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Summary 

Carbon balance of forests is defined by three main processes; photosynthesis, autotrophic respiration, and 
heterotrophic respiration. Climate impact of forests include also non-carbon effects like albedo, biogenic 
aerosols, effect on clouds, evaporation and surface roughness. 

A well-thought measurement setup as well as standardised procedures are essential for a meaningful and 
robust monitoring and the comparability of the observations at the same site and in inter-site comparisons. 
Depending on the mitigation project objectives and scale different combination of methodologies could be 
used including forest carbon inventories, chamber measurements, tower-based eddy covariance flux 
measurements, large-scale atmospheric greenhouse gas measurements, aircraft and satellite remote 
sensing. 
 
In addition to GHGs, forests have other important climate effects. They change surface albedo (warming 
effect), are source of volatile organic compounds (VOC), have effect on aerosol particle formation and 
growth, increases amount of cloud condensation nuclei (CCN), and has effect on cloud formation as well as 
on the precipitation. Moreover, any modification of the carbon cycle by removing or increasing CO2-binding 
vegetation has impact on the complex climate - carbon cycle feedback. We define these additional cooling 
effects as CarbonSink+. Accounting all these effects, this CarbonSink+ may increase the climate cooling 
impact of forests compared with pure carbon sink effect.  

Land use based mitigation plays an important role in current Nationally Determined Contributions of Paris 
Agreement. Scientific findings indicate that through different actions land sector could provide up to 1/3 of 
the needed total mitigation through year 2030. However, permanence of ecosystem based carbon storages 
is still a challenge and trade-offs between different land use form exist and should be properly acknowledged 
in the mitigation projects. 

We define in this report a cost effective, i.e. as simple as possible but good enough, measurement setup to 
verify both ordinary carbon sink and CarbonSink+ -effect. The methodology is planned for commercial 
applications, rather than for scientific purposes. The estimated prices of the instrumentation are based on 
present-day situation. In the conclusions of the report, we also describe first level principles and challenges 
which could help to formulate protocols for larger framework needed for the global commercial carbon 
market. 
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Extended summary 
 

Paris Agreement emphasized the role of land-use sector in climate change mitigation. There is increased need 
for different scale of ecosystem based mitigation projects. The backbone of the conceptualized commercial 
measurement system and higher level steering regulation has to be connected to relevant scientific 
understanding. This ensures longer term sustainability and social acceptance of the emerging land-use based 
commercial carbon market. This means that individual methods are based on standardized measurement 
techniques for ensuring the verification of claimed carbon credits within system. Higher level commonly 
shared framework and transparent system protocols are also needed for the development of the regulation 
for commercial carbon mitigation projects.  

In this report, we describe current state of scientific understanding related to ecosystem carbon sinks and 
storages, and other climate effects of forests. We also define in this report a cost effective, i.e. as simple as 
possible but good enough, measurement setup to verify both ordinary carbon sink and CarbonSink+ -effect. 
Chapter 1 describes different processes related ecosystem carbon sinks and storages. Chapter 2 describes 
state-of-art of different measurements. Chapter 3 describes other forest related climate effects than 
greenhouse gases (GHG), namely surface albedo (warming effect) and biogenic aerosols, and feedback loops 
between different effects which strengthen net climate cooling impact of forest cover, aka CarbonSink+. 
Chapter 4 describes scientific findings of the potential to mitigate climate change by strengthening terrestrial 
carbon sink by different land-use sector actions. On basis of other chapters, recommendation for the 
conceptualization of commercial carbon measurement system, main uncertainties and an estimate of related 
costs are given in Chapter 5. 

Chapter 1: Forests cover 67 % of the global land area (FAO 2015). Forest vegetation removes carbon (C) from 
the atmosphere by taking up carbon dioxide (CO2) via photosynthesis. Besides living biomass, C removed 
from the atmosphere is sequestered into dead plant parts and soil. Biomass and soil, thus, function as C 
storages in forests. Sequestered carbon is released by respiration. Plants need energy for several processes, 
for instance synthesis of new molecules and transportation of sugars. Plants utilize the energy bound in 
photosynthesis via autotrophic respiration. Heterotrophic respiration is the combination of microbial 
decomposition of dead plants parts and breaking up the organic compounds released to the soil as root 
exudates. Carbon flux is the movement of C through a unit area per unit time. If the net C flux of a surface, 
e.g. forest, is negative, the forest takes up more C than it releases C and acts as a C sink. In case the net flux 
is positive, forest is a source of C. Forest acts as a carbon sink when carbon storage increases, i.e. carbon is 
sequestration larger than released amount of carbon (e.g. respiration of trees, soil processes, wood 
harvesting). On a global scale, forests form a large sink of atmospheric C. Current terrestrial sink is 11,7 GtCO2 
year-1 (3,2 GtC year-1, http://www.globalcarbonproject.org/, Le Quere et al. 2018). Stopping deforestation, 
and increasing afforestation and reforestation can help to strengthen the ecosystem sinks of CO2. An 
estimated 861 ± 66 Gt of C is stored in the world’s forests (fossil and land-use change emissions together are 
10.9 GtC year-1). Forest biomes differ in their carbon structures as, for example, tropical forests have highest 
C storage in biomass, but boreal forests have largest C storage in soil. Forest management influences forest 
C storages. After tree harvest, the total carbon storage of a forest diminishes at least for a short term. Once 
new trees are established, the total C storage will gradually increase, but this takes from several decades up 
to hundred years in boreal conditions. 

Chapter 2: The term forest carbon storage (or stock) describes the total amount of carbon stored in the soil 
and biomass of a forest. Carbon storage changes can be calculated either straightforward from the changes 
in carbon stocks or by integrating the net carbon fluxes over time. Observations need to consider the two 
major organic carbon pools, biomass and soil, and can be conducted in-situ and by remote sensing, and on 
multiple spatiotemporal scales, from plant organ to global level. The UN standards required for afforestation/ 
reforestation projects (e.g. within the programmes REDD+ and Clean Development Mechanism, CDM) might 
not be sufficiently profound and explicit to ensure emission reductions to be additional and not over-
estimated. The usefulness of CDM methods depends also on the length of the commitment period, how 
interactions of different processes are covered, and if CarbonSink+ is of interest. Observations should be 

http://www.globalcarbonproject.org/


4 
 

started before land-use change such as afforestation/reforestation is conducted, in order to establish a 
meaningful baseline and to be able to verify the impact of the land-use change. Standardised protocols are 
available for most of the in-situ observation methods, such as the ones for measurements of terrestrial GHG 
fluxes and atmospheric GHG concentrations. 

