
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
3
5

Temperature dependence of η/s: uncertainties from
the equation of state

Jussi Auvinen∗,a, Kari J. Eskola,b,c Pasi Huovinen,d Harri Niemi,b,c Risto
Paatelainene and Péter Petreczky f

aInstitute of Physics Belgrade
Belgrade, Serbia

bUniversity of Jyväskylä
Department of Physics
P.O. Box 35, FI-40014 University of Jyväskylä, Finland

cHelsinki Institute of Physics
P.O. Box 64, FI-00014 University of Helsinki, Finland

dUniversity of Wrocław
Wrocław, Poland

eCERN
Geneva, Switzerland

f Physics Department
Brookhaven National Laboratory
Upton, NY 11973. USA

E-mail: auvinen@ipb.ac.rs

We perform a global model-to-data comparison on Au+Au collisions at
√

sNN = 200 GeV and
Pb+Pb collisions at 2.76 TeV and 5.02 TeV, using a 2+1D hydrodynamics model with the EKRT
initial state and a shear viscosity over entropy density ratio (η/s)(T ) with a linear T dependence.
To quantify the amount of uncertainty due to the choice of the equation of state (EoS), we compare
analysis results based on four different EoSs: the well known s95p parametrisation, an updated
parametrisation based on the same list of particles in hadron resonance gas, but using recent lattice
results for the partonic part of the EoS, and two new parametrisations based on the Particle Data
Group 2016 particle list and the recent lattice results. We find that the choice of the EoS does
affect the favoured minimum value of η/s, although within the confidence limits of the analysis.
On the other hand, our analysis hardly constrains the temperature dependence of η/s, no matter
the EoS.
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1. Introduction

Recent advancements in multi-parameter model-to-data comparison have provided notable
constraints on the minimum value and temperature dependence of the shear viscosity over entropy
density ratio, η/s, of the matter produced in the heavy-ion collisions at RHIC and the LHC. The
results of a Bayesian analysis with a flexible initial state parametrisation [1, 2] agree with the
temperature dependence of η/s found in the earlier study using the EKRT pQCD + saturation +
hydrodynamics model [3].

However, with the exception of papers like Refs. [4, 5, 6], the equation of state is taken as given
in models used to extract the η/s value from the data. Furthermore, in many studies in the literature,
EoS parametrisation s95p [7] was used, a parametrisation which is based on by now outdated lattice
data [8]. To find out whether the works employing the s95p parametrisation are still relevant, and
whether the present uncertainties in the lattice results affect the value of η/s extracted from the
data, we perform a Bayesian statistics based analysis using four different parametrisations of EoS.
We compare the data obtained in

√
sNN = 200 GeV Au+Au collisions [9, 10] and Pb+Pb collisions

at 2.76 TeV [11, 12] and 5.02 TeV [12, 13] to the results of EKRT + hydrodynamics calculations [3,
14] with a linear parametric form for (η/s)(T ). The resulting probability distributions for the best-
fit parameters indicate not only whether the most probable parameter values depend on the EoS
used, but also whether the difference is larger than the overall uncertainty in the fitting procedure.

The structure of this proceedings article is the following: we describe the main features of the
hydrodynamics model and the equations of state in Section 2. A summary of the statistical analysis
methods is given in Section 3. The results are presented in Section 4 and summary in Section 5.

2. Hydrodynamical model and the equations of state

We use a viscous 2+1D hydrodynamical model [3] with a linear parametrisation of the tem-
perature dependence of η/s:

(η/s)(T ) =

{
SHG(Tmin−T )+(η/s)min, T < Tmin

SQGP(T −Tmin)+(η/s)min, T > Tmin,
(2.1)

where the free parameters are the minimum value of shear viscosity over entropy density ratio
(η/s)min, the location of the minimum in temperature Tmin, and the slopes below and above Tmin,
denoted by SHG and SQGP, respectively.

The initial energy density distribution is determined using the event-averaged EKRT minijet
local saturation model [15, 16]:

e(~rT ,τs(~rT )) =
Ksat

π
[psat(~rT ,Ksat)]

4, (2.2)

where psat(~rT ,Ksat) is the local saturation scale, τs(~rT ) = 1/psat(~rT ,Ksat) is the local formation
time, and the proportionality constant Ksat is one of the free parameters of our model.

We utilise four different parametrisations of EoS, which all combine hadron resonance gas at
lower temperatures with lattice QCD at high temperatures. We prefer to not use the lattice data
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Figure 1: Left panel: The trace anomaly as a function of temperature in the four parametrisations of the
EoS compared to the lattice data obtained using HISQ [18, 19] and stout [21] discretisation schemes. Right
panel: The speed of sound squared as function of temperature in the four parametrisations of the EoS.

to parametrise the EoS below T = 155 MeV temperature to allow energy and momentum con-
serving particlization without any non-physical discontinuities in temperature and/or flow velocity.
Our baseline is the well-known s95p parametrisation [7] where hadron resonance gas containing
hadrons and resonances below M < 2 GeV mass from the 2005 PDG summary tables [17] is con-
nected to parametrised hotQCD data from Ref. [8].

