View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Helsingin yliopiston digitaalinen arkisto

Software Framework for Data Fault Injection
to Test Machine Learning Systems

Jukka K. Nurminen, Tuomas Halvari, Juha Harviainen, Juha Mylliri,
Antti Roysko, Juuso Silvennoinen, and Tommi Mikkonen
Department of Computer Science, University of Helsinki, Finland
Email: first.[initial.]last@helsinki.fi

Abstract—Data-intensive systems are sensitive to the quality
of data. Data often has problems due to faulty sensors or
network problems, for instance. In this work, we develop a
software framework to emulate faults in data and use it to study
how machine learning (ML) systems work when the data has
problems. We aim for flexibility: users can use predefined or
their own dedicated fault models. Likewise, different kind of data
(e.g. text, time series, video) can be used and the system under
test can vary from a single ML model to a complicated software
system. Our goal is to show how data faults can be emulated
and how that can be used in the study and development of ML
solutions.

I. INTRODUCTION

Data-intensive systems are sensitive to the quality of data.
In deployed systems, data frequently has problems: sensor
readings are drifting, network connection problems create gaps
in IoT data, textual data is corrupted because of OCR errors,
and so on. To ensure that systems are working correctly in
different conditions, we need to improve our understanding of
how different problems in input data (data faults in the termi-
nology of this paper) influence predictions and other results
of systems. Especially in machine learning (ML) systems, we
face questions that not only influence the testing phase but
also the development decisions. Such questions include the
following:

— Should we train the system with perfect or with faulty
data? Examples of faulty data are far less common than
examples of correct data but we may still have a good
understanding of the kinds of data faults the system will
face over its lifetime.

— Are some ML algorithms, architectures, or hyperparame-
ter selections more robust towards data faults than others?

— How trustworthy the results of the algorithms are when
used in real-life settings, which include faulty input data?

The difficulty of making a system deal with data faults
comes from multiple sources. To begin with, data faults
come in different forms. Some of them are systematic (e.g.
sensor drift), whereas others are more random (e.g. a broken
network connection). They happen infrequently so the training
material there may not have many examples of faulty cases.
Furthermore, it is not obvious what we should do to deal with
faults — change the associated training data, change the model,
or simply ignore the faulty output somehow.

Unfortunately, testing how a system behaves with different
kinds of data faults has been difficult. Especially the rare

cases of multiple simultaneous faults are hard to test with real
measured data. To solve related problems, the importance of
dealing with faulty data has been recently observed. E.g. Qu et
al. [1] investigate how faulty data influences the operation of
a set of classification, clustering, and regression algorithms.
Some tools e.g. [2] have been developed to find and fix
problems in datasets. While these tools allow fixing problems
in datasets there does not seem to be tools that allow injection
of faults to the datasets. Adversarial ML [3] investigates
how an attacker with cleverly modified data can cause faulty
behavior of ML models. The main idea of our implementation
is not to consider an explicitly malicious adversary but to
generate datasets that encompass typical faults in data. Similar
ideas for hardware and software fault injection have a long
history in the development of dependable systems [4].

The approach we are suggesting is to use an artificial fault
injector, which modifies the system input data according to
some rules. These rules, which form the fault model, should
characterize the typical problem situations the system is likely
to encounter. We can then use the modified data to test the
operation of the system in the faulty conditions, or we can
use the faulty data in training to aim for more robust systems.

In this paper, we propose an approach to artificially inject
faults to input data to test and to improve the training of ML
systems. As a technical contribution, we describe our imple-
mentation of a prototype system dpEmu for the task. DpEmu
aims to be a flexible and extendable software framework,
which allows users to parameterize predefined fault models or
introduce their own, inject faults to different kinds of datasets,
and study the behavior of single ML models or complicated
ML systems. Finally, we show an example of what kind of
observations the system allows.

II. BACKGROUND AND RELATED WORK

As observed by Breck et al. [S] “Software testing is well
studied, as is machine learning, but their intersection has been
less well explored in the literature”. Recently, however, the
situation has started to change. As evidenced by recent surveys
[6], [7] researchers have realized the importance of testing in
the development of artificial intelligence (Al), including in par-
ticular machine learning (ML) systems. The key observation is
that ML systems cannot be tested in the same way as classical
software systems. Instead, new approaches are needed.

https://core.ac.uk/display/287760975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Focusing on data quality for testing is one such approach.
Qu et al. [1] suggest a set of guidelines for algorithm selection
and data cleaning based on their evaluation of classification,
clustering, and regression algorithms. They also observe that
unnecessary cleaning of dirty data can be wasteful and there-
fore understanding what is appropriate cleaning and appro-
priate algorithm in different cases is important. To enable this
they encourage the development of models of how fault types,
fault rates, data size, and algorithm influence the performance.
Our framework is one way to allow such models to be created
and analyzed.

