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Naturalistic language comprehension: 
a fMRI study on semantics in a narrative context 

Kurkinen, K.1,2 
 
1 Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science 
2 Molecular and Integrative Biosciences, Faculty of Biological and Environmental sciences, University of Helsinki 
 
Abstract: Semantics is a study of meaning in language and basis for language 
comprehension. How these phenomena are processed in the brain is still 
unclear especially in naturalistic context. In this study, naturalistic language 
comprehension, and how semantic processing in a narrative context is reflected 
in brain activity were investigated. Subjects were measured with functional 
magnetic resonance imaging (fMRI) while listening to a narrative. The semantic 
content of the narrative was modelled computationally with word2vec and 
compared to voxel-wise blood-oxygen-level dependent (BOLD) brain signal 
time courses using ridge regression. This approach provides a novel way to 
extract more detailed information from the brain data based on semantic 
content of the stimulus. Inter-subject correlation (ISC) of voxel-wise BOLD 
signals alone showed both hemispheres taking part in language 
comprehension. Areas involved in this task overlapped with networks of 
mentalisation, memory and attention suggesting comprehension requiring 
other modalities of cognition for its function. Ridge regression suggested 
cerebellum, superior, middle and medial frontal, inferior and medial parietal 
and visual cortices bilaterally and temporal cortex on right hemisphere having 
a role in semantic processing of the narrative. As similar results have been found 
in previous research on semantics, word2vec appears to model semantics 
sufficiently and is an applicable tool in brain research. This study suggests 
contextual language recruiting brain areas in both hemispheres and semantic 
processing showing as distributed activity on the cortex. This activity is likely 
dependent on the content of language, but further studies are required to 
distinguish how strongly brain activity is affected by different semantic 
contents. 
 
Keywords: naturalistic language, comprehension, semantic processing, narrative, lexicon, 
concept, cognition, context, computational linguistics, word2vec, functional magnetic 
resonance imaging, inter-subject correlation, ridge regression, cortex 
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Introduction 

As language is the basis of how we humans interact but also partly what we construct 
our inner worlds with, there has been many attempts to explain the mechanisms 
behind it. Some theories in philosophy have tried but could not explain our ability to 
creatively combine information and to talk about entirely abstract ideas that do not 
physically exist in our world (Lakoff, 1988). One example of such a theory was Hilary 
Putnam’s theory of semantic externalism (Putnam, 1973, 2013), also known as 
objectivistic semantics – meaning lies in the objects around the subject. Putnam’s and 
other philosophers such as Noam Chomsky’s work at the time was followed by a 
theory called experientialist cognition, supported by philosophers in the late 1980. As 
opposed to semantic externalism, experientialist cognition focused more on internal 
events when talking about semantics, suggesting meaning of language being more 
psychological in nature (Lakoff, 1988). This view has also been called constructivist 
semantics - the meaning is constructed in the subject’s mind. 
 
Moreover, some have suggested a need for entirely new philosophical view instead of 
objectivist or constructivist approaches (Jonassen, 1991). One could argue, that 
meaning of language must lie somewhere in between the external world and 
consciousness of an individual, shaped by social interaction between people. Later on, 
with the advances in brain imaging many of the linguistic phenomena discussed in 
philosophy have been studied from an experimental point of view (Mashal, Faust and 
Hendler, 2005; Ahrens et al., 2007; Rapp et al., 2011; Saban-Bezalel et al., 2017). For this 
field of research, the use of naturalistic stimuli in functional brain imaging studies 
might provide new insights on how human brain processes meaningful information 
during more natural phenomena and not only during simple stimuli and tasks. 
 
Semantic processing of language 
 
Semantic processing refers to understanding the meaning of words and sentences, and 
larger texts these comprise (Cruse, 2011). Therefore, within this framework, semantics 
is thought to be part of the process of comprehending language. The meaning in words 
is based on the knowledge we acquire through experience (Bréal, 1897). Since there is 
meaning encoded into words, we humans are able to meaningfully communicate with 
each other via language. 
 
The importance of semantic processing in language comprehension is reflected in 
acquired disorders, such as semantic variant of primary progressive aphasia (svPPA), 
and developmental disorders, such as semantic-pragmatic language disorder (SPD). 
SvPPA, also known as semantic dementia (SD), is a degenerative nervous system 
disorder that affects semantic memory of the patient and causes anomia, difficulty in 
retrieving words from memory (Mesulam et al., 2003). Semantic-pragmatic language 
disorder (SPD) is a language impairment that has an effect on semantic and pragmatic, 
i.e. context related, processes of an individual. Its core symptom is delayed language 
development. Research on semantics could potentially benefit patients with 
deficiencies in language comprehension. 
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Research on genetics has shown the importance of conservation of and missense 
mutations on FOXP2 gene in the development of human language to its current form 
(Enard et al., 2002; Atkinson et al., 2018). It has been proposed that this gene has also a 
role in our symbolic thought and abstraction (Atkinson et al., 2018). FOXP2 encodes a 
transcription factor forkhead box protein P2 that has a role in the development and 
plasticity of the brain among its other effects (Fisher and Scharff, 2009; Atkinson et al., 
2018). Mice that were transfected with human version of FOXP2 showed altered 
dopaminergic concentrations. Dopaminergic cells target striatal D1 receptor 
expressing medium spiny neurons that express also FOXP2 (Wijchers et al., 2006; 
Enard et al., 2009). Most of the dopaminergic cells react to stimuli with a prediction 
error response by bursting with an unexpected reward and silencing their firing with 
an expected but a failed one (Bayer and Glimcher, 2005; Schultz, 2016). Some of these 
dopaminergic cell bodies in substantia nigra and ventral tegmental area project to 
dorsal striatum. Contextual information from cortex is suggested to merge with the 
information from reward system in striatum (Enard et al., 2009; Lieberman, 2009).  
 
Mutations on FOXP2 gene correlate with deficits in linguistic skills (Fisher and Scharff, 
2009) but some argue these to be related to motoric language production, such as in 
developmental verbal dyspraxia (Ocklenburg et al., 2013). Other genetic influences on 
language functions have been suggested. For example, missense mutation on 
progranulin (GRN) coding gene has been found in a patient with svPPA (Cerami et al., 
2013). Then again, other sources suspect svPPA to be sporadic in its pathology 
(Landin-Romero et al., 2016). Genetic screening of patients with language disorders 
combined with behavioral and genetic studies on animals might provide an additional 
layer in the field of language research from the evolutionary perspective. 
 
Communication context evolutionally important 
 
Communication has been the core drive for complex language development (Arbib, 
2005), from us being able to refer to concrete items in the surroundings all the way to 
the ability to make abstractions, name them and share those with others. Evolution of 
language has evidently had an effect on the semantic capabilities of humans, by 
expanding these over the course of time. Semantic abilities of other species such as 
primates have also been studied. Primate calls contain different combinations of 
sounds that specify the nature of danger, thus having semantic variability in them 
(Arnold and Zuberbühler, 2006). Studies on animal behavior and genetics could 
further lead to understanding at least the basis of human language, although the 
ability to think abstractly is thought to be unique for humans. 
 
Context is important in language comprehension and is the most important cue for 
predicting what is about to come next in language. Meaning of a single word can vary 
even drastically depending on the referent context (Pulvermüller, 2019). A sentence 
taken out of its context can be understood very differently from what was meant by it 
in the first place. This path is dual: the brain makes attempts to bring together the 
context from the language already used, and from this context it makes predictions for 
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the future. In the field of semantics context of language is especially important and 
research using linguistic stimuli without wider context might not represent semantics 
fully.  
 
During recent years, language research has shifted from using parts of language taken 
out of their context towards more naturalistic settings (Verga and Kotz, 2019). While 
block or event-related study designs with simple stimuli have been traditionally used 
in BOLD fMRI studies (Pan et al., 2011), naturalistic stimuli are continuous and offer 
an alternative approach to study language with fMRI.  As communication is the most 
natural form of language, it should be taken into account as the context when studying 
meaning. Use of communicationally informative stimuli should thus be considered in 
brain research – studying brain with narratives or conversations might reveal more 
about semantics than single words. 
 
Language as a part of cognition 
 
Understanding naturalistic language is a complex cognitive event often recruiting 
other modalities of cognition for its function (Zwaan et al., 2004; Jung-beeman, 2005; 
Bastiaansen and Hagoort, 2006). Networks overlapping with language processing are 
for example networks of attention, working memory, mentalization and consciousness 
(Chafe, 1974; Baddeley, 1992; Garagnani, Wennekers and Pulvermüller, 2008; 
Vanlangendonck, Willems and Hagoort, 2018). In addition, emotional aspects of our 
mind are playing a role in understanding language fully (Ferstl, Rinck and Cramon, 
2005). Complete separation of these networks might not always be the most functional 
approach for studying language and cognition, since they seem to be interconnected 
to each other (Mill, Ito and Cole, 2018). In addition, brain areas have multiple functions 
(Kanwisher, 2010), thus having a role in multiple networks. 
 
Attention in language comprehension 
 
Literature suggests varying theories over how these networks are related to language 
processing. For example, the more attentive the individual is the better comprehension 
of language the person has (Kristensen et al., 2013). Attentive processes direct our focus 
on incoming sensory information or alternatively to internal processes of the mind 
(Lepsien and Nobre, 2006). This might not be directly part of the linguistic network in 
its core but have a role in what information in language we are putting our focus on. 
Some attention deficits might also disturb language comprehension even if there are 
not direct problems in the traditional linguistic areas or their connectivity (Mcinnes et 
al., 2003). 
 