Forest carbon inventories need to consider the two major carbon pools in a forest ecosystem, biomass and 
soil carbon. Forest biomass includes above-ground living biomass (trees, understorey vegetation), below-
ground living biomass (coarse and fine roots), as well as litter and deadwood as non-living biomass. Inventory 
could include sampling, allometric methods, terrestrial laser scanning, and all these could be coupled with 
process-based modelling. The result of a forest carbon inventory is expressed as changes in carbon stocks in 
tonnes of carbon per hectare or at a project level over a certain period of time.  

The chamber technique for observing fluxes of different GHGs is particularly well-suited for laboratory-based 
and in-situ process-level studies. Observations with the chamber technique might be an option for carbon 
stock change observations during the first years after afforestation, when the seedlings still fit into the 
chambers, or for observations of the gas exchange of forest understory and soil. A chamber generally 
encloses the compartment of interest such as a leaf or branch or a certain tree stem or soil surface area. It is 
equipped to measure the gas (particularly CO2, but also CH4 and N2O) concentration change within the 
chamber, based on which the gas exchange between the compartment of interest and the atmosphere is 
calculated.  

The eddy covariance technique is a widely used and one of the most direct and accurate methods for 
quantifying exchanges of CO2, CH4, N2O, H2O, various other gases and aerosols as well as energy between the 
surface of the earth and the atmosphere at ecosystem scale. Eddy covariance measures the gas exchange on 
ecosystem-scale and requires a minimum area of homogeneous land cover in dependence on the size of its 
footprint (source area of the flux). The minimum fetch of Eddy measurement could vary from 100 m in case 
of short vegetation (e.g. 1 meter tall grasses in wetland) to 1 km in case of mature forest stand (trees of tens 
of meters height) from wind direction. Minimum area could be calculated using fetch as a radius of circle. 
Cautious and standardised post-processing of the raw flux measurements is essential for the reliability and 
intercomparability of the observations and should include footprint modelling to estimate the source/sink 
area of the measured fluxes 

For large scale observations, platforms for continuous monitoring and flask sampling are, for instance, 
continental stations (tall towers specifically built for this purpose or existing television, radio and cell phone 
towers, mountain and coastal stations and airborne platforms (aircrafts, helicopters). The source area of an 
atmospheric measurement is increasing with the height at which the air is sampled and can be on the order 
of 100-1000 km. For the estimation of source distributions on regional scale, observations from a distributed 
network of stations and regional land cover maps are required. 

Aircraft and satellite remote sensing (like Landsat, MODIS) can support several ways the quantification of 
forest carbon storage and its changes on different spatial scales and new techniques are progressively 
developed (Unmanned Aerial Vehicles [= drones] have spatial scale of few hectares, aircraft from 1 km2 to 
hundreds of square kilometres, and satellites > tens of square kilometres) while combining datasets retrieved 
in different spatial and temporal scales by different satellites helps to refine the resolution of the remote 
sensing products. 

Chapter 3: Albedo can range from 0 (black surface that absorbs all radiation) to 1 (perfect mirror that reflects 
all radiation). Land covered by green vegetation typically has albedo of 0.05–0.28. Afforested sites are often 
originally open pasture or grassland, thus afforestation decreases albedo, i.e. have warming effect. The 
change in the annual shortwave radiation balance can be significant and comparable to the radiative forcing 
caused by changes in carbon storage.  
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The VOCs produced by forests (BVOC) will form new aerosol particles and secondary organic aerosols (SOA) 
which generates more CCNs, which increases cloudiness and thicker clouds increasing cloud albedo. 
Increased cloud albedo can have major cooling effect and counterbalance the warming effect of forests’ low 
surface albedo. However, this process depends on the specific emitted VOCs. In the boreal region, VOCs – 
especially monoterpenes – can have major cooling contribution to the radiative forcing and therefore also to 
the regional climate, while the effect of isoprene which is main VOC in tropics is not that effective. A negative 
climate feedback mechanism known as CO2 fertilization may cause an increase in the gross primary 
production (GPP) of an ecosystem due to higher atmospheric CO2-levels. Enhanced photosynthesis increases 
BVOC emissions. Also temperature increase boosts emissions of many BVOCs. This feedback loop affects 
finally to CCNs , cloud albedo , the diffuse to global radiation ratio and may strengthen cooling effect of 
forests further. We define these additional cooling effects as CarbonSink+. 

Chapter 4: The importance of land-use sector for reaching targets of restricting global warming <2°C is 
emphasized by Paris Agreement. Summed up, land-use based mitigation forms 25% of total mitigation in 
current Nationally Determined Contributions (NDC). These approaches include large uncertainties and 
therefore mitigation by land use sector needs to be done on a sound scientific basis. Natural Climate Solutions 
(NCS) present 20 different actions for three major land biome (forests, agricultural and grasslands, and 
wetlands) for strengthening carbon sinks in these ecosystems. The NCS could provide even up to 1/3 of the 
needed total mitigation through year 2030 when cost-efficiency is accounted for (mitigation cost <100 USD 
tnCO2eq-1 year-1). However, taking into account the CarbonSink+ this effect could be even bigger. 

The persistence of the carbon stored in the ecosystems in the mitigation projects is well-known challenge. 
How to suppress abiotic (e.g. storms) and biotic damages (insects, pathogens etc.) in large regions needs 
specific attention in the ecosystem based mitigation projects. Also aspect to keep in mind is that reducing 
rates of deforestation constrains the land available for agriculture and grazing, with tradeoffs between diets, 
higher yields and food prices. Also the importance of old forests increases along the efforts to increase the 
long-term storage of carbon in ecosystems. The carbon dynamics in the old forests are not well known 
although common belief of old forests being carbon sources is not valid in the light of current scientific 
understanding. Focused measurements both in pristine Northern boreal forests and in tropical forests are in 
demand if long-term success of these mitigation projects are wanted to ensure. The only sustainable way in 
the long-term to obtain mitigation through NCS and land use intensification is to implement them in locally 
appropriate ways with best practices that maximize resilience. 