To gauge the effect of various developments during the last decade, we first connect the hadron
resonance gas of PDG 2005 particle list [17] to parametrised set of contemporary lattice data ob-
tained using the HISQ discretisation scheme [18, 19]. To follow the convention used to name s95p,
we label this parametrisation s87r since entropy density reaches 87% of its Stefan-Boltzmann value
at T = 800 MeV. The number of well-established resonances has increased since 2005, and thus
we build our parametrisation s88s16 based on hadron gas containing all strange and non-strange
hadrons and resonances in PDG 2016 summary tables1 [20], and on contemporary HISQ lattice
data [18, 19]. Furthermore there is slight tension in the trace anomaly between the HISQ and stout
discretisation schemes, and to explore whether this difference has any effect on hydrodynamical
modeling, we base our s83z16 parametrisation on PDG 2016 resonances, and the continuum ex-
trapolated lattice data obtained using the stout discretisation [21]. To characterise the differences
in the parametrisations, we show the trace anomaly and the speed of sound squared as a function
of temperature in Fig. 1.

In all the calculations presented here, the kinetic and chemical freeze-out temperatures are
Tdec = 150 MeV, and bulk viscosity is taken to be zero.

3. Statistical analysis

Our model has five free parameters {Ksat ,Tmin,(η/s)min,SHG,SQGP} which need to be fixed by
looking for the best reproduction of experimental data. Representing a point in the input parameter
space with~x, a corresponding point in the output (observable) space with~y(~x), and the experimental
data with ~y exp, we can determine the posterior probability distribution P(~x|~y exp) of the best-fit
parameter values by utilising Bayes’ theorem:

P(~x|~y exp) ∝ P(~y exp|~x)P(~x), (3.1)
1Subscript “16” in the label of the parametrisation refers to the use of the PDG 2016 list.
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where P(~x) is the prior probability distribution of input parameters and P(~y exp|~x) is the likelihood
function

P(~y exp|~x) = 1√
|2πΣ|

exp
(
−1

2
(~y(~x)−~y exp)T

Σ
−1(~y(~x)−~y exp)

)
, (3.2)

in which Σ is the covariance matrix representing the uncertainties related to the model-to-data
comparison.

We produce samples of the posterior probability distribution with Markov chain Monte Carlo
(MCMC) [22], by initialising an ensemble of random walkers in the input parameter space based
on the prior probability, and accepting or rejecting each proposed step based on the likelihood
function. The distribution of the taken steps then converges to the posterior distribution at a large
number of steps.

However, as we want to have an ensemble of O(100) walkers performing O(1000) steps, it
becomes infeasible to compute the likelihood function by running the full hydrodynamics simu-
lation for each random input parameter combination ~x. Instead, we utilise Gaussian process (GP)
emulators [23] as a surrogate model, and our likelihood function becomes

P(~y exp|~x) = 1√
|2πΣ|

exp
(
−1

2
(~yGP(~x)−~y exp)T

Σ
−1(~yGP(~x)−~y exp)

)
, (3.3)

where ~yGP(~x) represents the GP estimate of the model output. In this case, the covariance matrix
includes also the emulator estimation error

Σ = diag((σ exp)
2 +(σ GP(~x))2), (3.4)

with σ exp representing the experimental error and (σ GP(~x))2 being the GP emulator variance.
The cost of using the GP emulators is paid in the form of running the simulation multiple times

with different parameter combinations to create a set of training points for conditioning the GP. For
the present investigation, we have produced 120 training points for each EoS, distributed evenly
in the input parameter space using minmax Latin hypercube sampling [24]. The emulation quality
was then checked by removing 20 points from the training set, conditioning the emulator on the
remaining 100 and using the emulator to predict the results at the 20 excluded points. An example
of the results of this confirmation process is shown in Fig. 2 for 2.76 TeV Pb+Pb collisions using
the s95p parametrisation.

4. Results

In this preliminary study, the chosen small subset of the available data to constrain the param-
eters consists of the charged particle multiplicity Nch in |η | < 0.5 and 4-particle cumulant ellip-
tic flow v2{4} in (10-20)%, (20-30)% and (30-40)% centrality classes. For Au+Au collisions at√

sNN = 200 GeV, the Nch data was taken from Ref. [10] and v2{4} data from Ref. [9]. For Pb+Pb
collisions at

√
sNN = 2.76 TeV, the charged particle multiplicities were obtained from Ref. [11] and

for
√

sNN = 5.02 TeV from Ref. [13]. Elliptic flow data for both energies was taken from Ref. [12].
Figure 3 shows the marginal posterior distributions for each parameter (obtained from the

full 5-dimensional probability distribution by integrating over the other four parameters) for the
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Pb+Pb 2.76 TeV
Nch (10-20)%
s95p

Pb+Pb 2.76 TeV
v2{RP} (10-20)%
s95p

Figure 2: Illustration of the quality of the Gaussian process emulation for 20 random test points for simula-
tions with s95p equation of state. Left panel: Charged particle multiplicity in (10-20)% most central Pb+Pb
collisions at