Attention network has been thought to divide into ventral and dorsal streams in the 
fronto-parietal networks (Scolari, Seidl-Rathkopf and Kastner, 2015). Areas such as 
ventral precuneus (vPCUN) (Zhang and Li, 2012), middle frontal gyrus (MFG) and 
temporal-parietal junction (TPJ) are associated with attentive processes (Ptak and 
Schnider, 2011). Fronto-parietal network functions have also been found to contribute 
to enhanced speech comprehension in narrative context (Smirnov et al., 2014). These 
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brain areas are involved both in spatial attention tasks and sentence comprehension, 
suggesting attention having a role in language comprehension. Clear language pitch 
used in the stimuli recruit attention areas more robustly than non-articulated sentences 
suggesting direction of attention favoring sounds typical to spoken language 
(Kristensen et al., 2013). 
 
Language comprehension recruit memory 
 
Networks of memory are closely related to language (MacKay, Stewart and Burke, 
1998; Bastiaansen and Hagoort, 2006). Both short- and long-term memory are 
important for language comprehension (Hagoort, 2005). Enough working memory 
capacity is required to maintain the context in mind (Baddeley, 1992; Cain, Oakhill and 
Lemmon, 2004). Explicit (declarative) memory is required for the storage, and later 
retrieval of words and their meanings from this long-term memory. Memories are 
thought to be stored as engram cells that are controlled over hippocampal activity 
(Semon, 1921; Blank et al., 2016). Some research puts more emphasis on the 
connectivity of the brain, and the strength of these connections between nodes in the 
networks (MacKay, Stewart and Burke, 1998). In spite of the framework or theory 
discussed, memory functions are important in language processing. 
 
Maintaining context in mind is needed for comprehending language, and working 
memory capacity has been suggested to have an effect on word comprehension 
(Daneman and Merikle, 1996). Working memory has been suggested to take place in 
dorsolateral prefrontal cortex (DLPFC; Barbey, Koenigs and Grafman, 2013). Activity 
in inferior frontal gyri (IFG) and some inferior parietal lobular (IPL) areas have been 
found to correlate with working memory tasks (Newman, Just and Carpenter, 2002; 
Barbey, Koenigs and Grafman, 2013). DLPFC has been found to be involved in 
sentence comprehension (Klaus and Schutter, 2018). IFG and IPL contribution in 
language comprehension have been found in studies with words and naturalistic 
stimuli (Binder et al., 2009; AbdulSabur et al., 2014). Overlapping in these areas suggest 
that working memory is recruited in language processing and its capacity has an effect 
on language comprehension. 
 
Semantic memory – storage for meaning 
 
Semantic memory is the part of declarative memory that consists the linguistic 
knowledge of a person (Tulving, 1972). This collection of knowledge in words, that 
changes over time, is referred as lexicon (Bréal, 1897). Semantic memory is recruited 
in language comprehension (Kutas and Federmeier, 2000). Even though it does not 
represent our memory as a whole, it contains associations we make in this world, such 
as names for people and objects, but also for more abstract phenomena and concepts 
(Binder and Desai, 2011). Some have argued that as well as lexicon is related to 
semantic memory, it associates to episodic memories especially in children whose 
semantic memory is not as structured as that of adults (Petrey, 1977). Important is that 
we are able to make associations between words and experiences, and eventually 
retrieve these associations again in future situations. 
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Literature suggests that knowledge within the lexicon contributes more to meaning 
than for example syntax, the structure of language (Fedorenko, Nieto-castañon and 
Kanwisher, 2012). This statement contains a presumption that language structure and 
semantic meaning are separate phenomena. Other sources claim that lexical 
knowledge contains both semantic and syntactic properties of language (Bastiaansen 
and Hagoort, 2006; Müller and Hagoort, 2006). The distinction between these two is 
not clear and they are often intertwined in neuroscientific research (Fedorenko, Nieto-
castañon and Kanwisher, 2012). Another debate is whether lexical semantic processing 
differs from semantic processing of non-linguistic visual cues (Bright, Moss and Tyler, 
2004). 
 
Conceptual categories, such as tools and animals, are our way to generalize, store and 
organize information (Pustejovsky, 1991; Pulvermüller, 2019). As we use 
categorization to simplify our world, our brain uses similar approach to reduce its 
computational load. Conceptual knowledge divided into these categories can be 
attained with visual or verbal cues (Bright, Moss and Tyler, 2004). Thus, we can think 
lexicon to be divided into semantic conceptual categories (Müller and Hagoort, 2006), 
and each word in the lexicon seems to fall into these categories based on the features 
they have. The core semantic network is activated in a similar manner when 
processing conceptual similarity between items such as an apple and a pear and the 
associative links between dissimilar items such as apple and a tree, that often occur in 
a similar context but are not under the same semantic category (Jackson et al., 2015). 
 
Feature semantics refer to our ability to associate certain features to words and 
concepts. Such features can for example be perceptual properties related to our 
sensory systems, such as visual shapes, somatosensory cues, sounds and smells 
(Jackson et al., 2015; Pulvermüller, 2019). Some literature in cognitive science refers the 
group of features related to concepts as conceptual spaces. Each space is formed by 
quality dimensions, that are mathematically measurable. For example, color of an 
object can have dimensions of hue, saturation and brightness (Gärdenfors, 1996). We 
can also associate emotions (Binder and Desai, 2011), other objects and environments 
(Jackson et al., 2015), movement (Hauk, Johnsrude and Pulvermüller, 2004) and 
episodic memories (Takashima et al., 2014) to a concept or an item. These all might not 
be considered as features but can be thought as associative relationships between 
different words, items and phenomena (Jackson et al., 2015). Various associations are 
thought to be represented in the brain as connections (Pulvermüller, 2019). 
 
One example of a theory on memory and language is called MUC (Memory, 
Unification, Control) that discusses the storage and retrieval of memories, unification 
processes on syntactic, semantic and phonological levels and top-down prefrontal 
control of linguistic processes (Hagoort, 2005). Phonology is related to sounds in 
language and is thought to be lower level language process when semantics occur later 
in time in higher brain areas (Vigneau et al., 2006). Some research discuss the dynamic 
nature of cognitive functions in general (Mesulam, 1990). As natural language is often 
complicated, progresses in time and is context dependent, brain recruits different 
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modalities of cognition dynamically for proper comprehension (Medaglia, Lynall and 
Bassett, 2015).  
 
In computational linguistics, the research in cognitive sciences and linguistics are used 
in the development of computational models for language processing, analysis and 
research (Pustejovsky, 1991). The research on memory and language has inspired 
computational models such as Dynamic Memory Networks (DMN) for analysis and 
processing of natural language (Kumar et al., 2016). Computational cognitive science 
has generated models such as word2vec and latent semantic analysis (LSA) that are 
used to model semantic content of language in numeric form (Landauer, 1997; 
Mikolov et al., 2013). These tools base their computation on linguistic content using for 
example parts of internet as a corpus to analyze word context, i.e. their relation to each 
other. Some of these tools are being adapted in experimental studies in cognitive brain 
research. 
 
Language perception affected by previous experiences 
 
We do not necessarily take incoming information as it is, but our perception is 
subjectively affected by previous experiences that again reshape the associations we 
make. If we create a prior of the concept, and predict the world based on this 
information, our way of understanding the world is already biased towards our 
previous knowledge (Hari, 2018). This knowledge is, to our fortune, prone to change 
through error. As prediction error in the dopaminergic reward system directs behavior 
of mice and monkeys (Bayer and Glimcher, 2005; Schultz, 2013), predictive coding is 
thought to apply to sensory systems in a hierarchical generative manner (Iglesias et al., 
2013), and even further, to language perception (Hickok, 2013; Pickering and Garrod, 
2013; Lupyan and Clark, 2015). 
 
Subjective perception of an object, a word or a concept is the combination of action 
potentials within the inter-connected cells (Pulvermüller, 2019), and the formation of 
these connections is following the Hebbian rule – cells that fire together, wire together 
(Hebb, 1949). Thus, semantic meaning lies in the patterns of activation over these cells, 
in the neural networks they comprise. Since these connections keep being molded by 
each experience, reshaping the associations we make, also the way we understand and 
make meanings in this world is being shaped throughout a lifetime. 
 
Networks of consciousness might define what sort of sensory information, or more 
specifically, what sort of information in language we are actually conscious of (Chafe, 
1974; Bimmel, van den Bergh and Oostdam, 2001). We are naturally biased due to our 
previous experiences (Gilovich, Griffin and Kahneman, 2002) and these biases may be 
largely unconscious (Perry, Murphy and Dovidio, 2015). This can mold our language 
comprehension to be very different from the way another person with different 
experiences and biases understands language. 
 
Depending on the content of the language, different networks might be recruited in its 
processing in a dynamic manner (Sporns, 2014). With social content mentalization 
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networks are more involved than with non-social content (Vanlangendonck, Willems 
and Hagoort, 2018). With contexts and tasks that might not appear so interesting to us, 
larger contribution of attention is required (Langer and Eickhoff, 2013). Also, the level 
of how complex the used language is, has an effect on how heavily memory functions 
are recruited in the task (Bastiaansen and Hagoort, 2006). 
 