Chapter 5: Conceptualised measurement scheme has to be flexible enough for being applicable in various 
situations. We divided the scheme to planning phase (steps 1-3) and operational phase (steps 4-6) whose 
include altogether six (6) steps. Step 1: Ecosystem description. Each mitigation project has to consider the 
specifics of vegetation zone like climate, biome, size of target area, and management history. The project for 
strengthening ecosystem carbon sinks should take place only in the locations fulfilling the criteria. Step 2: 
Initial vegetation and carbon inventory. This phase includes different inventory methods for vegetation and 
soil, e.g. traditional forest mensuration for aboveground vegetation and systematic acquisition of soil 
samples in the resolution covering both horizontal and vertical variation. Step 3: Management and 
Monitoring plans. This step includes description of the actions which will take place for fulfilling the objectives 
of the mitigation project, and number of afforested areas, their sizes, and the desired frequency of the 
observations for creating a coherent monitoring / observations strategy. Step 4: Actual monitoring / 
observations (see chapter 5). Step 5: Post processing of measurements and data analysis. Step 6: Repetition 
of cycle. 
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1. Current understanding of carbon sink state and dynamics – Global, Europe, Finland 
Laura Matkala & Jaana Bäck 

 

1.1 Carbon sequestration in forest ecosystems 
 

Forests cover 67 % of the global land area (FAO 2015). Forest vegetation removes carbon (C) from the 

atmosphere by taking up carbon dioxide (CO2) via photosynthesis. The products of photosynthesis are 

different forms of sugars, which the plants store in their tissues. Plant respiration, or autotrophic respiration, 

takes place when plants break up the sugars formed in photosynthesis to use the energy bound in them. It is 

an inverse reaction of photosynthesis, and releases CO2 to the atmosphere (Hari et al. 2013a). Besides living 

biomass, C removed from the atmosphere is sequestered into dead plant parts and soil. Biomass and soil, 

thus, function as C storages in forests. Soil C sequestration depends on the amount of input from litter-fall 

and fine roots, atmospheric input of organic matter, lateral transport of dissolved inorganic and organic C in 

water runoff, and soil respiration. Soil respiration includes autotrophic respiration of living roots and 

heterotrophic respiration from microbial decomposition of dead plants parts and breaking up the organic 

compounds released to the soil as root exudates (Ardö 2015, Pumpanen 2013).  

Carbon dioxide is essential for life, but it is also a greenhouse gas (GHG), meaning that it absorbs and emits 

thermal radiation. Additionally, there are other important GHGs, such as methane (CH4) and nitrous oxide 

(N2O).  Referring to their climate impact, quantities of GHGs are expressed as CO2-equivalents. This common 

unit, allowing for direct comparisons, represents the amount of CO2, which would have the equivalent global 

warming impact. It is calculated as a product of the quantity of the GHG and its global warming potential 

(GWP, also called cumulative forcing, dependent on lifetime of the GHG in the atmosphere). According to 

the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) the GWP values of CO2, 

CH4 and N2O for a 100-year time horizon are 1, 28 and 265, respectively, whereby for CH4 and N2O climate-

carbon feedbacks are not included (IPCC, 2014). 

Essential concepts and definitions related to carbon cycling are described in Fig. 1.1. The forest C cycle is 

visualized in Fig. 1.2. It shows, along with the C storages, fluxes of C between the atmosphere and ecosystem. 

Carbon flux is the movement of C through a unit area per unit time. Usually the unit area is a square meter 

in the ground, perpendicularly to the flux of air. Unit time is seconds. If the net C flux of a surface, e.g. forest, 

is negative, the forest takes up more C than it releases C and acts as a C sink. In case the net flux is positive, 

forest is a source of C (Burba and Anderson 2010). Forest acts as a carbon sink when carbon storage increases, 

i.e. carbon sequestration is larger than the released amount of carbon (e.g. respiration of trees, soil 

processes, wood harvesting). 

On a global scale, forests form a large sink of atmospheric C. The input of different forest biomes on the 

global forest C sink is in Table 1.1, along with information about the total C storages of the biomes. The latest 

calculation of the global land CO2 sink, as an average from 2007-2018, is 3.2 Pg C year-1 (Le Quére et al. 2018). 

The C fluxes and storages related to forest ecosystems are in Fig. 1.2. Deforestation, mentioned in the figure 

under land use change, means cutting down a forest and using the area for non-forest use. It is a large global 

source of CO2 to the atmosphere. Afforestation and reforestation can help to increase the sinks of CO2 (Ciais 

et al. 2013). Afforestation means establishing new forests to regions without previous forest cover in the 

recent history, and reforestation is restocking of deforested or depleted areas with trees (Global Forest Atlas 

2018).  
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Figure 1.1 Concepts and definitions related to describing C exchange between atmosphere and ecosystem. 
Modified from Kirschbaum et al. 2001. E.g. NPP = GPP – Autotrophic respiration,  NEE/NEP = GPP- TER, 
NEE/NEP = NPP – Heterotrophic respiration, and GPP = NEE/NEP + TER. The GPP could be estimated 
e.g. 𝐺𝑃𝑃 =  𝛽𝑓aPPFD ∑ 𝛷𝑑  ∏ 𝑓𝑖𝑑    𝑖𝑑  ,where 𝑓aPPFD  is the fraction of photosynthetic photon flux absorbed 
by the canopy), β is the potential light use efficiency (gC mol-1), 𝛷𝑑 is photosynthetic photon flux density of 
day 𝑑 (PPFD, mol m-2 day-1), and 𝑓𝑖𝑑 are values on day 𝑑 of environmental modifiers related to variable 𝑖 
(𝑖 = 𝐿, 𝑆, 𝐷, 𝑊 representing light, temperature, vapour pressure deficit and soil water, respectively). The 
NPP varies between vegetation zones and ecosystems but mean value is conservative being close to 0.5 x 
GPP. 

