatment strategy for insulin resistance and T2DM over the traditional antidiabetic 

drugs such as ISA or insulin secretagogues. 

 Apart from the earlier genetic studies on the inhibition of SHIP263, 66, 68, 69, Suwa et al 

first time reported the discovery of novel small molecule inhibitor of SHIP2, AS1949490, by studying 

its inhibitory effects on the 5’ phosphatase activity of SHIP2 in regulating insulin signaling pathway 

and glucose metabolism in vitro and in vivo23. Their immunoblotting results indicated an increase in 

insulin-induced Akt phosphorylation in L6 myotubes treated with AS194949024. The in vivo analysis 

indicated that AS1949490 primarily inhibits SHIP2 activity in the mice liver. In the last decade after 

the report of the first SHIP2 inhibitor, AS19494190, several small molecule SHIP2 inhibitors have 

been reported in scientific literature24,25,26,27,28. However, they still lack drug like properties such as 

solubility, bioavailability, pharmacokinetics properties.  

The present thesis focuses on the novel SHIP2 inhibitors that act mainly in skeletal 

muscle tissues since it represents the primary site of insulin resistance in CKD102. Inhibitors that 

function primarily in skeletal muscle may provide a new alternative to the current treatment strategies 

for the T2DM patients suffering from CKD102,103. In this thesis, I have attempted to study the capacity 

of eight novel small molecule SHIP2 inhibitors to increase the phosphorylation of Akt using 

immunoblotting. Based on the results of immunoblotting, further I carried out cytotoxicity assay of 

the two selected inhibitors, #163 and #170A.  

 The treatment of serum-starved L6 myotubes with SHIP2 inhibitors followed by insulin 

stimulation led to the phosphorylation of Akt, which is in line with the previous reports that inhibition 

of SHIP2 activity activates insulin signaling pathway61, 62, 63. I normalized the Akt phosphorylation 

to two different house-keeping proteins, actin or α-tubulin. Akt plays a role in the regulation of actin 

organization in cytoskeleton104. Moreover, interpreting the data using a single housekeeping protein 
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actin might provide a pseudo-positive or false negative activity of Akt since house keeping proteins 

are not always very stable under experimental conditions. Besides unstable control genes, uneven 

differentiation of L6 myotubes could also contribute to the varied fold changes in Akt 

phosphorylation in separate trials.  

In 6 inhibitors out of the 8 inhibitors tested, the fold changes in Akt phosphorylation 

could not be repeated. The reason for this could be that the myoblasts were not seeded evenly in 12 

well plates in some experiments. It is to be noted that the higher the passage number, the more difficult 

it is to differentiate L6 myoblasts, which indicates that in future we need to be more careful while 

differentiating L6 myoblasts and should keep the track of timings and circadian rhythm of this 

immortalized cell line105 during splitting. In L6 myotubes treated with inhibitor #163, Akt 

phosphorylation increased almost 3-fold or above in three separate trials out of four trials in 

concentration dependent manner upon insulin stimulation and peaked at 25 µM concentration of 

#163. I normalized Akt phosphorylation against α-tubulin house-keeping protein (data not shown) in 

addition to actin to screen the effect of experimental conditions and test proteins on loading control 

proteins to alleviate erroneous results. Interestingly, upon normalization against α-tubulin, the Akt 

activation decreased drastically at 25 µM contrary to its highest activity in case of actin. This variation 

might be due to the differential stabilization of microtubules and actin organization and cell motility 

by differential expression of Akt phosphorylation104,106. The variation in normalization values could 

also be due to an experimental error. The samples for 25 µM were loaded on the edge of the blot and 

might not have been soaked evenly during incubation in the antibody dilutions leading to uneven 

signals and thus false-reduced Akt phosphorylation in the case of α-tubulin at 25µM concentration of 

#163. Treatment of myotubes with #170A in trial A also increased Akt phosphorylation almost 2-fold 

at 25 µM of the inhibitor in concentration dependent manner. Though, the results could not be 

repeated in trial B and trial C of #170A. Moreover, similar fold changes in Akt phosphorylation in 

three trials of #163 and trial A of #170A was the impetus for their selection for alamarBlue® assay 

to examine their cytotoxicity.  