Brain research of semantics 
 
Brain uses multiple areas to process language. Traditionally Broca’s and Wernicke’s 
areas are addressed. Wernicke’s area has been thought to play a key role in processing 
semantic content of the language. Anyhow, much wider areas are recruited in this task 
than previously has been thought (Ardila, Bernal and Rosselli, 2016). Focusing on 
merely anatomical areas when considering complex cognitive functions, such as 
language production or perception, is debatable. Opposing ideas suggest that more 
distributed neural processing is taking place in cognition, and the focus should be 
more on the functional specificity rather than regional emphasizing the engagement 
of a certain region into certain task (Kanwisher, 2010). 
 
As semantic literature suggests wide brain areas to be involved, some have introduced 
hub-based models, where hubs are the important crossroads for connectivity of the 
brain. It has been suggested that words related to different functions, such as actions, 
are connected to certain areas, such as pre-central gyrus, and these different semantic 
centers or hubs are activated based on the semantic categories within the language 
(Garagnani and Pulvermüller, 2016). A theory called hub-and-spoke considers the 
concept formation being based on verbal and non-verbal input, and that these concepts 
are represented by the engagement and activation of modality-specific hubs 
distributed across the cortex (Mesulam, 1990; Ralph et al., 2017). This theory pinpoints 
bilateral contribution of anterior temporal lobe (ATL) in this process, and suggest ATL 
to be a mediator of the semantic network (Ralph et al., 2017). It does seem that ATL has 
a role in semantic functions, as for example neurodegeneration of these areas disturb 
both verbal and non-verbal semantic comprehension (Gorno-Tempini et al., 2011), but 
the nature of this role remains unclear. Hub based models have an emphasis on brain 
connectivity which is in line with theories on lexical categories and features. 
 
Literature suggests language as a distinct network from these other modalities of 
cognition. Research with words and sentences implies that most of the linguistic areas 
in inferior frontal and posterior temporal gyri are shared between lexico-semantic and 
syntactic processes. The more meaningful content there is in the stimulus, the wider 
brain areas seem to take part in semantic processing (Fedorenko, Nieto-castañon and 
Kanwisher, 2012). Once brain makes more associations with comprehensible content 
in contrast with incomprehensible, wider areas are recruited (Fedorenko et al., 2010; 
Saalasti et al., 2017). Further on, research has found evidence for more detailed 
recruitment of brain areas: in a meta study on language processing, areas anteriorly 
from precentral gyrus along IFG and areas in posterior temporal lobe were found to 
correlate with phonological processing. Syntactic processes recruited similar areas 
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extending posteriorly to parietal areas including angular gyrus (AG) and to areas 
anteriorly further in IFG (Vigneau et al., 2006). 
 
In the same meta-analysis, semantic studies were investigated. Semantics recruited 
similar but wider areas in temporal lobe extending to anterior parts and posteriorly in 
parietal AG when compared to phonological and syntactic areas. Also, frontal areas 
were recruited similarly but more widely, especially in IFG, but less towards 
precentral gyrus that is responsible of motor functions (Vigneau et al., 2006). These 
results suggest semantic processing recruiting brain widely. In addition to frontal 
areas, parietal activity is often found in brain research of semantics. In a study on 
semantic aphasia, disturbed connectivity or lesions in TPJ were found in patients 
(Dragoy, Akinina and Dronkers, 2017) suggesting it to have a role in semantics. In EEG 
studies, negative N400 response in centro-parietal electrodes and has been liked to 
language comprehension tasks (Bambini et al., 2016). Also, positive parietal P600 
responses have been found to correlate with language comprehension, even though it 
has been previously associated with syntactic tasks. 
 
Study on svPPA patients found atrophies in temporal pole and orbitofrontal areas 
bilaterally, left ventral temporal areas, fusiform gyrus and amygdala (Mummery et al., 
2000). More specifically, left posterior middle and anterior superior temporal gyri 
(MTG, STG), superior temporal sulcus (STS) posteriorly, AG, MFG and parts of IFG 
were found to relate language comprehension in other lesion studies (Dronkers et al., 
2004). In addition, connectivity between these areas has been studied. They are 
interconnected by multiple white matter tracts: fascicles of inferior occipito-frontal, 
arcuate and middle and inferior longitudinal play a role in this connectiveness. 
Disturbances also in these tracts might result in impaired comprehension (Turken and 
Dronkers, 2011). 
 
While structural processing of language takes generally place on the left hemisphere, 
it seems that more complex semantic processing of language takes also place widely 
on the right hemisphere (Jung-beeman, 2005). Right lateralization of semantic 
processes could be the case at least in parts where other language related functions are 
taking place on the left hemisphere. Some functional brain imaging studies using 
metaphorical linguistic stimuli have found tendency towards right hemispheric 
activation with novel combinations of figurative language (Mashal, Faust and 
Hendler, 2005; Ahrens et al., 2007). 
 
Research suggests that wide areas in temporal and frontal cortex, as well as parietal 
AG and supramarginal gyrus (SMG; Binder and Desai, 2011) are playing a role in word 
and sentence comprehension. These areas might be related to various aspects of 
language processing and might not be linked merely to semantics but contribute to the 
overall task of comprehension. In addition to cerebrum, cerebellar areas are suggested 
to play a role in cognition in general, but also in language processing (Leiner, Leiner 
and Dow, 1993; Schmahmann, 2004). The role of cerebellum has only recently been 
acknowledged in linguistic studies, even though lesions in cerebellar areas crus I and 
crus II has been associated with language disturbances (Richter et al., 2007; Stoodley et 
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al., 2016). Cerebellum is highly connected to cerebrum. Some research suggests lobule 
IV and vermis to be taking part in this connectivity (Stoodley and Schmahmann, 2011). 
Closed-loop connectivity between frontal cortical areas and cerebellum have been 
suggested (Watson et al., 2014), and this could play a role also in semantic processing. 
 
Combined PET and fMRI study with auditory stories and nursery rhymes found 
involvement of PCUN, inferior parietal and dorsomedial prefrontal cortices and 
premotor areas in language comprehension. They also found that language 
production in a narrative form showed mostly left hemisphere correlation when 
comprehension tasks recruited also right hemisphere (AbdulSabur et al., 2014). In a 
fMRI study on narrative comprehension in a developing brain, bilateral activation of 
superior temporal areas was found to correlate positively with age (Szaflarski et al., 
2012) suggesting its role in semantic memory. A fMRI study with over two hours long 
narrative stimulus showed similar results: relatively symmetrical bilateral correlation 
was observed in lateral and ventral temporal cortices (LTC, VTC), lateral and medial 
parietal cortices (LPC, MPC) and medial, superior and inferior PFC. Patterns of how 
these areas were recruited were category specific – social content elicited different 
patterns of brain activity than for example numerical or locational contents (Huth et 
al., 2016).  
 
Furthermore, semantic processing of words and pictures differ only partly in PET 
studies (positron emission tomography; Vandenberghe et al., 1996; Bright, Moss and 
Tyler, 2004). Most of the semantic system seems to be shared between these modalities 
of input, and both seeing a picture of an apple and reading the word apple elicit 
somewhat similar responses in higher brain areas. Differences seem to be in the areas 
processing sensory and structural linguistic information, but the so called semantic 
network is hypothesized to be activated similarly in both cases (Vandenberghe et al., 
1996). Supporting results have been found in fMRI studies comparing words to objects 
(Devereux et al., 2013). This distributed activation of the cortex is thought to vary 
depending on the properties and functionality of the word or the object: non-living 
tools are categorized differently than living animals, and this is also reflected in the 
patterns of brain activity (Mahon et al., 2007; Devereux et al., 2013). 
 
As discussed in the beginning, semantics most often refer to the meaning of language. 
Studies on natural language processing across subjects might reveal more about the 
underlying brain processes of language comprehension. On the other hand, results 
from research using naturalistic stimulus are more difficult to interpret than simpler 
stimuli such as words or sentences. As stimulus gets more complicated, there are also 
more variables to be taken into account during the analysis. Therefore, it is important 
to model the used stimulus as accurately as possible.  In the current study, semantic 
comprehension of language was studied by measuring fMRI-BOLD responses while 
participants listened to an auditory narrative. Semantic content of the narrative was 
modelled computationally with word2vec and compared to voxel-wise BOLD time 
courses using ridge regression. The aim was to identify brain areas underlying 
narrative comprehension and further discover more specifically how semantic 
processing during naturalistic narrative is represented in the brain. 
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Methods 

Subjects and MRI acquisition 
 
31 healthy right-handed Finnish-speaking females volunteered as a subject. None of 
the subjects had psychiatric or neurological disorders, and all reported normal 
hearing. Two of these subjects were excluded from the study due to artefacts in the 
data and lack of attention, resulting in total 29 subjects. 
 