 

In many regions, especially in the semi-arid areas in the tropical zone, afforestation is considered as an 

important carbon sequestration method for climate change mitigation (Ardö 2015). Deforestation takes 

place especially in the tropical regions. It makes the tropical forests nearly carbon-neutral although they 

cover the largest forest area compared to other forest biomes, and comprise about 70 % of the gross C sink 

in the world’s forest (Pan et al. 2011). Thus, the net global forest sink occurs via boreal and temperate forests 

(Pan et al. 2011).Land-use, land-use change and forestry, including afforestation, form one pathway towards 

halting climate warming through the reduction of atmospheric GHG concentrations, or at least the reduction 

of emissions to the atmosphere. However, carbon sequestration alone does not tell the full story. Vegetation-

climate feedback loops (e.g. Luyssaert et al., 2018) need to be considered when evaluating the climate impact 

of ecosystems and management practises (chapter 3).  

Tree and plant species of different forest biomes are adapted to varying kinds of growing environments. In 

tropical land ecosystems, both dry and moist, the CO2 flux can vary because of El Niño-Southern Oscillation 

(ENSO). ENSO has positive and negative phases; the positive phase, which usually means a higher land CO2 

source, is called El Niño. The negative phase with higher land CO2 sink is La Niña. ENSO also has a neutral 

phase (Ciais et al. 2013, Tagesson et al. 2016). Most forest biomes experience seasonality in either rain or 

growing season length (Pan et al. 2013) For instance, in a West African grazed semi-arid savanna ecosystem, 

the CO2 flux levels can be very high at the peak of a rainy season. About 30 days after the onset of a rainy 

season, once the vegetation is active and established, the ecosystem turns into a C sink. After the rainy season 

the CO2 flux rate as well as soil moisture decrease strongly (Tagesson et al. 2016).  
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Figure 1.2 a) Fluxes and storages of atmospheric carbon related to forest ecosystems. Red arrows denote 
release of carbon from ecosystem to the atmosphere (marked with plus sign). Black arrows mark the 
uptake of carbon from atmosphere to ecosystem (marked with minus sign). White boxes denote carbon 
storages.  Storages are based on Pan et al. 2011,  those marked with * are from Ciais et al. 2013. The values 
marked with ** are from the latest Global Carbon Budget (Le Quére et al. 2018) , so that the value for fossil 
fuels is based on Boden et al. 2017, land use change bases on Hansis et al. 2015, Houghton and Nassikas 
2017, and Le Quére et al. 2018, and land CO2 sink bases on Le Quére et al. 2018. The land sink is based on 
GPP, TER and land use change.   b) Numbers based on observations at Hyytiälä. 

b) 

a) 
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Soil texture and nutrient availability affect forest’s capacity to bind CO2. In boreal forests nitrogen (N) is the 

growth limiting nutrient, but a co-limitation of N and phosphorus (P) is globally very common, and in tropical 

and temperate forests single P limitation also occurs (Augusto et al. 2017). For instance, in eastern Amazonian 

forests, the soil is weathered and strongly limited with P. This is why the NPP rates of the eastern Amazonian 

forests are lower than NPP rates of the western Amazonian forests, where the soil is younger, less weathered 

and richer in nutrients. Soil parent material is crucial in P limitation, while climatic factors affect N limitation 

the most (Augusto et al. 2017).   

Understory vegetation also plays a role in forest carbon dynamics. If the tree canopy is scarce, and light hits 

the forest floor freely, understory vegetation can form an important part of the CO2 flux between forest and 

atmosphere (Hari et al. 2013b). In boreal forests ecosystems, the GPP by understory vegetation has been 

measured to represent as much as 60 % of the forest GPP (Ikawa et al. 2015). 

 

1.2 Respiration in forest ecosystems  
 

Plants utilize the energy bound in photosynthesis via respiration. Plants need energy for several processes, 

for instance synthesis of new molecules and transportation of sugars. Although growth and maintenance 

respiration can be differentiated as terms, it is very hard to separate them in practice, as their processes are 

similar and they take place concurrently (Bäck et al. 2008). Maintenance respiration is accounted as 

proportional to plant size (Amthor 2000) and strongly correlated with leaf tissue N concentration. Nitrogen 

is an essential ingredient of proteins (Ryan 1991). Growth respiration is considered to be proportional to GPP 

(Amthor 2000). Respiration and photosynthesis occur simultaneously during the daytime, but during the 

nighttime plants only respire (Bäck et al. 2008). Temperature changes affect respiration more than they affect 

photosynthesis (Ryan 1991). Additionally, respiration has other drivers and regulators, whose importance 

depends on the climate and location of the forest. Respiratory enzymes limit respiration the most in cold 

conditions, while substrate and adenylate concentrations regulate respiration rates in warm environments 

(Atkin and Tjoelker 2003). As the same environmental drivers cause different effects in respiration and 

photosynthesis, climate change may modify their balance. This, in turn, could change NPP (DeLucia et al. 

2007)   

Trees respire from many parts, as likewise with leaves, also roots and stem respire. In addition to autotrophic 

respiration, heterotrophic respiration is an important part of C cycle in forest ecosystems. Soil respiration, 

including also root respiration, creates an outward flux of CO2 from soil to the atmosphere. This efflux is an 

important part of the forest carbon cycle. Soil respiration is dependent on temperature, which affects the 

functioning of, for example, decomposing microbes (Pumpanen 2013). Forest soils are typically net sinks of 

C, as litter fall is bigger than soil respiration (Ågren et al. 2008).   

 

1.3 Carbon storages and carbon storage changes 
 

An estimated 861 ± 66 Pg of C is stored in the world’s forests (Fig. 1.2a). The storage of soil C may be 

underestimated, as the standard 1-m soil depth, used in the estimations, excludes some deep organic soils 

in boreal and tropical peat forests. Forest biomes differ in their carbon structures as, for example, tropical 

forests have highest C storage in biomass, but boreal forests have largest C storage in soil (Pan et al. 2011). 