The viability of the myotubes was found to be above 100% at all concentrations of the 

inhibitor #163 with ~1.13-fold increase at 300 µM. This could be due to the increased glucose 

metabolism of L6 myotubes following treatment with #16326. On contrary to the results of #163, the 

viability of L6 myotubes treated with different concentrations of #170A decreased in concentration 

dependent manner ranging from ~96% at 50 µM to ~70 % at 300µM. This shows that over the course 

of time, the conversion of resazurin to resorufin decreased and the innate metabolic activity and 
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viability of cells decreased. From this, it could be inferred that higher concentrations (above 50 µM) 

of the inhibitor #170A had toxic effects which might have triggered cell death or apoptosis, impaired 

cellular metabolism, necrosis or disruption of cellular membrane which reduced the RFU107. 

However, for both the inhibitors, the LC50 concentration is higher than the experimental doses (1µM, 

10µM, 25µM). Also, from figure 19, it could be inferred that at experimental doses of the inhibitors 

used in this study, the inhibitors are not toxic.  

In this thesis, I have first time reported the study of eight novel SHIP2 inhibitors #160, #161, 

#162, #163, #167B, #170A, #171 and #172 to analyze their capacity to activate Akt kinase following 

insulin stimulation, and based on it, further analyzed cell viability by alamarBlue® cytotoxicity assay. 

There are more inhibitors to be tested from the chemical library in addition to the inhibitors tested in 

this study. This study would be beneficial in analyzing further small molecule SHIP2 inhibitors and 

thus would be a preliminary step in the discovery of novel small molecule SHIP2 inhibitors for T2DM 

therapeutics. 
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7. CONCLUSION 

The present study was based on the role of SHIP2 enzyme as a negative regulator of PI3K-Akt 

mediated insulin signaling pathway and its association with insulin resistance and T2DM. Since 

SHIP2 is a 5’ phosphatase that hydrolyzes PIP3 to PIP2 and ultimately inhibits the phosphorylation 

of Akt and hence its activity leading to the dysregulation of insulin signaling, inhibitors of SHIP2 

could be a beneficial therapeutic strategy for the treatment of T2DM. One of the aims of this thesis 

was to identify potential SHIP2 inhibitors by their capacity to phosphorylate Akt kinase indicating 

the activation of PI3K-Akt mediated insulin signaling pathway. The immunoblot results showed ~3-

fold increase in Akt activation when myotubes were treated with inhibitor #163 and ~2-fold increase 

in Akt activation when myotubes were treated with #170A in concentration dependent manner and 

were therefore chosen further for cytotoxicity assay. The results of alamarBlue® cytotoxicity and cell 

viability assay showed that viability was above control levels when the myotubes were treated with 

#163 whereas it decreased in concentration dependent manner when treated with #170. This indicated 

that #163 did not have toxic effects on the myotubes while #170 did affect the viability of the 

myotubes. However, the LD50 value for #170 was greater than 300 µM which is above the 

experimental doses of the inhibitors. Thus, immunoblot and alamarBlue® cytotoxicity assay results 

of the present work indicate #163 and #170A to be the potential candidates out of the 8 tested SHIP2 

inhibitors.  

          All the 8 inhibitors tested in the present work showed fold changes in the Akt activation in 

varied degrees in different experimental trials. However, due to the large experimental variations, in 

future, more trials need to be performed with these inhibitors including #163 and #170A to get 

consistent results which would allow combined statistical analysis. One of the factors behind the large 

experimental variations might be the difficulty in culturing and differentiating L6 myoblasts which 

could be eased by working with this cell line over a period.  

          Apart from these 8 inhibitors, more inhibitors from chemical library need to be tested to select 

the best SHIP2 inhibitors that are potential candidate for further analysis. This thesis first time reports 

eight novel SHIP2 inhibitors #160, #161, #162, #163, #167B, #170, #171, #172 and attempts to screen 

the best out of them. This could be a significant step in the discovery of new T2DM drugs for more 

efficient, cost effective and safe treatment of the disease with least contraindications.  
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