Subjects were scanned with a 3T MRI scanner (Magnetom Skyra, Siemens Healthcare, 
Erlangen, Germany) with a 20-channel coil at Advanced Magnetic Imaging (AMI) 
Centre at Aalto University School of Science. Anatomical T1-weighted images were 
obtained using MPRAGE pulse sequence (repetition time, TR=2,530 ms; echo time, 
TE=3.3 ms; flip angle 7°, 256 x 256 matrix, 1x1x1 mm3 resolution, 176 sagittal slices). 
Echo planar imaging (EPI) pulse sequence was used to attain functional T2-weighed 
images (TR=1700 ms, TE=24 ms, flip angle 70°, 202 x 202 matrix, in plane resolution 
3x3 mm2, each volume comprising 33 slices of 4 mm thickness, 295 volumes). 
 
Stimuli and experimental design 
 
An auditory narrative was presented to the subjects during fMRI with MRI-compatible 
headphones (Sensimetrics S14 insert earphones) on top of which earmuffs were placed 
for safety and canceling the noise in the MRI scanner. The narrative was told from a 
female first-person perspective and it described everyday life situations such as social 
interaction at home and work. Some parts focused more on the narrator’s mental 
processes, while others were more descriptive in nature. The auditory stimulus was a 
7 minutes and 54 seconds long. Following is a short sample of the narrative translated 
from Finnish to English (Saalasti et al., 2017). 
 
“-- On ridges grew pines and in valleys dense spruce. In other places the road crossed over 
small rapids. Nature already started to turn green, much to the influence of the spring sun. 

I reflected on the behavior of Jarkko this morning: his sudden disconnection of the phone call 
and blushing as if guilty. I wonder whether Jarkko had something inappropriate going on with 
someone--.” 
 
Preprocessing of the data 
 
Data were preprocessed with an in-house MATLAB toolbox (BraMiLa; available at 
https://version.aalto.fi/gilab/BML/bramila). Preprocessing included slice-timing 
and movement correction, and co-registration of functional and structural images. 
Also, blood-oxygen-level dependent (BOLD) signal time series detrending, nuisance 
signals and noise regression, temporal high-pass filtering (cut-off at 0.01 Hz) and 
spatial smoothing with a Gaussian kernel (8 mm) were applied. 
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Inter-subject correlation (ISC) 
 
Similarities of BOLD signal time courses between the subjects were calculated using 
inter-subject correlation (ISC; Hasson et al., 2004) implemented in ISCtoolbox (Kauppi 
et al., 2010). ISC analysis compares the time courses of each voxel between the subjects 
by predicting the activations in the following subject based on the previous without 
having to specify certain regions of interests in advance (Hasson et al., 2004). In the 
analysis, 406 pairwise Pearson’s correlation coefficients were acquired with ISC for 
each voxel’s time course. 
 
Computational linguistic model 
 
Semantic content of the narrative was modelled with a computational linguistic model 
Word2vec (Mikolov et al., 2013). Word2vec creates a vector space based on co-
occurrences of words in a large corpus (here the Finnish language internet). Following 
literature, we created a 300-dimensional vector space (dos Santos and Gatti, 2014; 
Pereira et al., 2018; Van Uden et al., 2018; Kivisaari et al., 2019). The less dimensionality 
in the model, the easier it is to analyze and interpret as it also reduces the 
computational demands (Ordentlich et al., 2016). Although, reducing dimensionality 
comes with the expense of how descriptive the model is (Mikolov et al., 2013). 
 
These vectors are used to describe semantics of language numerically by placing the 
words that share similar context near to each other. For example, in Figure 1, word pine 
is spatially closer to spruce than to phone because they share their context in the 
corpus. For clarification, Figure 1 is merely an illustration of the principle idea of the 
word2vec model. In the actual model, a 300-dimensional numerical vector describing 
a single word is more similar between words sharing the same context than between 
words that rarely occur in similar contexts. Thus, in the word2vec model, semantics of 
the language is encoded in the similarity of these 300-dimensional vectors.  
 
In practice, the language model was a 282x300 matrix of numerical values. The 282 
rows equated the repetition times in fMRI, thus representing the functional images 
collected every 1.7 second. Each of these rows were the 300-dimensional vectors 
describing the content of the narrative during each repetition time. The vectors for 
each lemmatized word were acquired with word2vec (Mikolov et al., 2013). The 
content of the narrative was divided to 1.7 second items from the audio file using 
Transcribe! software (1998-2019 Seventh String Software), and the vectors of words 
occurring in each repetition time were summed accordingly. As follows, the columns 
of the matrix were the 300 numerical values describing the sum of the semantic content 
of the narrative during each 1.7-second-long timeslots. 
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Figure 1, Illustration of the principal idea of word2vec, where contextually similar words, such 
as pine and spruce, are located near to each other while words that occur in a different context 
within the used corpus, such as road or phone, are located further away. The relation of these 
words is represented with 300-dimensional vectors – each word is described with one, and the 
more similar these vectors are the nearer these words are to each other’s contextually. 

 
Canonical correlation 
 
Regularized kernel canonical correlation analysis (rKCCA) was used to compare the 
semantic content of the stimulus with the voxel-wise blood-oxygen-level dependent 
(BOLD) brain signal time course. rKCCA was chosen as an analysis method for its 
ability to estimate correlation between different-sized multidimensional matrices and 
because it allows data regularization (Bilenko and Gallant, 2016). L2 regularization 
was used to minimize the size of the fitted parameters (Ng, 2004). L2 is a derivative of 
Tikhonov regularization with the addition of using identity matrices (Wager, Wang 
and Liang, 2013). 
 
rKCCA creates a feature space where the maximum correlation, !", between word2vec 
model and fMRI data was evaluated across subjects. The datasets X and Y were 
combined linearly with canonical weight vectors (support vectors) aj and bj. Dot 
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product of the dataset and these coefficients resulted as canonical components uj and 
vj in the feature space, from which the canonical correlation was calculated as in eq.1.  
 
 

 
$" =	< (", ) > , 
+" =	< ,", - > 
 

!" = max
< $", +" >
‖$"‖‖+"‖

 

 

(1) 

 
Equation 1, maximum correlation !" between canonical components uj and vj, that are inner 
products of the weights aj and bj, and datasets X and Y, in this study word2vec model and 
BOLD time course. 
 
Regularization parameter was validated with Monte Carlo cross-validation. Because 
validating the parameter was computationally expensive, linear kernelization was 
used to reduce the dimensionality of the data. This simplified the computing process 
by making an inner product of the pairs of data in feature space (Akaho, 2006). In the 
analysis, 70 % of the data was used in training and 30 % for testing. One canonical 
component was used. An open-source toolbox for Python was applied in the analysis 
(Bilenko and Gallant, 2016). 
 
Ridge regression 
 
We then analyzed the correlation between word2vec model and brain data with 
another commonly used multivariate analysis method, ridge regression. The used 
ridge parameter k was 106. 
 
Coefficients (	34 ) of a ridge regression between the word2vec model and BOLD time 
course were calculated as in eq.2. (Hoerl and Kennard, 1970). This was done with ridge 
regression, ridge(y,W,k), in which the definable arguments were observed response y, 
predictor data X and ridge parameter k. In this case, y was the voxel time course from 
fMRI, W the word2vec model and k was predefined based on previous knowledge. 
Usually, k is cross-validated from the data used, but in this study, we did not have 
enough data for cross-validation as observed also in the canonical correlation analysis. 
Voxel wise time course was obtained with taking a z-score as in eq.3. from each voxel 
of the fMRI data from which every dimension with length 1 were removed.  
 
34 = ()5) + 78):;)5< (2)
 
Equation 2, Ridge regression coefficients,	3,=  are products between the observed response y, 
transpose of the design matrix X, and ()5) + 78) to the power of -1. In the latter, product of 
design matrix X and XT is summed with the product of ridge parameter k and identity matrix 
I. In ridge regression, the data matrix will be transformed to invertible with coefficients for it 
to be computable. 
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Equation 3, z-score z, in which mean of the data µ is subtracted from the data point x, in this 
case voxel, which is then divided with the standard deviation s of the dataset, resulting as the 
voxel time course S. 
 
 
A dot product between the coefficients (	34  ) and the word2vec model was computed 
to obtain voxel-wise word2vec model time course as in eq.4. Time courses of BOLD 
signal and word2vec model were finally correlated with each other to obtain a brain 
map of Pearson coefficients as in eq.5. Custom MATLAB script was implemented for 
the analysis. 
 
C =	< 34,D > (4) 

 
Equation 4, word2vec model time course T, in which dot product of Ridge regression 
coefficients and word2vec model was computed. 

 

EℎG((, ,) = 	
∑ (CI,J − CI)(KL,J − KL̅)
N
JO;

P∑ (CI,J − CQI)R
N
JO; ∑ (KL,S − KL̅)R

N
SO; T

;/R	 
(5) 

 
Equation 5, where linear correlation between word2vec model time course T and voxel time 
course S from fMRI, was calculated with Pearson’s Correlation Coefficient rho(a,b), in which a 
and b are columns in related matrices. (CI,J − CI)(KL,J − K̅L) is summed from time point 1 to n, 
in which n is the number of timepoints in this experiment, 281, Ta is a column in matrix T, Sb 
is a column in matrix S,  CI	is the mean ∑ (N

JO; CI,J)/V and K̅L is the mean ∑ (N
SO; KL,S)/V. This is 

then divided with P∑ (CI,J − CQI)
RN

JO; ∑ (KL,S − KL̅)
RN

SO; T
;/R, where the sums of squares of means 

of the matrix columns a and b subtraction from each datasets columns Ta and Sb are multiplied 
with each other’s, and the result the sums of  is raised to the power of ½. 
 