Mangrove forests have one of the biggest carbon storages of all ecosystems (Simard et al. 2019). The 

division of the C stock to different forest biomes is in Table 1.1.  
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Forest management influences forest C storages. After tree harvest, the total carbon storage of a forest 

diminishes at least for a short term. Especially with clear cuts, this decrease is immediate and evident and 

leads to increased CO2 emissions due to accelerated decomposition of accumulated organic matter and 

harvest residues. Once new trees are established, the total C storage will gradually increase, but this takes 

from several decades up to hundred years in boreal conditions (McKinley et al., 2011). Recent modeling 

studies imply that in the long-term, climate change induced risk for natural disturbance is an important factor 

affecting forest total C storage. Such disturbances can be insect outbreaks, fire or drought, which can destroy 

large forest stands and turn them from sinks to sources of atmospheric CO2 (Bradford et al. 2013, Kalies et al. 

2016). The responses of soil C to forest management are small on an annual basis, but monitoring for longer 

time periods have revealed diminished soil C storages due to forest management (Johnson and Curtis 2001, 

Kaarakka et al. 2016). 

Afforestation practices have become more common within the last decades. The afforested areas are still 

relatively small trial areas compared to what would be needed to compensate current global C emissions. 

For climate change mitigation purposes afforestation works most efficiently in the tropics (Claussen et al. 

2001, Yosef et al. 2018). A promising possibility for afforestation lies in semi-arid regions (Ardö 2015, Yosef 

et al. 2018, Liu et al. 2018). The best areas seem to be those under monsoon effect (Yosef et al. 2018), which 

get some rainfall, but their climate is not too humid. Afforestation can affect local meteorological conditions, 

reaching to areas outside the afforested area. Fifteen-year simulations of effects of afforestation over large 

areas of the semi-arid regions of Sahel and North Australia (both with annual 300 mm precipitation) 

demonstrated increasing precipitation rates and lower surface air temperatures. The simulation period 

included three significant El Niño and four significant La Niña years (Yosef et al. 2018). The same was noticed 

in a smaller area of Yatir forest, where its cooling effect was still clear 5 km away from the forest, where the 

day was 0.5-1 °C cooler than further away from the forest (Yosef et al. 2017). Yatir forest is 35-year-old 

afforestation system in Israel, on the lower slopes of Hebron hills at the edge of a desert (Grünzweig et al. 

2003). Afforestation enhances soil moisture conditions. This may indirectly enhance C sequestration, as 

plants, which cannot tolerate drought well, will be able to move to new areas.  

 

In addition to the increase in aboveground C storage, afforestation increases soil organic carbon stocks. Root 

growth and biomass accumulation underground is an important factor for this. In Yatir forest, the total 

ecosystem organic C stock was approximately 2.5 times the C stock of a nearby shrubland (Grünzweig et al. 

2007). Generally, soil carbon accumulation is larger in afforestation of tropical region, compared to 

temperate and boreal region. Also, broadleaved trees seem to increase soil C stock more than conifers, 

possibly because higher litterfall with broadleaved trees dropping leaves for winter/dry season (Liu et al. 

2018). Since tree biomass as a C storage varies due to, for example, forest management or natural death, 

should more C be stored in soil to enable greater continuity of storage. In a hot, semi-arid, shrubland 

afforestation of shrubland proved to be successful in especially soil C sequestration. Possible reasons for the 

promising results were increased N use efficiency, new live and dead root biomass, and reduced litter decay 

rates caused by lowered litter quality, as conifers were grown instead of previous, broadleaved shrub cover. 

In addition to added soil C from the established forest, about 50 % of the previous shrubland soil C remained 

in the afforested area (Grünzweig et al. 2007).  

 

Carbon storages in the tropics and boreal forests are large. Both regions face an increasing fire risk caused 

by climate change induced droughts. In the tropics, deforestation also still poses a risk to the C storage. 

Although its rate has decreased in some regions, such as in Brazil, it has increased in other regions, such as 

in Malaysia and Indonesia (Pan et al. 2011, Hansen et al. 2013, Rappaport et al. 2018). Temperate and boreal 

forests seem to continue as C sinks even though their risk of suffering from natural disturbances increases 

due to climate change (Kalies et al. 2016). 
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Table 1.1. Forest biomes of the world and their contribution to C sequestration between  (Pan et al. 2011, 

Pan et al. 2013). Sink rates and storage values are based on data from time period of 1990-2007, and thus, 

may have changed since then. The overall division to different biomes should have stayed more or less the 

same.  

Forest biome Mean annual 

temperature 

(°C) 

Total annual 

precipitation 

(mm) 

Area 

(Mha) 

Total 

carbon 

density in 

biomass 

(Mg C ha-

1) 

Carbon 

sequestration 

rate/sink 

Total carbon storage 

Tropical rainforest ~ 20 - 25 >1500 1458 145 ± 53   

Tropical moist 

deciduous forest  

> 15 1000 - 2000 1105 73 ± 47 Sink of the whole 

tropical forest 

biome (inlc. 

regrowth 

forests): 

Stock of the whole 

tropical forest biome 

: 

Tropical dry forest > 15 500 - 1500 747 53 ± 35 2.7 Pg C year-1 471 Pg 

Tropical shrubland > 15 200 - 500 831 71 ± 45 sink of tropical 

intact forest: 

1.18 Pg C year-1 

 

Tropical mountain 

systems 

< 18 700 - 2000 453 124 ± 54   

Subtropical humid 

forest* 

> 14 600 - 1000 + 468 66 ± 46   

Subtropical dry 

forest 

> 7 300 - 1000 159 67 ± 60 - - 

Subtropical 

mountain systems 

< 12 500 - 2000 486 77 ± 41   

Temperate oceanic 

forest 

5 - 11 600 - 3500 181 208 ± 131   

Temperate 

continental forest 

~ 10 750 - 1500 695 61 ± 31 Sink of the  

whole temperate 

Stock of the whole 

temperate 

Temperate 

mountain systems 

< 10 1000 - 2500 723 59 ± 22 0.8 Pg C year-1 118.6 Pg 

Boreal coniferous 

forest 

-12 - 6 < 500 865 48 ± 24   

Boreal tundra 

woodland 

-15 - 0 150 - 250 395 7 ± 6 Sink of the  Stock of the whole 

boreal 
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whole boreal 

Boreal mountain 

system 

-14 - 5 400 + 630 19 ± 14  forest biome: 