Several tools, e.g. [2], have been developed to find and
fix problems in datasets. Li et al. [8] have developed a
benchmark, CleanML, to investigate the effect of data cleaning
and algorithm selection. They observe than data cleaning alone
does not improve performance and can even be harmful.
Instead selection of the proper model is important for cleaning
approaches to effective. These observations seem to highlight
the importance of experimenting with alternative algorithms
and data cleaning approaches in the development of ML
systems. An explicit goal of the dpEmu system is to make
such exploration easier.

Many papers investigate fault injection. They are typi-
cally focused on embedded systems and looking at ways for
software to allow recovery of hardware problems (see e.g.
[9]). Our work is related, but instead of system hardware
causing the problem, our faults arise from problems in external
data collection and manipulation systems and are reflected as
problems in the data that the system is using.

A system close to our thinking is AVFI [10], which is
used for injecting faults to systems controlling autonomous
vehicles. Its focus is on system-level analysis of autonomous
vehicle behavior and, similarly to our work, it allows studying
how different sensor faults influence the operation.

DeepRoad [11] uses GAN to artificially generate various
weather conditions to road scenes. It is intended for testing
autonomous driving systems. It found thousands of problems
in state-of-the-art self-driving systems highlighting the impor-
tance of thorough testing of these systems. DeepRoad studied
how weather and natural conditions influence object detection
software while our prime target has been modifications to data
because of the technical problems or inadequacies.

DeepMutation [12] is another system close to our think-
ing. In DeepMutation the system generates artificial faults to
both data and model implementation. Many of the mutation
operators they suggest are similar to ours.

III. TOWARDS DATA PROBLEMS EMULATION: DPEMU

ML systems are typically developed with pipelines. Data
acquisition is followed by data cleaning, preprocessing, train-
ing the model, and evaluating the result. The steps can vary
and be more detailed depending on the case. To establish the
data fault injection as part of the development process we feel
that tools, which merge data fault testing and analysis into the
development pipeline, are essential. This observation was the
main motivation for our work towards the development of a

8

Which model (architecture,
hyperparams, etc.) is best
when tested with different

kinds of data faults?

i Z
Fault Injector

How much and what kind
of faults does ML system
tolerate? How to train a model to be fault
tolerant?

How sensitive is the ML
system to different kinds
of faults?

With data that contains faults,
or with clean data?

What is optimal model in
the presence of faults?

Fig. 1: Conceptual view of the system with examples of
questions that the system can answer.

software framework, illustrated conceptually in Fig. 1, with
the following goals:

— Easy and flexible modeling of the types of data faults
the system is likely to encounter via a combination of
predefined parameterizable fault models and new user-
defined ones. Ideally, the set of predefined fault models
should gradually grow as a result of the integration of
new fault models for new purposes.

— Ability to work with different kinds of structured and
unstructured data as well as with highly different ML
models or systems.

— Parameterization of the data fault generation so that
developers can study how sensitive their systems are
to different kinds of faults and what are the thresholds
of data problems when the system starts to lose its
performance.

— Visualization of the results with different fault models
and parameters.

— Bookkeeping to allow going back to the sources of
problems.

— Embedding the fault injection and the visualization of the
effects of faulty data to the development pipeline.

— Integration of data fault emulation to different develop-
ment pipelines.

To satisfy these goals, we have created a generator frame-
work for emulating data problems, called dpEmu. The frame-
work can generate faults in training or testing data in a
controlled and documentable manner, and it enables emulating
data problems in the use and training of ML systems as
depicted in Fig. 2. The Runner routine introduces faults in
a dataset, following the definitions set in the Fault generation
tree. Then, the resulting data is preprocessed and run by ML
models, which produces final results that can be visualized to
the user.

DpEmu can run one or more ML models on any data using
different values for the fault parameters and visualize the
results. Written in Python, dpEmu can easily interact with any
Python-based ML framework such as Sklearn, TensorFlow, or
PyTorch. It is available as open-source at https://github.com/
dpEmu/dpEmu.

(. - “I (-_-_-J .