Parametric cluster correction with a threshold t-value of 1.7 and minimal cluster size 
of 5x5x5 voxels was done with FSL. Thus, remaining clusters after the correction were 
at least 125 voxels large with a t-value of 1.7, equaling to p- value of 0.05. Results were 
finally visualized with CARET software (Van Essen, 2005). 
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Results 

Inter-subject correlation 
 
Inter-subject correlation (ISC) suggests that neural activation while listening to a 
narrative is similar across subjects in extensive cortical areas (Figure 1, p< 0.05, cluster 
corrected). Temporal cortical areas in superior temporal gyrus (STG) and middle 
temporal gyrus (MTG) correlated strongly between subjects. Bilateral similarity of 
activity was observed with a slight left hemispheric dominance.  
 
 

 
Figure 2 Inter-subject correlation (ISC) of cortical activities related to auditory narrative (p £  
0.05, cluster corrected) from lateral views of A) left hemisphere, B) right hemisphere, from 
medial views C) right hemisphere, D) left hemisphere and E) dorsal view of cerebellum. 
Bilaterally correlating brain areas found were calcarine fissure (CF), superior and middle 
temporal gyri (STG, MTG), middle frontal gyrus (MFG), precuneus and cuneus (PCUN, CUN), 
lingual gyrus (LG) and cerebellar lobules VI and crus II. Inferior frontal gyrus (IFG), 
supramarginal gyrus (SMG) and paracingulate gyrus (PCG) correlated mostly on left and 
fusiform gyrus (FuG) on right hemisphere. Threshold-free cluster enhancement  (as 
implemented in FSL randomise) was used as cluster correction (Woolrich et al., 2009). Results 
are visualized with CARET software (Van Essen, 2005). 

Some variation was observed in which brain areas showed correlation across subjects 
between the two hemispheres.  For example, activation on inferior frontal gyrus (IFG), 
medial superior frontal gyrus and supramarginal gyrus (SMG) correlated in the left 
hemisphere but not as widely in the right. On the contrary, correlation in middle 
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frontal gyrus (MFG), paracingulate gyrus (PCG) and fusiform gyrus (FuG) was more 
similar between the subjects in right than in left hemisphere. 
 
In addition to areas of temporal and frontal lobes, angular gyrus (AG) in inferior 
parietal lobule and areas around calcarine fissure (CF) in occipital lobe showed 
bilateral correlation of activation. Correlation of brain activation across subjects was 
also similar between the hemispheres in some parts of middle frontal gyrus (MFG) 
and lingual gyrus (LG). Same was observed in cuneal (CUN) and precuneal (PCUN) 
areas in medial occipital lobe. 
 
ISC was bilaterally significant also in the cerebellum. Correlation was found between 
the subjects in cerebellar cortical areas in lobules VI and crus II. Also, horizonal fissure 
(HF), the largest one in cerebellum, showed correlation bilaterally. The inter-subject 
correlation was dominated in the right cerebellar hemisphere in crus II and horizontal 
fissure, but not in VI. 
 
Combining fMRI time courses with word2vec model 
 
Next, word2vec model of semantic content of the narrative was compared to the group 
level similarities in brain activation patterns. Regularized canonical correlation 
analysis showed even stronger correlation in more widespread areas than seen in the 
ISC (Figure 1). It seemed irrational to gain higher correlation as a result after including 
the semantic content of the stimulus in the analysis. This suggested that the results 
were incorrect and thus not reliable, and that this particular analysis method was not 
suitable for these data. 
 
Ridge regression analysis suggested some correlation across subjects between BOLD 
signal and word2vec model of the semantic content of the stimulus (Table 1 and Figure 
3). The clusters of correlating activity were spread widely on the cortical surface. 
Activity in cerebellum, especially in cerebellar crus II, was correlated more on the right 
hemisphere while correlation in cerebrum was spread bilaterally. Although, some 
spatial variation in the correlation between the hemispheres was observed. 
Supramarginal gyrus and middle frontal gyrus on right hemisphere were the largest 
clusters. Also, maximal t-values were highest in these areas. 
 
Frontal cortical areas seen in Figure 3 had most correlation in the orbital middle frontal 
gyrus (oMFG), triangular inferior frontal gyrus (triangIFG) and precentral gyrus 
(PreCG) on left hemisphere and medial orbitofrontal cortex (mOFC) bilaterally. On the 
contrary, medial part of superior frontal gyrus (SFG), middle frontal gyrus (MFG) and 
orbital inferior frontal gyrus (oIFG) showed correlation on right hemisphere. Also, 
insular cortex (INS) on right and olfactory cortex (OLF) on left hemisphere showed 
significant correlation between the subjects and the linguistic model.  
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Table 1, peak voxels from ridge regression analysis 
          

Cluster anatomical region Hemisphere 
 Size of 
cluster 

MNI 
coordinates 

(x,y,z) 
 max t-

value 
          
     
Supramarginal gyrus R 4814 (66, -32, 28) 5,4638 
Middle frontal gyrus R 2551 (36, 62, 6) 5,4965 
Cerebellar crus II R 1652 (38, -74, -48) 4,4214 
Angular gyrus L 657 (-44, -62, 46) 5,1008 
Orbital middle frontal gyrus L 356 (-34, 66, -2) 3,9859 
Cerebellar crus II L 318 (-28, -68, -42) 4,3767 
Orbital inferior frontal gyrus R 300 (56, 32, -6) 3,3183 
Rolandic operculum L 232 (-64, -4, 16) 4,0188 
Postcentral gyrus R 220 (64, -6, 26) 3,6835 
Supramarginal gyrus L 212 (-56, -28, 40) 3,8418 
Olfactory cortex L 194 (-4, 12, 0) 4,3376 
Middle temporal gyrus R 185 (66, -34, -6) 4,2516 
Precentral gyrus R 167 (50, -10, 56) 3,8454 
Insula R 137 (38, 24, 2) 3,8456 
Medial superior frontal gyrus L 133 (-12, -28, 28) 3,2527 
Triangular inferior frontal gyrus L 129 (-48, 38, 4) 2,9379 
Inferior temporal gyrus R 127 (56, -60, -18) 3,3035 
          

 
 
Correlation was also observed in middle temporal gyrus (MTG) in right hemispheric 
temporal cortical areas. In right temporal lobe, some correlation was observed near 
temporo-parieto-occipital junction (TPOJ), extending below from the supramarginal 
gyrus (SMG). Clearly largest cluster in temporal cortical areas was anyhow MTG (Table 
1). Similar correlation was not found on the left hemispheric temporal cortex.  
 
In left parietal cortex, correlation spread anteriorly from angular gyrus (AG) towards 
central sulcus, covering some areas of SMG and postcentral gyrus (PostCG). Similarly, 
supramarginal gyrus (SMG) on the right parietal cortex showed correlation with the 
linguistic model while this was not seen in right PostCG or AG. More correlation was 
seen on right precuneus (PCUN) than on left. SMG cluster in right parietal cortex was 
the largest one found in the analysis (Table 1). In parietal cortex, following largest 
clusters in size were left AG, right PreCG and finally left SMG. Clusters in PCUN were 
quite scattered, so they did not reach other clusters in size to fit the peak table. Also, 
Rolandic operculum in left opercular cortical areas around sulcus lateralis showed 
significant correlation. 
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Figure 3, Correlation with ridge regression between BOLD signal and the semantic model 
visualized on cortical surfaces (cluster corrected, p £ 0.05) from lateral views of A) left 
hemisphere, B) right hemisphere, from medial views C) right hemisphere, D) left hemisphere 
and E) dorsal view of cerebellum. Figure shows correlations that reached significancy (p £ 0.05) 
on yellow and orange color scale. These areas of similarity include clusters in left medial 
superior frontal gyrus (SFG), left orbital middle frontal gyrus (oMFG) and triangular inferior 
frontal gyrus (triangIFG), left pre- and postcentral gyri (PreCG, PostCG), left rolandic 
operculum (ROL), left angular gyrus (AG), supramarginal gyrus (SMG) bilaterally, right 
medial temporal gyrus (MTG), right insula (INS), right medial frontal gyrus (MFG), right 
orbital inferior frontal gyrus (oIFG), right lingual gyrus (LG), right precuneus (PCUN), right 
temporo-parieto-occipital junction (TPOJ), left cuneus (CUN), medial orbitofrontal cortex 
(mOFC) bilaterally, left olfactory cortex (OLF), right cerebellar VI and crus I and cerebellar 
crus II bilaterally.

 
Other significantly correlated areas were found in occipital lobe where lingual gyrus 
on right and cuneus on left hemisphere seemed to correlate the most between subjects 
and the linguistic model. On cerebellar cortex, significance was found in lobules VI, 
crus I and crus II. Although correlation was lateralized clearly more on the right 
hemisphere, also left crus II activity correlated significantly with the model.
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Discussion 

The current study addressed questions of how brain contributes to language 
comprehension during narrative listening and what are the neural correlates of 
semantic processing in the brain. Brain research has implemented computational 
methods to study concepts and semantic representations in the functional brain 
(Binder et al., 2009; Fedorenko et al., 2010; Pereira et al., 2018). The approach was to 
implement methods of cognitive neuroscience and computational linguistics to 
investigate further this complex question using a continuous naturalistic stimulus 
taking the context of language into account. 
 