0.5 Pg C year-1 

forest biome: 271.5 

Pg 

* There are no C sink or storage values for subtropical biomes. It’s in included the tropical forest biome. 
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2. Carbon storage measurements and their reliability  
Daniela Franz, Sami Haapanala, Pasi Kolari, Ivan Mammarella, Tuomo Kalliokoski, Tuula Aalto and Timo 

Vesala 

 

2.1 Observing forest carbon storage and its changes on different spatiotemporal scales 

Forest carbon storage and its changes can be observed using versatile methods. The term forest carbon 

storage (or stocks) describes the total amount of carbon stored in the soil and biomass of a forest (see section 

1.1). Carbon storage changes can be calculated either straightforward from the changes in carbon stocks or 

by integrating the net carbon fluxes over time. Carbon fluxes comprise the net exchange of carbon with the 

atmosphere and the lateral transport of carbon, for instance as dissolved organic carbon (DOC) in the 

groundwater and inland waters, or in the course of management practices such as fertilisation and harvest. 

Observations need to consider the two major organic carbon pools, biomass and soil, and can be conducted 

in-situ and by remote sensing, and on multiple spatiotemporal scales, from plant organ to global level (Fig. 

2.1) and from split-second to decadal scale. Whereas small-scale studies, particularly on plant organ and even 

on molecular level, focus on a thorough understanding of the underlying mechanisms of carbon 

sequestration, observations from plot level up to global level aim to quantify and explain the spatiotemporal 

patterns and dynamics of forest carbon sinks and sources. The integration of various methods is most 

beneficial to get the full picture and to understand the dynamics of carbon cycling on the different scales. 

Forest carbon storage and the synergy of distinct observation techniques are intensively studied, for instance, 

at the Finnish forestry field station in Hyytiälä as part of SMEAR (Station for Measuring Ecosystem-

Atmosphere Relations) Network (SMEAR II, section 2.5). 

For monitoring purposes as within a carbon compensation market, carbon storage change observations 

should cover full years due to the seasonal variation in the carbon dynamics of a forest, and observations 

should be planned for the long-term, as the carbon storage capacity changes during the lifetime of a tree 

(Curtis et al., 2018). A well-thought measurement setup as well as standardised procedures are essential for 

meaningful and robust observations and the comparability of the observations at the same site and in inter-

site comparisons. The selection of the methods depends on the specific goals and needs of each project and 

should be appropriate to answer the question. Whereas an intense, research-dedicated setup such as at 

SMEAR II is often too demanding for the regular monitoring of forest carbon storage changes and the 

verification of the effectiveness of afforestation, the UN standards required for afforestation/ reforestation 

projects (e.g. within the programmes REDD+ and Clean Development Mechanism, CDM) might not be 

sufficiently profound and explicit. The study of Cames et al. (2016) reports that the CDM still has fundamental 

flaws in terms of overall environmental integrity. Their results suggested that most of the projects (85%) had 

a risk to over-estimate emission reductions and even more importantly the realized emission reductions were 

not additional. Only in very small proportion of the projects (2%) (and only 7% of potential Certified Emissions 

Reduction, CER, supply) emission reductions were found additional and not over-estimated. The usefulness 

of CDM methods also depends on the length of the commitment period, how interactions of different 

processes are covered, and if CarbonSink+ is of interest. 

Observational data should be openly available and accompanied by thorough metadata records in order to 

be useful. Transparency is of utmost importance in order to create trust and reliability. Apart from their 

utilisation for the carbon compensation market, forest carbon storage observations at afforested sites are of 

interest, e.g., for the climate change scientific/ modelling community (see section 2.4.1).  
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Figure 2.1 Observations of carbon storage and its changes in forest ecosystems on different spatial scales (C 
= carbon, TLS = Terrestrial laser scanning). Observations at plot- to global level serve as data basis for bottom-
up and top-down approaches to estimate regional and global carbon and GHG fluxes (for sources of pictures 
see reference section). 

Each observational method has inherent sources of error, which have to be considered during the selection 

of the methods and appropriately handled in the quality control and data analysis. The uncertainties have to 

be provided when publishing or sharing the data as they are required for a proper evaluation of the 

observations. Uncertainties of observations can be described as sampling/ representativeness uncertainties 

(related to spatial distribution or fetch of measurements) and measurement uncertainties (related to the 

measurements themselves), both of which can be random or systematic. Random uncertainties are caused 

by unknown and unpredictable changes, which may occur in the environmental conditions or in the 

measuring instruments (e.g. noise). Systematic uncertainties can be caused by an inappropriate calibration 

or measurement setup or within the post-processing of measurement data. Systematic measurement 

uncertainties accumulate during the spatial or temporal upscaling of observations, whereas random errors 

are typically levelled off. However, a systematic measurement uncertainty at one site or a specific time may 

turn into a random measurement error during upscaling of observations at several sites or several 

observations in time. The total uncertainty of data is a complex blend of measurement and sampling/ 

representativeness uncertainties. 

Protocols for standardised measurements are available for most of the in-situ observation methods, such as 

the ones for measurements of terrestrial GHG fluxes and atmospheric GHG concentrations, which were 

developed within the pan-European research infrastructure ICOS (Integrated Carbon Observations System, 

Franz et al., 2018). ICOS facilitates long-term, geographically distributed and standardised carbon and GHG 

(CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans in order to 

monitor climate change. In the case of terrestrial GHG flux measurements, protocols are provided for eddy 
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covariance, chamber measurements and a large set of complementary data including lateral carbon 

transport, vegetation and soil characteristics, supporting the interpretation, upscaling and modelling of 

observed ecosystem carbon and GHG dynamics (published in International Agrophysics, Issue 32(4), 2018; 

specific instruction documents providing guidance to their practical implementation in the field are available 

at www.icos-etc.eu/documents/instructions). 

 

2.2 Method description and standards 
 

In this section the different observation methods are explained and respective standards are mentioned, 

starting with inventories of forest carbon stocks and the quantification of their changes over time. 

Subsequently, the methodology to quantify the net exchange of carbon with the atmosphere is focussed, 

followed by atmospheric GHG concentration measurements, which allow for carbon source and sink 

detection on larger scales. Finally, the possible applications of remote sensing are thematised. The Pros and 

Cons of each method is given in Table 2.1. 