X User Code

run in parallel

optionally visualize data

call to runner Runner

Paral

lelization

Combine

results

Fig. 2: DpEmu pipeline.

A. Fault Generation Tree

Fault injection in dpEmu is based on fault generation trees.
The aim is a representation which is easily expandable and
can be applied to datasets of almost any kind. First we
construct a tree characterizing the structure of the data. Then
we apply a set of transformations to specific parts of the data
by adding Filters to selected leaf nodes. The Filters specify
the transformations we want to make to the data. It is possible
to use predefined Filters but users can also program their own
Filters to extend the framework and create new transformations
that inject faults specific to their problems.

Data is usually characterized by a combination of Array,
Tuple, Series, and TupleSeries nodes. A Series node often
forms the root of the tree. An Array node can represent a
NumPy array or a Python list of any dimension. It can even
represent a scalar value provided it is not the root of the tree.
By combining different nodes we can create more complex
representations. For example, we may choose to represent a
matrix as a series of row arrays: root_node = Series (Array ().

Data points stored as tuples (such as those characterizing
.wav audio) can be represented using a Tuple node. A Tuple-
Series represents a tuple of data items whose k-th elements
are tightly related. For example, if we have NumPy array X
containing the inputs and array Y containing the corresponding
labels, we may choose to represent (X, Y) as a TupleSeries.

There is typically more than one valid way to represent the
structure of the data as a tree. For example, a two-dimensional
NumPy array can be represented as a matrix, i.e. an Array
node; as a list of rows, i.e. a Series with an Array as its child;
or as a list of lists of scalars, i.e. a Series whose child is a
Series whose child is an Array.

Filters, which act as the fault sources, can be added to leaf
nodes. Filters can have parameters, which typically control
the severity of the injected faults. Dozens of Filters, such as
Snow, Blur, and SensorDrift, are predefined. They can be used
to manipulate data of various kinds, including images, time
series, and sound. Users can also create their own custom fault
sources by subclassing the Filter class.

As an example, let us consider the MNIST dataset (https:
/Iwww.openml.org/d/554) of handwritten digits. The input
consists of 70000 rows where each row is a 784 pixel (i.e.

GaussianNoise

mean: 0.0

Missing
probability: 0.3
std: 20.0

missing value: nan

Fig. 3: Visualization of a possible fault generation tree with
added Gaussian noise and missing pixels.

(c) With added
(b) With added noise and missing
(a) Original noise pixels
=

Fig. 4: Sample MNIST figure processed with filters.

28 x 28) black and white image of a handwritten digit (Fig.
4a). The first step is to form the fault generation tree. Since the
input is an indexed collection of images, we can represent it
as a series of arrays, with each array corresponding to a single
image. We can then add Filters to manipulate the images, as
shown below.

image_node = Array ()

series_node = Series(image_node)

image_node. addfilter (GaussianNoise (”"mean” ,
std”))

”

The GaussianNoise filter adds noise drawn from a normal
distribution. The constructor takes two arguments, which are
identifiers for the parameters. We can now provide values for
these parameters and generate the faulty data:
params = {”mean”: 0.0, ”std”: 20.0}

err_data = series_node.generate_error (data,
params)

The resulting image with added noise is shown in Fig. 4b.
We are not limited to one fault type per node. Below, we

add another filter, Missing, which changes each array element

to a user-specified value such as NaN (“not a number”) with

the provided probability:

image_node. addfilter (Missing (”probability”, ”

missing_value”))

params = {’mean”: 0.0, ”std”: 20.0, ”
probability”: .3, ”"missing_value”: np.nan}

err_data = series_node.generate_error (data,
params)

The resulting fault generation tree is shown in Fig. 3. The
modified image with injected noise and missing pixels is
presented in Fig. 4c.

B. Exploratory Execution

To support exploratory use, dpEmu includes a Runner
system. It creates subprocesses for each set of fault parameters,
and in each subprocess, all of the included ML models are run,
with possibly multiple sets of hyperparameters. This allows for
distributing the processing. When all subprocesses are finished
running, the system returns the results as a pandas DataFrame
object which can then be used for visualization.