Semantics in narrative elicit correlation on distributed cortical areas 
 
Inter-subject correlation analysis of auditory intelligible narrative suggested wide 
correlation in the BOLD signals between the subjects as seen in figure 2. Not all of the 
correlation can be related with semantic understanding. In fact, these results describe 
the whole process occurring in the brain while listening to the narrative, showing also 
lower level activation in for example sensory auditory areas. Because the task was to 
listen to the stimulus, especially auditory areas in temporal cortices correlated between 
the subjects. As the stimulus is naturalistic and it activates brain on wider areas than 
for example a simpler and more controlled one, it is difficult to make conclusions from 
the ISC analysis to separate these events. The task does not only produce semantic 
understanding of the narrative but also the processes prior to this. Thus, it is not 
possible to separate which of the responses are actually related to semantic, 
phonologic or auditory processes based on ISC alone. 
 
In ISC, the correlation in temporal cortical areas extended from auditory areas in 
lateral fissure and superior temporal gyrus to anterior parts of temporal lobe on left 
hemisphere and this result supports the previous findings (Fedorenko et al., 2010; 
Binder and Desai, 2011). This does not necessarily relate only to auditory and 
phonological processing. Some semantic processing has also been thought to occur in 
these brain areas (Démonet et al., 1992; Mummery et al., 2000; Friederici et al., 2003; 
Visser and Lambon Ralph, 2011).  
 
Correlation of brain data with the semantic model in ridge regression (Figure 3) was in 
line with previous research using narrative stimuli. Inferior parts of parietal lobe and 
on medial plane in PCUN are involved in semantic processing of narrative and similar 
results were found in previous studies (AbdulSabur et al., 2014; Huth et al., 2016). In 
addition, involvement of medial, superior and inferior PFC in narrative 
comprehension was found in ridge regression supported by research. In previous 
studies, temporal areas were found to take more part in semantic processing compared 
to these results. Only right MTG in temporal areas was involved with semantic 
processing in ridge regression. MTG is usually left lateralized in language tasks with 
simple stimuli, and with narrative context, bilateral activity of MTG  has been found 
(Huth et al., 2016). It could be that once word2vec maps the semantic content of words 
based on their context, these results describe the content that is clearly associated to 
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some distinct feature. Maybe left temporal areas more traditionally associated to 
semantics are processing some more basic, procedural aspects of semantics that these 
algorithms cannot mimic. Thus, the semantic model used in this study could have such 
limitations or properties that these areas are not shown so strongly in the analysis. 
Another possibility is that semantics are not processed as much in temporal lobes with 
wider context. It is possible, that when the contextual information increases, detailed 
linguistic processing is in less importance in relative to larger semantic meaning 
elicited by larger context. 
 
In ridge regression, some motor areas seemed to be involved in semantic processing 
of language. Left rolandic operculum, ventral part of the premotor cortex correlated 
with word2vec, suggesting them having a role in semantics. Some research has 
associated rolandic operculum with linguistic functions, but mostly with articulatory 
and other speech related aspects. Rolandic operculum is connected to SMG with a 
white matter tract (Maldonado, Moritz-Gasser and Duffau, 2011), and also SMG is 
involved in semantics in ridge regression. In addition, correlation was shown on left 
preCG. Similar result was found in another fMRI study using narratives (AbdulSabur 
et al., 2014). Across the central sulcus, somatosensory areas in postCG showed 
correlation as well. Motor areas might have a role in understanding the movement 
described in the narrative and somatosensory the somatic sensations. Olfactory cortex 
was involved indicating olfaction taking part in comprehending the narrative content, 
as visual areas around calcarine fissure might have a role in imagining the scenery 
while listening to the narrative. Involvement of these sensory and motor areas could 
be related to features, such as smell or texture, of the concepts used in the text. 
Following, combination of these features would construct the meaning of a concept, 
semantics showing as a distributed correlation in the brain many brain areas being 
involved in its processing. 
 
Involvement of insular cortex in ridge regression during narrative listening indicates 
some emotional processes of the brain taking part. In the narrative, there was for 
example surprisal of co-workers handing a gift, some confusing events such as phone 
in the refrigerator and backpack on the car roof, a car accident, mentalization eliciting 
paragraphs, fear of the narrator being cheated by partner and then revealing of the 
narrators own cheating to the listener. These are all events that should elicit some sort 
of emotions in the listener, and depending on the individual experiences, they might 
elicit very different kind of emotions with varying intensities. Insular cortex has been 
traditionally associated with disgust and its involvement in this data could indicates 
narrative eliciting disgust in subjects. It is known, that memories and concepts that are 
related to some emotions stay better in our memory (Kensinger and Corkin, 2003), and 
that words in our lexicon also associate to emotions (Binder and Desai, 2011). 
Emotional content of narrative has been found to elicit different patterns of activity 
than for example numeric suggesting these semantic categories being represented in 
the brain differently (Huth et al., 2016). When a certain concept is associated to an 
emotion, correlation is seen in the areas processing the emotion. Same correlation is 
not seen with a neutral concept, which is why they are also felt differently in the light 
of this specific aspect. 
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ISC included all processes related to naturalistic narrative listening, but ridge 
regression took into account the semantic content of the narrative. These two analyses 
showed areas overlapping in their correlation. Many of these areas were bilateral in 
ISC but unilateral after applying word2vec. Correlation shown in ISC was naturally 
much stronger and covered wider areas. In ISC, frontal cortical areas correlated more 
on the left hemisphere than right. This is in line with previous studies (Vigneau et al., 
2006; Binder and Desai, 2011). In ridge regression, semantic processing of narrative 
recruited frontal cortical areas on right hemisphere. Bilateral parietal cortices and 
cerebellum were found to be involved in both ISC and ridge regression. Also, parts of 
visual and temporal cortices were involved in semantic processing in both analyses. 
Correlation was shown in distributed manner also on medial plane of cerebrum. 
Activation of frontal and parietal areas is found in previous studies with words and 
sentences (Vigneau et al., 2006; Binder et al., 2009), but these results lacked correlation 
in left temporal areas that is often shown in research. Semantics of language are 
encoded in distributed brain areas rather than one fixed area. 
 
Left inferior frontal gyrus (LIFG) activation has been associated with sentence 
comprehension (Friederici et al., 2003; Vigneau et al., 2006). LIFG has been propose to 
play a role in unification, combining bits of linguistic information to larger entities 
(Hagoort, 2005). Correlation in left triangIFG was shown in both of the analyses. This 
suggests LIFG having a role also in narrative level comprehension, but the cluster was 
rather small in ridge regression. It might have a smaller role in relative to the rest of 
the brain when contextual information recruit other areas more strongly. 
 
Research on genetics has shown the importance of FOXP2 in language but its role in 
language comprehension and semantics is not that clear. This gene encodes a protein 
that has an effect on brain plasticity. Research has suggested dopaminergic system and 
basal ganglia involvement in learning to be basis on how FOXP2 has had an effect on 
language development over the course of evolution. These areas are not shown in 
functional brain imaging studies of semantics, but they might anyhow have their role 
in learning process and formation of the semantic system via plasticity. This task does 
not necessarily trigger learning but merely comprehension that is based on already 
existing knowledge. Different kind of study design might be needed to study if basal 
ganglia have a role in language to further reveal the missing link between FOXP2 and 
language. Instead of nuclei in the basal ganglia, cerebellum was involved in both 
results. Cerebellum is one of the memory formation sites in the brain in addition to 
basal ganglia, hippocampus and amygdala (Gao, Van Beugen and De Zeeuw, 2012). 
Cerebellum role in semantics is still unclear.  
 
Narrative context recruits both hemispheres for semantic processing 
 
Quantitatively the difference in correlation was not large between left and right 
hemisphere in ISC. Previously, it was thought that language processing takes place on 
the left hemisphere (Krashen, 1973; Mori, Yamadori and Furumoto, 1989), and later 
studies claimed language being left lateralized in right-handed people (Binder et al., 
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2009). As a naturalistic stimulus resembling more natural language was used, the task 
recruited wider networks than a simpler stimulus. Right hemisphere might thus 
contribute to language processing more than it has been previously thought to. 
Research using narrative stimulus show evidence that wider context recruits right 
hemisphere more to linguistic processing (Huth et al., 2016). It is possible that different 
aspects of language are processed on different hemispheres in lateralized manner, and 
semantic processing of language takes place also on the right hemisphere (Martin and 
Chao, 2001; Mashal, Faust and Hendler, 2005; Ahrens et al., 2007).  
 
Ridge regression showed correlation on both hemispheres, but these areas involved in 
semantic processing were not bilateral in most parts. For example, SMG correlated on 
left the hemisphere in ISC but on both hemispheres in ridge regression, although SMG 
had almost 23 times larger cluster in the right hemisphere. AG then again was bilateral 
in ISC but showed correlation on left hemisphere in ridge regression. Areas on parietal 
cortex are found to correlate with linguistic tasks in general but spreading more 
posterior with semantic tasks compared to for example phonology (Vigneau et al., 
2006). SMG and AG in parietal areas are part of traditional Wernicke’s area, and are 
related to semantic processing and integration (Smirnov et al., 2014). LG and CUN 
were bilaterally involved in ISC but LG was right and CUN left lateralized in ridge 
regression. LG and CUN are located around calcarine fissure and are suggested to 
have a role in mental visual imagery (Winlove et al., 2018), that the narrative listening 
could potentially elicit. Involvement of bilateral SMG, right LG and left AG and CUN 
support both hemispheres taking part in semantics. 
 