√
sNN = 2.76 TeV. Right panel: Elliptic flow v2{RP} in (10-20)% most central Pb+Pb collisions

at
√

sNN = 2.76 TeV.
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Figure 3: Marginal posterior probability distributions for EoS s83z16 (orange solid lines) and s95p (black
dotted lines). Vertical dashed lines indicate the median values. The scale of the vertical axis on each panel
is arbitrary.

s83z16 and s95p equations of state. Our analysis is able to find constraints for only two parameters,
Ksat and (η/s)min. For all EoSs Ksat peaks at 0.5, which is in agreement with the value used
together with the param1 parametrisation in Ref. [3], which in that study was found to give the
best agreement with the flow coefficients. On the other hand, the peak and thus the favoured value
of (η/s)min does depend on the EoS. The probability distributions of all the other parameters,
Tmin,SHG, and SQGP, are very flat without clear peak, which indicates that our priors, i.e. the
intervals where parameters were allowed to vary, were too narrow and thus the median values of
these distributions reflect mostly our prejudices.

We present a more detailed comparison of the most probable (η/s)min values for all four
EoSs in Fig. 4. The largest difference is observed between s95p and s83z16, while the two other
parametrisations s87r and s88s16 fall in-between with practically identical probability distributions.
However, while the median of the distribution is sensitive to the equation of state, the 90% cred-
ibility intervals overlap even for s83z16 and s95p parametrisations. Therefore the earlier results
obtained using s95p parametrisation are still valid within the overall uncertainties of the fitting
procedure, and it is too early to exclude the possibility that all EoSs would produce similar values
for (η/s)min in a more detailed analysis.

Finally, we check how well the favoured parameter combinations reproduce the experimental
data by drawing 200 samples from the posterior distribution and using the Gaussian process emu-
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Figure 4: Comparison of (η/s)min posterior distributions for the four investigated EoSs. Left panel:
Marginal probability distributions. Dashed vertical lines indicate median values. Right panel: Simplified
view showing the median values (filled circles) and 90% credible intervals (error bars).
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Figure 5: Predicted variation on charged particle multiplicity vs. centrality using 200 samples from the
posterior distribution with the s95p EoS. Wider shaded area indicates higher density of points. Horizontal
lines within the shaded areas indicate the median values. Left panel: Au+Au at

√
sNN = 200 GeV compared

to STAR data [10]. Middle panel: Pb+Pb at
√

sNN = 2.76 TeV compared to ALICE data [11]. Right panel:
Pb+Pb at

√
sNN = 5.02 TeV compared to ALICE data [13].

lator to predict the simulation output for these values. The results for charged particle multiplicities
Nch and for the elliptic flow v2{4} are shown in Figs. 5 and 6, respectively. The overall agreement
with the data is very good for both observables over all three collision energies and centralities,
assuring that the posterior distributions are indeed providing best-fit parameter values.

5. Summary

We have determined the probability distributions of the best-fit parameter values for shear
viscosity over entropy density ratio η/s with a linear temperature dependence within a pQCD +
saturation + hydrodynamics framework using Bayesian statistics approach. Using charged particle
multiplicities and elliptic flow at three different collision energies as calibration data, we were able
to find constraints for the initial state proportionality constant Ksat and the minimum value of shear
viscosity (η/s)min. While Ksat is found to be≈ 0.5 regardless of the choice of the equation of state,
the peak of (η/s)min distribution depends on the EoS, and the three new parametrisations s83z16,
s87r, and s88s16 prefer larger values of (η/s)min compared to the baseline EoS, s95p. However, as
the probability distributions still have a large overlap, and the parameters controlling the tempera-
ture dependence of η/s remain unconstrained, it is too early to make any strong statements about

5



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
3
5

Uncertainties of (η/s)(T ) from EoS Jussi Auvinen

(10-20)% (20-30)% (30-40)%
Centrality

0.00

0.02

0.04

0.06

0.08

v 2
{ 4}

s95p Au+Au 200 GeV Exp data

(10-20)% (20-30)% (30-40)%
Centrality

0.00

0.02

0.04

0.06

0.08

0.10

0.12

v 2
{ 4}

s95p Pb+Pb 2.76 TeV Exp data

(10-20)% (20-30)% (30-40)%
Centrality

0.00

0.02

0.04

0.06

0.08

0.10

0.12

v 2
{ 4}

s95p Pb+Pb 5.02 TeV Exp data

Figure 6: Predicted variation on elliptic flow vs. centrality using 200 samples from the posterior distribution
with the s95p EoS. Wider shaded area indicates higher density of points. Horizontal lines within the shaded
areas indicate the median values. Left panel: Au+Au at

√
sNN = 200 GeV compared to STAR data [9].

Middle panel: Pb+Pb at
√

sNN = 2.76 TeV compared to ALICE data [12]. Right panel: Pb+Pb at
√

sNN =

5.02 TeV compared to ALICE data [12].

the effect of EoS on the extracted shear viscosity. In Bayesian terms, better constraints are needed
for both the prior (from theory) and the likelihood (from measurements).
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