The runner takes the following inputs when it is run: training
data, test data, a preprocessor class, preprocessor parameters,
a fault generation root node, a list of fault parameters and a
list of ML models and their parameters:

df = runner.run(

train_data=train_data ,
test_data=test_data ,
preproc=Preprocessor ,
preproc_params={},
err_root_node=get_err_root_node (),
err_params_list=get_err_params_list (),
model_params_dict_list=
get_model_params_dict_list ()

)

The list of fault parameters is simply a list of dictionar-
ies, which contain the keys and fault values for the fault
generation tree. The list of ML model parameters is a list
of dictionaries containing three keys: “model”, ” params_list”
and ” use_clean_train_data . The value of “model” is the name
of a class where the actual model is called. The value of
” params_list” is a list of dictionaries where each dictionary
contains one set of parameters for the model. The model is run
with all of these parameter combinations in each subprocess.
If ” use_clean_train_data ” is true, Runner will always pass the
original, clean training data to the model in addition to the test
data with injected faults. If there is no training data, a None
value can also be passed to the Runner.

The user-defined preprocessor is run twice in every sub-
process, right after the fault generation, using both clean
and faulty training data so that the correct version of the
training data can be passed to each model. The preprocessor
implements a function run(train_data , test_data , params), and
it returns the preprocessed train and test data. The preprocessor
can return additional data as well, and it will be listed as
separate columns in the DataFrame which the runner returns:
class Preprocessor:

def run(self, train_data ,

params) :
return train_data ,

Each model class should implement function
run(train_data , test_data , parameters) which optionally
trains the model on the training data and tests the model
with test data with given model parameters and returns a
dictionary containing the scores and possibly additional data
to be added to the resulting DataFrame:

test_data ,

test_data , {}

MNIST clustering scores with missing pixels

090 — Agglomerative #1 085 {—
—— HDBSCAN #1

—
— KMeans #1 0.80

— Agglomerative #1
—— HDBSCAN #1
— KMeans #1

00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07
probability probability

Fig. 5: Visualization of AMI and ARI scores for three
models when clustering MNIST dataset with missing pix-
els at different fault levels. The scores for HDBSCAN are
hyperparameter-optimized.

MNIST (n=70000) classes with missing pixels
probability=0.0

oE
-‘

probability=0.1 probability=0.2 probability=0.3

probability=0.4

L4
ff"d g

Le o

Fig. 6: 2D visualization of the MNIST dataset with different
fault probability levels.

class Model:
def run(self,
params) :
return {}

train_data , test_data ,

All of the data given to the specific model has first
passed through fault generation and preprocessing. You can,
for example, use the preprocessor to write the faulty data
to files and then call the CLI of an ML model using our
run_ml_module_using_cli(cline), which returns the output of an
external model to be parsed.

C. Visualization

In addition to fault generation, dpEmu can be used for
visualizing the results of the desired parameter combinations.
It supports visualizing (i) hyperparameter-optimized scores for
each model at different fault levels (Fig. 5); (ii) interactive
plots where data points can be clicked to visualize it; (iii) 2D
visualization of the dataset at different fault levels using
original labels (Fig. 6); (iv) the model parameter values which
give the best results; (v) interactive confusion matrices of the
classification results (Fig. 7); and (vi) the fault generation tree.

D. Use Cases

To test the usefulness of dpEmu we have studied several
use cases with different kinds of data and algorithms. These
studies include the following:

— Comparing some clustering algorithms’ performance

when clustering images from datasets like MNIST or
Fashion MNIST while adding different amounts of faults,

LinearSVC #1 confusion matrix (p=0.16)

140

alt.atheism 104 15 37 17
120

100

comp.graphics 6 28 14

true label

o o

o r

> K
Ee

&
&
S
o 0 &
&

B
predicted label

Fig. 7: Visualization of a confusion matrix for a LinearSVC
model from a 20 Newsgroups dataset with areas.

for example Gaussian noise or missing pixels, to the im-
ages. Dimensionality reduction is applied to the images in
the preprocessing phase before clustering. The evaluation
is done by calculating AMI and ARI scores using the
original labels provided. Also in the case of algorithms
like HDBSCAN, optimal hyperparameters at varied fault
levels are studied.

— Comparing different classification algorithms’ perfor-
mance when classifying texts from the 20 newsgroups
dataset while training the models with both clean and
faulty data at different fault levels. Fault sources such as
OCR faults and random missing areas are used. Optimal
hyperparameters at different fault levels are also studied.

— Forecast future values of time series using the LSTM
model when measured values have (i) arbitrary faults;
(ii) systematic drift, and (iii) gaps.

— Accuracy of the recognition of spoken commands as a
function of the dynamic range of the audio.

— Object detection, which we will discuss in the next
section in detail.