Many brain areas were bilaterally involved in narrative listening ISC, and semantics 
recruited areas on both hemispheres in ridge regression. These results suggest that the 
brain does use both hemispheres for a complicated cognitive task such as 
understanding language, and this is in line with precious studies with narrative 
stimuli (Huth et al., 2016). Bilateral activation was not only seen in cerebrum but also 
in cerebellar lobules VI and crus II. When combining semantic model with the data in 
ridge regression, both hemispheres still showed correlation but less areas were 
involved bilaterally. This result still suggests both hemispheres contributing to 
semantic processing, but brain areas are lateralized differently – hemispheres might 
contribute to different aspects of semantic processing. 
 
Narrative stimulus includes wider context for the language used. Linguistic tasks with 
sentences and narratives have been found to elicit bilateral activity of the brain. 
Narrative context is suggested to recruit areas in addition to superior temporal, 
extending bilaterally to areas of default mode network including AG, medial PFC and 
PCUN, and inferior frontal and premotor areas (Wilson, Molnar-Szakacs and Iacoboni, 
2008). Both results from ISC and ridge regression support these findings, but ridge 
regression lacked bilateral activation of many of these areas. Nevertheless, both 
hemispheres were recruited in the task and contextual language engages areas beyond 
superior temporal lobe. 
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Role of cognition in naturalistic language comprehension 
 
Both analyses suggested other modalities of cognition taking part in language 
comprehension. Involvement of superior and middle frontal gyri in ISC and ridge 
regression might indicate working memory functions occurring during the task 
(Olesen, Westerberg and Klingberg, 2004; Boisgueheneuc et al., 2006). PCUN activation 
was bilaterally involved in narrative comprehension in ISC and on right hemisphere 
in ridge regression. Ventral PCUN contribution might be due to attentive processes 
taking part (Zhang and Li, 2012). Observed involvement of MFG and TPJ in the task 
in both analyses support attention network role in comprehension tasks (Ptak and 
Schnider, 2011). Involvement of other cognitive processes in contextual language have 
been addressed in previous research with narrative stimuli (Wilson, Molnar-Szakacs 
and Iacoboni, 2008). 
 
In hub-based models, semantics have been proposed to lie in the connectivity of the 
brain (Garagnani and Pulvermüller, 2016). For example, functional connectivity has 
been found between dorsal PCUN and CUN (Zhang and Li, 2012). Dorsal PCUN has 
is suggested to have a role in mental visuo-spatial tasks in a transcranial magnetic 
stimulation (TMS) study (Oshio et al., 2010) which implies its role in imagining the 
scenery within a narrative. Cuneal activation is most evident in basic visual processing 
but it has been associated also with attention, especially when attending negative 
stimuli containing anger or disgust (Sander et al., 2005; Carretié et al., 2011). CUN 
activation has also been suggested to play a role in attention to speed and its changes 
(Sunaert et al., 2000). CUN was bilaterally involved in narrative comprehension in ISC, 
but semantic processing recruits left CUN according to ridge regression. PCUN was 
then again mostly active on right hemisphere in ridge regression. CUN and PCUN 
could have both attentive and imagery related functions in language comprehension, 
and they might serve as semantic hubs. PCUN and CUN involvement in opposite 
hemispheres, and the connectivity between them, suggests that task requires 
information flow across the hemispheres. Some previous findings suggest that corpus 
callosum has its role in semantic processing (Hutchinson et al., 2003). 
 
Both ridge regression and ISC showed involvement of cerebellum in narrative 
comprehension, right hemisphere being more strongly engaged. In ridge regression, 
observed correlation of the word2vec language model with BOLD signals in 
cerebellum was more medial than correlation observed between subjects in ISC. 
Cerebellar functions have been associated with cognition (Schmahmann, 2004; 
Schmahmann and Caplan, 2006), also more specifically with language functions 
(Leiner, Leiner and Dow, 1993). Lesions in posterior cerebellar lobules VI and crus II 
have been linked with cognitive impairments, whereas anterior part has been 
associated more with motor functions (Stoodley and Schmahmann, 2011). These 
previous findings suggest cerebellum role also in various cognitive tasks in addition 
to more traditionally emphasized motor functions, and the results of this study 
support this view. How cerebellum takes part in language and more specifically in 
semantics of language is still unclear. 
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Mental imagery has been proposed as one of the cognitive control tasks of cerebellum 
(Doya, 2000). As one of the tasks of cerebellum is to control movement, also mental 
imagery of movement has been found to recruit cerebellum in several studies (Parsons 
et al., 1995; Lotze et al., 1999). Cerebellum activation by auditory mental imagery has 
been reported (Shergill et al., 2001; Meister et al., 2004). Visual mental imagery has been 
found to activate vermis and dentate nuclei within the white matter of cerebellum in 
a PET study (Mellet et al., 2000), which supports connectivity of the brain being  
important in semantic processing. Narrative comprehension might require mental 
imagery in which cerebellum has a role. 
 
Cerebellum is highly connected to the rest of the brain, but for the cognition, its 
connectiveness to frontal cortical areas raises most interest (Krienen and Buckner, 
2009). Cerebellar crus II has been found to connect to MFG in prefrontal cortex 
(Diedrichsen et al., 2009). Frontal cortex controls the rest of the brain in a top-down 
manner and connections from cerebellum might have an effect on this control. Some 
have suggested cerebellum to modulate cognitive loops in the rest of the brain 
(Stoodley and Schmahmann, 2011; Watson et al., 2014). 
 
Maybe cerebellum has a role not only in fine tuning motor functions but also other 
functions of cerebrum. Cerebellum has been thought to contain the detailed 
information of how motoric movements should occur in time. In a similar manner, as 
our brain modifies the motor functions and creates motor routines, cerebellum might 
take a part in molding our linguistic functions, patterns of thought and by this 
eventually our ways of thinking. By this, cognitive routines might be created similarly 
as motor routines in cerebellum. As cerebellum is a complex structure that is even 
more densely layered than cerebrum it should have a great importance in our brain 
functions also in cognition. 
 
Ridge regression showed correlation of the word2vec language model with BOLD 
signals in prefrontal cortical areas on right hemisphere which could also indicate top-
down frontal cortical control taking place. This control has been shown to be partly 
inhibitory (Medalla and Barbas, 2009). Also, right DLPFC has been shown activation 
during for example rumination but also mentalization (Carrington and Bailey, 2009; 
Vanderhasselt et al., 2017). Some studies suggest that medial plane of prefrontal cortex 
takes part in mentalization (Frith and Frith, 2003; Gallagher and Frith, 2003), thus 
correlation found in right oIFG but also SFG might be part of this network 
(Vanlangendonck, Willems and Hagoort, 2018). Especially the medial plane of frontal 
cortical areas could take part when processing social context of the narrative. In 
addition, TPOJ has been found to correlate with mentalization tasks (Vanlangendonck, 
Willems and Hagoort, 2018) but has also been associated with spatial attention (Ptak 
and Schnider, 2011). TPOJ showed correlation between BOLD signals and word2vec 
on right hemisphere in ridge regression. 
 
The results of these analyses suggest language processing, comprehension and 
semantics of language to recruit different cognitive modalities and networks for its 
optimal function. Some of these modalities might be related to attentional processes as 
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discussed for example in the case of PCUN. In addition to attention, PCUN has been 
associated to self-reflecting conscious processes (Zhang and Li, 2012). Consciousness 
does not only affect what we are able to perceive in language, but literature suggests 
that consciousness is partly based on language (Arbib, 2001).  By this, the interaction 
of consciousness and language might work in a dual manner – language we use has 
an effect on our consciousness and consciousness affects how we understand 
language. 
 
By being conscious of, being able to direct attention to, being able to store and retrieve 
memories about, and to associate different sensory features to different words, we are 
able to perceive and process language and comprehend it in our own subjective ways. 
It could be, that listening to a narrative that describes our world, elicits eventually 
activity in different sensory areas in the form of mental imagery. As an experience, this 
is clearly different to actual perception as it is much weaker in its intensity. Cerebellum 
is suggested to play a role in separating how we experience for example imagining 
speech from perceiving actual speech (Shergill et al., 2001). 
 
Cognitive events could be more of a dynamic sum, a constantly varying weighed 
combination of different networks rather than one fixed state. Functional cognitive 
networks might thus work in a weighed manner. Language processes would for 
example recruit attention network relatively more with heavy sensory load in 
challenging environments. Then again, more weight would be given on working 
memory with challenging content rather than environment. This would also apply in 
stronger recruitment of mentalization network in social contexts. With less internal 
language that describes the world outside rather than inside human mind, more 
sensory areas might be activated. It could be that different networks contribute to 
comprehension of language, and how much they are recruited in the task depends on 
the content. 
 