2.2.1 Forest carbon inventories 
Forest inventories are traditionally conducted to determine the economic value of forest resources. Along 

with the increasing awareness of climate change and the need of mitigation measures, particularly the 

related carbon stocks are of interest. Forest carbon inventories need to consider the two major carbon pools 

in a forest ecosystem, soil (containing soil organic carbon) and biomass, whereby the latter includes above-

ground living biomass (trees, understorey vegetation), below-ground living biomass (coarse and fine roots) 

as well as litter and deadwood as non-living biomass. Ravindranath and Ostwald (2008) published a handbook 

covering all aspects of the forest carbon inventory process including the monitoring of carbon stock changes 

with step-by-step descriptions of methods. The result of a forest carbon inventory is expressed as changes in 

carbon stocks in tonnes of carbon per hectare or at a project level over a certain period of time. Of the two 

main methods of estimating forest carbon stock changes, i.e. ‘Gain-Loss’ and ‘Stock-Change’ (IPCC, 2006), 

the second is more accurate and appropriate for afforestation projects, determining the change in carbon 

stocks for each pool from the difference in carbon stocks measured at different time points (Ravindranath 

and Ostwald, 2008).  

http://www.icos-etc.eu/documents/instructions
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Table 2.1 The spatial and temporal scale, and Pros & Cons of different measurement methods.  

Method Temporal scale *Spatial scale Pros  Cons 
Chambers hourly Leaf...tree / plot + detailed information on ecosystem processes 

+ relatively simple and inexpensive 
- upscaling for larger areas inaccurate 
- measurement of long-term trends uncertain 
- year-round operation challenging in snowy 
climate 
- maintenance need 

Manual forest and 
soil inventories 

annual…  
multi annual 

Tree…stand + simple and proven method, does not require expensive 
hardware or high technical expertise 
+ can be applied to area of any size and topography 
+ the only method for getting explicit information on soil 
carbon stock 

- laborious for large areas 
- allometric equations not available for all tree 
species and ecosystem types, additional 
destructive sampling may be needed 
- uncertainty of belowground biomass and soil 
carbon stock 
- very low time resolution 

Terrestrial or 
Airborne Laser 
Scanning 

monthly…annual Tree…stand + accurate and easy proxy for tree growth 
+ less laborious than manual inventory, particularly for large 
areas 
+ spatial variability can be assessed precisely 

- not commercially available yet 
- expensive hardware and requirement of 
technical expertise 
- neglect soil processes 

Eddy Covariance  
(EC) 

hourly Stand  + proven and standardized method  
+ integrates soil and plant processes, also respiration 
+ area of several ha can be covered by measurements at one 
location 
+ consistent in the long term 
+ continuous with high level of automation 

- investment costs and requirement for technical 
expertise 
- requires flat terrain and relatively 
homogeneous source area 

Airborne fluxes daily Stand/landscape/ 
regional 

+ possible to cover large areas - high costs and requirement for technical 
expertise 
- campaign wise method 

Tall towers daily Regional + consistent estimates of regional GHG balance in the long 
term 

- high investment cost to hardware and 
requirement of technical expertise 
- the source area is very large, estimating the 
GHG balance of single small area practically 
impossible 

Remote sensing  
(aircraft & satellite) 

monthly…annual Landscape/regional/ 
continental/global 

+ consistent data on surface and atmospheric properties over 
large areas and extended periods of time 

- coarse spatial and temporal resolution 
- requires local ground truth for reference 
- neglect soil processes 

*Plot defined here in the meaning of sampling area within study site. Plot size can vary from 1 m2 up to a few hectares. Stand has a common definition as an aggregation of 

trees occupying a specific area and sufficiently uniform in species composition, size, age, arrangement, and condition as to be distinguished from the forest on adjoining areas. 

Stand size can vary from under one hectare to several hectares. Landscape defined here as a spatially heterogeneous area containing several interacting stands, scale from a 

few kilometres to 10s of kilometres. Regional scale is from 10s kilometres to 1000s of kilometres. 



21 
 

Within ICOS, precise estimates of changes in soil organic carbon stocks along with quantifications of changes 

in biomass carbon and lateral carbon transport (protocols: Saunders et al., 2018, Arrouays et al., 2018, Gielen 

et al., 2018) are used to provide an independent assessment of long-term net ecosystem carbon exchange 

besides continuous eddy covariance measurements. The spatial sampling design is thereby adjusted to the 

eddy covariance footprint.  

Forest carbon inventories are required for national GHG inventories and used for measurement, reporting, 

and verification (MRV) purposes within climate change mitigation projects and programmes initiated by the 

UNFCCC as important pillars of the Kyoto Protocol,  such as the Clean Development Mechanism (CDM, 

https://cdm.unfccc.int/about/index.html), which includes afforestation and deforestation activities, and the 

UN-REDD programme (United Nations Collaborative Programme on Reducing Emissions from Deforestation 

and Forest Degradation in Developing Countries, http://www.un-redd.org/). The goal of CDM is to increase 

the carbon stocks in the project area in addition to the stock changes that would have occurred without the 

project (baseline scenario; Ravindranath and Ostwald, 2008). CDM Gold Standard 

(https://www.goldstandard.org) is the strictest standard for climate change mitigation projects further 

making measurable contributions to sustainable development, which can also be used for emission 

reductions projects in the voluntary carbon market. Both UN-REDD and CDM provide guidelines for cost-

effective project-level forest carbon inventories: 

 Standard operating procedures (SOPs) provided for CDM projects 

(https://unfccc.int/resource/docs/publications/cdm_afforestation_field-manual_web.pdf). Project 

participants are actually required to follow the country-specific practices for forest inventories. 

However, they can alternatively follow the SOPs in case they do not have access to those practices. 

 Monitoring guidelines provided by UN-REDD for nationally led REDD+ processes 

(http://redd.ffpri.affrc.go.jp/pub_db/publications/cookbook/index_en.html), representing a flexible 

system to account for differing circumstances of each participating country. 

The flexible monitoring systems aim to increase the access of developing countries to the UN-REDD 

programme and CDM project.  