Results for different use cases are available at https://dpemu.
readthedocs.io/en/latest/index.html#case-studies.

IV. OBJECT DETECTION CASE STUDY

As a concrete example, we next use dpEmu to analyze
the accuracy of different object detection models. The code
and more details of the analysis are available at https://
dpemu.readthedocs.io/en/latest/index.html#case-studies. In the
study, we compared the performance of three models from
FaceBook’s Detectron project (FasterRCNN, MaskRCNN, and
RetinaNet) and YOLOvV3 model from Joseph Redmon, when
different fault sources were added. We used 118 287 jpg
images (COCO train2017) as training data and 5000 jpg
images (COCO val2017 http://cocodataset.org/#download) as
test data to calculate the mAP-50 scores. We used the
pre-trained weights for FasterRCNN (e2e_faster_rcnn_X-101-
64x4d-FPN_1x), MaskRCNN (e2e_mask_rcnn_X-101-64x4d-

(b) Example of added snow.

fsewu bat 0,69
. ‘b

(a) Example of added rain.

Fig. 8: Examples of rain and snow filters.

(a) Gaussian blur (b) Rain

Object detection with Gaussian blur Object detection with rain filter

—— FasterRCNN #1
—— MaskRCNN #1
—— Retinallet #1
— YoLOV3 #1

— FasterRCNN #1
—— MaskRCNN #1 06
— Retinalet #1
— YoLovs #1

00 05 10 15 20
std probability

(c) Snow (d) Resolution

Object detection with snow filter Object detection with reduced resolution

— FasterRCNN #1
—— MaskRCNN #1
— RetinaNet #1

— YoLov3 #1

—— FasterRCNN #1
—— MaskRCNN #1 06
—— Retinalet #1
— YoLov3 #1

N

107% 1073 1072 1071 1.0 15 20 25 3.0 35 40
snowflake_probability 3

Fig. 9: Effect of different filters to the accuracy of object
detection algorithms.

FPN_1x) and RetinaNet (retinanet_X-101-64x4d-FPN_1x)
from Detectron’s model zoo. YOLOvV3’s weights were trained
by us, using the Kale cluster of the University of Helsinki.
The training took approximately five days when two NVIDIA
Tesla V100 GPUs were used.

For dpEmu, we have defined several Filters to generate
different kinds of faults in images, including Gaussian blur,
Added rain, Added snow, and Resolution change. The Gaus-
sian blur filter added normally distributed noise with mean 0 to
the data. The standard deviation parameter was varied. Added
rain and snow filters introduced simulated rain and snow to
images. Sample effects of the Added rain and snow filters
can be seen in Fig. 8. The resolution was changed with the
formula:

imagel]fs] = image [k 7]] [+ 7]

The results of the object detection are presented in Fig. 9.
As expected, the figure shows that object detection accuracy

drops when the amount of disturbance in the picture increases.
Because it is difficult to compare the severity of different kinds
of faults (the x-axes), it is difficult to state which type of fault
is the most harmful. However, we can see that with Gaussian
blur, Added rain, and Added snow (Fig. 9a, 9b, 9c¢), the order
of the different models remains the same, and MaskRCNN
is the most accurate with all three fault types. With Added
rain, FasterRCNN accuracy drops faster than the accuracy of
MaskRCNN.

Interestingly, with reduced resolution (Fig 9d), the accuracy
order changes as the resolution gets worse. RetinaNet, which
initially was 3rd, gave more accurate results than FasterRCNN
and MaskRCNN, which initially were more accurate. These
results are tentative and a more extensive analysis would be
useful to evaluate the merits of different models in changing
conditions. They are, however, demonstrators of the kinds of
analysis dpEmu supports.

V. CONCLUSIONS

To develop robust and reliable ML systems we have created
dpEmu to encourage developers to evaluate how their models
and systems work when system input data has faults. The
system can be used for multiple purposes, such as investigating
how a trained model or an entire system tolerate different
kinds of faults in its input data; studying which model and
hyperparameterization are the best when input data has certain
kinds of faults or how alternative data cleaning approaches in-
fluence the operation of the resulting model; evaluating trade-
offs between model accuracy versus model robustness; and
quantifying the accuracy difference when the model is trained
with clean or faulty data. At present, dpEmu still is a prototype
and as usual, it is not perfect in terms of functionality and
usability. However, it already acts as demonstrator regarding
how robustness and tolerance to data faults can be integrated
into the development pipeline of ML systems.