Limitations of the study 
 
Functional magnetic resonance is one of the imaging tools that we have today to record 
brain events temporally, but the temporal properties are not as good as in for example 
encephalographic methods electro- and magnetoencephalography. Also, contrast in 
fMRI comes from deoxygenation of blood. The more oxygen is consumed in a certain 
brain area; the more energy is consumed at this specific location. It is true, that the cell 
metabolism must be due to action potentials occurring in the brain, but this activity 
does not yet separate if a certain brain area is actually inhibited or excited. GABAergic 
interneurons consume as well energy and thus oxygen in their metabolism as do 
excitatory glutamatergic pyramidal cells (Duarte and Gruetter, 2013) resulting in 
activation in fMRI. We can tell from fMRI studies that the cells in these specific brain 
areas consume more oxygen, but we cannot distinct to which function the resulting 
energy is used unless it is somehow taken into account in the study design. 
 
After ISC, choice of further analysis method was challenging due to the limitations of 
the data set. In the analysis fMRI data was combined with a linguistic model. The first 
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approach was to use regularized kernel canonical correlation analysis (rKCCA) as a 
multivariate analysis method to combine two different sized datasets, as described in 
Bilenko and Gallant (2016). The model was overfitting noise due to the small size of 
this dataset. 300 timepoints was not enough to both initialize the CCA object with 
Monte Carlo cross-validation and train the learning model. Cross-validation used 20 
% of the training data (Bilenko and Gallant, 2016). Another approach was to use a 
single regularization parameter from the literature. This resulted as less correlation 
between the subjects but raised questions of the validity of the results. When using 
learning algorithms the sample size has to be taken into account (Cui and Gong, 2018).  
 
Kernelization generalizes the system to nonlinear (Huang, Lee and Hsiao, 2006), 
whereas regular CCA and ridge regression are linear learning algorithms (Hoerl and 
Kennard, 1970; Hardoon, Szedmak and Shawe-Taylor, 2004). Maybe nonlinearity was 
the reason for overfitting the data in rKCCA. Ridge regression is beneficial when 
analyzing multimodal datasets (Cui and Gong, 2018) and the data had multiple 
variables in addition to limited amount of timepoints. Thus, ridge regression was more 
suitable for the data, even though the effect of sample size on prediction accuracies of 
both ridge regression and linear support vector machine seems to be rather similar. It 
was clear after the CCA, that with this specific dataset there was not enough data to 
cross-validate the hyperparameter in the following analysis ridge regression either. 
Thus, in ridge regression, the ridge parameter was chosen based on literature (Raz et 
al., 2017). This was not the most optimal approach, because the choice of proper ridge 
parameter is essential when balancing between the variance and bias (Cui and Gong, 
2018). Better approach would have been to use grid search to cross-validate the ridge 
parameter. 
 
It seems that for these kinds of multivariate analyses the choice of specific 
hyperparameters is important for gaining accurate results, and the best option is to 
validate the hyperparameters either with the same dataset or with a pilot study. For 
example, the choice of regularization parameter could be done in advance for 
simplification of the computation in kernelized canonical correlation analysis as done 
in Hardoon et al. 2004. The regularization parameter chosen according to their 
approach should work with varying tasks and it overcomes some problems that occur 
in kernel space (Hardoon, Szedmak and Shawe-Taylor, 2004). Also, in rKCCA most of 
the dataset was used for training (70%). It is known that when using too large training 
sets with learning algorithms computational problems do occur (Hardoon, Szedmak 
and Shawe-Taylor, 2004). As these algorithms compute as they are coded to compute, 
and use the mathematics written in the code, it is important to know the properties of 
the data and choose a proper analysis method carefully in advance based on these 
features to get as accurate results as possible. 
 
Algorithms such as word2vec and latent semantic analysis (LSA) are tools to encode 
semantic meaning into vector space (Landauer, 1997; Mikolov et al., 2013). It is 
debatable if the word2vec algorithm describes semantics in the brain as is expected. 
Creating the vector space is based on a large corpus. In this study, Finnish internet was 
used. Technically, it is us people who have produced the text to internet, and it could 
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be that this corpus represents the language structure and context as it is represented 
also in our minds. The debatable part is whether this is analogous to physical human 
brain and how the neurons consisting the memories are actually located in the brain 
structures (Poeppel and Embick, 2005). That is to say, is the semantic content 
represented in this word to vector model similarly located also physiologically in 
middle temporal gyrus etc. Anyhow, this is possibly the best way available to translate 
semantics in written text into computable form, although as all methods have their 
limitations, so do these algorithms. 
 
There were some other limitations in the dataset in addition to its small size - the 
subjects had differing backgrounds and were of different ages. Different life 
experiences have an effect on how literature is comprehended, and how individuals 
engage with the narrative content (McNamara and Kintsch, 1996; Green, 2004). It is 
possible that different background and varying life experiences have also an effect on 
how brain is activated during narrative listening. Individuals who share similar 
mental associations also have more common in their brain activity when engaging into 
a narrative (Saalasti et al., 2019), and similar associations might be due to similar 
experiences in life. Different experiences might result in varying associations of 
language in for example areas processing emotions and thus showing as differing 
neural patterns in fMRI. Literature suggests that linguistic behavior of an individual 
is affected by previous experience (Beckner et al., 2009; Saalasti et al., 2019). 
 
Nevertheless, the results over subjects suggest which areas might be functionally 
important for semantic processing during naturalistic language comprehension. 
Within an individual, semantic processing most likely activates larger areas than is 
seen at group level. On the other hand, varying life experiences could also be a benefit 
with this kind of research question, where the focus is on the neural networks of 
comprehension. The more variation the subjects have in their experiences, the more 
different their dynamic patterns are during the narrative listening, and the more these 
differences cancel each other out. What is then left should be what is common across 
these subjects: comprehension. 
 
Future directions 
 
The next step in the analysis of this data will be a more detailed fragmentation of the 
narrative and the analysis of each of these paragraphs separately. The paragraphs had 
varying content from describing social phenomena and environment to more internal 
events, and they were planned to recruit different cognitive networks such as theory 
of mind, mentalization and default mode network. More detailed investigation on the 
paragraphs might reveal how brain processes varying semantic information and uses 
these networks in different contexts. Subjects also read and lipread the same narrative, 
so naturally the next step would be to analyze these data. Further on, the dataset could 
be divided into two larger compartments to compare these two data in the context of 
perspective taking. In the first part of the narrative, the husband seems to be cheating 
on her wife, but as the narrative evolves it is revealed to the reader that the wife is 
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actually the one cheating on him. By analyzing these two data separately, the change 
of the perspective over time could then be compared. 
 
Inter-subject correlation analysis of condition using intelligible narrative suggests that 
processing of semantic information activates brain in multiple areas. Some areas for 
future analysis are the anterior parts of medial temporal gyri and anterior temporal 
lobes, also referred as temporal poles. These areas have been associated with semantic 
processing. For example, temporal pole has been thought to take part in processing 
the emotional contents of information (Olson, Plotzker and Ezzyat, 2007), but has also 
suggested to play a modulatory role in semantics (Ralph et al., 2017). The dynamics of 
semantic processing during naturalistic language with a focus in emotional processing 
would be an interesting approach in the future. Also, there was interesting correlation 
in the visual cortical areas suggesting some mental imagery taking place during the 
listening of the narrative. Further studies on this might require a set up excluding the 
visual stimulus from the study set-up. 
 
Studying the language and the brain could potentially lead to more quantitative 
methods for clinicians in the diagnosis processes. By creating for example an easily 
repeatable semantic task for valuating connectivity in fMRI could potentially be one 
possible measure when diagnosing a patient with language disturbances leading to 
better targeting of intervention. These tasks could also be useful in following the 
development of these disorders, especially if they are progressive in their pathology. 
Research in semantics could also lead to potential therapeutic discoveries – many other 
phenomena than language, such as music, have semantic content in them, and they 
share some underlying mechanisms. Studies on priming effects have found that music 
has similar priming effect on language as words (Koelsch et al., 2004). It could be 
further studied if for example training one type of semantic modality improves the 
other. 
 
Research on semantics requires effort from the scientific and philosophical community 
in a multidisciplinary manner. Objectivistic and constructivist views are no longer 
under much debate, once cognition role in semantics has been proved with 
accumulating results. What these debates still provide for us, is another perspective 
on understanding human ability for abstract thinking and language. Yet, there is a 
continuous discussion on how language is processed in the brain: maybe this question 
cannot be answered while contradictive ideas are strongly against each other but 
finding an answer that would go along with the spectrum of theories in the field. 
Maybe we process language in a way no one has ever thought yet but is still to be 
discovered. The answer might lie somewhere else than in the battlefield of opposing 
ideas.  
 
Conclusions 
 
This study discovered how narrative listening is represented in the brain and more 
specifically, what are the neural correlates of semantic processing in a narrative 
context. According to ISC, wide brain areas are recruited in language comprehension 
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suggesting different cognitive modalities having a role. Their recruitment is 
dependent on the content of the language and the situation in which language is 
perceived. Results from ridge regression show semantic processing to be distributed 
across hemispheres in superior, middle and medial frontal, inferior and medial 
parietal cortices and cerebellum, but also visual and temporal cortices showed 
involvement in the task. Results suggest narrative context recruiting both hemispheres 
in semantic processing, and that these processes occur in an associative manner in 
distributed cortical areas. That is to say, words associate in for example sensory and 
motor areas depending on the features they have, and semantics lie in these 
connections in the brain. These results showed areas that are often found in studies 
considering semantics, suggesting computational approach word2vec to be suitable 
for extracting detailed information from functional brain data. 
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