Popular ML libraries, such as Sklearn or TensorFlow, have
extensive collections of functions for evaluating the models as
well as splitting the datasets for training and testing parts.
However, none of these, seem to have built-in support for
studying the model behavior in case of erroneous input data.
DpEmu can be used together with these libraries to add one
step before the actual training of the model. The addition of
one more step, however, will increase the training effort a lot.
In addition to the actual training, it is possible to have another
training loop that searches for the best possible architecture
and hyperparameterization for the system [13]. Introduction
of a third loop with different data faults to ensure the system
works in optimal, or adequate, fashion also with data faults
will further increase the already massive computational effort.

To ensure that ML models, and systems based on those, are
robust it is important to test how the systems work when input
data has faults. We envision that in the future models of typical
faults would exist for all regularly used data, such as for the
behavior of different kinds of sensors and their connectivity.
Such models already exist e.g. for optical character recognition

(OCR) [14]. The developers would then choose among differ-
ent predefined fault models and parameterize them to match
their needs. If a ready-made fault model is missing, users
could create their own. For their maintenance, ML systems
could not only track their behavior as they do now but also
track the behavior of the fault model that was used in their
development. A deviation from the fault model behavior could
be an indication of the need to reconsider if the model in use
is still optimal for the newly observed behavior.

REFERENCES

[11 Z. Qi, H. Wang, J. Li, and H. Gao, “Impacts of Dirty Data:
and Experimental Evaluation,” 3 2018. [Online]. Available: http:
/larxiv.org/abs/1803.06071

[2] N. Hynes, D. Sculley, G. Brain, M. T. Google Brain, and M. Terry,
“The Data Linter: Lightweight, Automated Sanity Checking for ML
Data Sets,” in NIPS MLSys Workshop, 2017. [Online]. Available:
https://github.com/brain-research/data-linter

[3] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
workshop on Security and artificial intelligence - AlSec '11. New
York, New York, USA: ACM Press, 2011, p. 43. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2046684.2046692

[4] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection
Techniques,” Tech. Rep. 2, 2004. [Online]. Available: https://citemaster.
net/get/f8626be0-10dd-11e6-a12d-00163e009cc7/04-Hissam.pdf

[5] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “What’s your ML
Test Score? A rubric for ML production systems,” in NIPS Workshop
on Reliable Machine Learning in the Wild, 2016.

[6] H. B. Braiek and F. Khomh, “On Testing Machine Learning Programs,”
12 2018. [Online]. Available: http://arxiv.org/abs/1812.02257

[7]1 J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning
Testing: Survey, Landscapes and Horizons,” 6 2019. [Online]. Available:
http://arxiv.org/abs/1906.10742

[81 P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang,
“CleanML: A Benchmark for Joint Data Cleaning and Machine
Learning [Experiments and Analysis],” 4 2019. [Online]. Available:
http://arxiv.org/abs/1904.09483

[91 M. Kooli and G. Di Natale, “A survey on simulation-based fault

injection tools for complex systems,” in 2014 9th IEEE International

Conference on Design & Technology of Integrated Systems in

Nanoscale Era (DTIS). 1EEE, 5 2014, pp. 1-6. [Online]. Available:

http://ieeexplore.ieee.org/document/6850649/

S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,

“AVFI: Fault Injection for Autonomous Vehicles,” in 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks Workshops (DSN-W). 1EEE, 6 2018, pp. 55-56. [Online].

Available: https://ieeexplore.ieee.org/document/8416212/

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:

GAN-based metamorphic testing and input validation framework for

autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering - ASE

2018. New York, New York, USA: ACM Press, 2018, pp. 132—

142. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3238147.

3238187

L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,

Y. Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of

Deep Learning Systems,” in Proceedings - International Symposium

on Software Reliability Engineering, ISSRE, vol. 2018-October. 1EEE

Computer Society, 11 2018, pp. 100-111.

R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink,

O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and

B. Hodjat, “Evolving Deep Neural Networks,” Artificial Intelligence

in the Age of Neural Networks and Brain Computing, pp. 293-312,

1 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/B9780128154809000153

H. S. Baird, “The State of the Art of Document Image Degradation

Modelling,” in Digital Document Processing. Springer, London,

2007, pp. 261-279. [Online]. Available: http://link.springer.com/10.

1007/978-1-84628-726-8_12

[10]

[11]

[12]

[13]

[14]