Some general remarks on the methodology for the estimation of the distinct forest carbon pools are given in 

the following subchapters. 

 

2.2.1.1 Biomass 

The carbon stored in forest biomass is estimated on the basis of biomass inventories, which are conducted 

every x years depending on the expected changes in biomass. A generalised estimate of carbon mass fraction 

is then multiplied with biomass dry matter to reveal the carbon content (IPCC, 2006). Usually, a fraction of 

0.5 is applied for simplicity, although the exact value varies within a small range for different species and 

plant components (Ravindranath and Ostwald, 2008). In order to avoid unnecessary work and costs the 

inventories could be reduced to those biomass components (i.e. carbon pools), which are expected to change 

significantly. In the case of an afforestation project, the carbon pool of understory vegetation, for instance, 

might be changing only slightly, whereas tree biomass but also soil organic carbon might change remarkably 

in case the initial amount of soil organic carbon is low (Pearson et al., 2007). 

Living above-ground biomass 

Living above-ground biomass of a forest can be classified into trees and understory vegetation (especially 

herbaceous vegetation and shrubs). Understory vegetation can be inventoried by destructive sampling in 

small plots. Thereby, the harvested plant material is pooled by plot to give a composite sample, weighted, 

https://cdm.unfccc.int/about/index.html
http://www.un-redd.org/
https://unfccc.int/resource/docs/publications/cdm_afforestation_field-manual_web.pdf
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and then oven-dried to determine dry-to-wet mass ratios, upon which the oven-dry mass is calculated. In 

comparison, tree biomass can be estimated by allometric methods or terrestrial laser scanning (TLS). 

Allometric methods 

Most inventories of above-ground biomass are utilizing allometric equations to relate simple, manually 

measured tree attributes to biomass and other attributes which are more difficult to measure. At the 

minimum, tree diameter at breast height (DBH) and the species have to be recorded. Adding height 

measurements of at least some trees considerably improves the predictive performance of allometric 

equations (Sullivan et al., 2018). Allometric equations make use of the fact that each tree species grow in a 

predictable manner and the size of the plant organs are proportional (FFPRI, 2012). The relationship between 

forest tree diversity and carbon storage needs to be considered when choosing an allometric equation on 

within-stand level (Sullivan et al., 2017). However, on stand level it might be sufficient to choose the equation 

to suit the forest type (e.g. evergreen or deciduous) and the environmental conditions in the region. Existing 

allometric equations should be used as far as possible, as the development of own allometric models, which 

conventionally requires destructive sampling of the sample trees, is labour-intense and expensive (Liang et 

al., 2016). Forest inventories are typically based on several permanent sampling plots representing a small 

forest area (e.g. circular in shape with a radius of 4 m to 15 m, Liang et al., 2016). The size and number of the 

plots is a trade-off between feasibility and measurement uncertainties. The manual tree-by-tree measures, 

most often taken by simple tools such as calipers and clinometers, are aggregated to plot-level means and 

totals.  

Terrestrial laser scanning 

Forest inventory attributes can be further estimated by TLS, which is based on ground-based Light Detection 

and Ranging (LiDAR). Pulsed laser light is fired from a certain position into the surrounding forest and the 

time it takes for the pulse to bounce back is measured. This allows to calculate the distance to the object, in 

this case the nearby trees and understory, and by repeating this the above-ground biomass of a certain area 

(plot) can be mapped automatically, three-dimensional and in high accuracy (millimeter-level; see e.g. Liang 

et al., 2016). Comparisons with allometric methods allow for the validation of both and the detection of 

potential biases. In consequence of its advantages and a broader set of attributes that can be covered as with 

manual measurements, TLS is expected to become operational within forest inventories with the 

development of respective software and best practices. Similar terrestrial point cloud data (data in form of 

3d point clouds specifiying the tree surface) as with TLS can be captured with mobile laser scanning, personal 

laser scanning, and image-based point clouds.  

The amount of labour-intense field work to estimate the living above-ground biomass can be reduced by 

utilising remote sensing (see section 2.2.5), which can either completely replace (after initial ground truthing) 

or be combined with the plot-based sampling in the field.  

Dead above-ground biomass  

Litter and deadwood typically contribute only a small fraction (< 10 %) to the biomass of forests and 

plantations, which is potentially removed from the forest for fuelwood. Litter and deadwood can be 

quantified in the same way as the understory vegetation and sampled in a line intersect, respectively 

(Ravindranath and Ostwald, 2008). Alternatively, the carbon stocks in these pools can be accounted as a fixed 

percentage of the above-ground living tree biomass (UNFCCC, 2015).  

Below-ground biomass 

In comparison to above-ground biomass, quantifications of below-ground biomass (coarse and fine roots) 

are less well established and standardised. Root biomass is most often not distinguished between live and 
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dead roots. The required destructive sampling is done by excavation of tree roots (as monolith for deep roots) 

and soil cores or pits for non-tree vegetation. For afforestation projects, the labour-and cost-intense 

measurements of below-ground biomass are typically replaced by calculations as a proportion or function of 

the above-ground biomass pool, using information on root/shoot ratios mainly in form of Biomass expansion 

factors (BEFs; e.g. Lehtonen et al., 2004) or allometric equations such as proposed by Cairns et al. (1997) or 

Mokany et al. (2006) (Ravindranath and Ostwald, 2008). Putting emphasis on accurate measurements of the 

above-ground biomass allows to accept the uncertainties of estimations for the below-ground biomass. 

2.2.1.2 Soil 

Although soil organic carbon is likely to accumulate during afforestation projects, the annual stock increment 

over the reference state (stocks measured during the initial vegetation and soil carbon inventory before 

afforestation) is small, and therefore difficult to measure and of high uncertainty (Ravindranath and Ostwald, 

2007; Aubinet et al., 2012).Whereas remote sensing can be helpful for inventories of carbon in biomass, soil 

organic carbon is dependent on labour-intense fieldwork, where soil samples (cores) are taken and 

individually analysed. The specific sampling design has to be a trade-off between practical feasibility, minimal 

soil disturbance and statistical power. The detection of statistically significant rate changes depends on the 

inherent within-site variability of the soil carbon content, the depth increment considered, the number of 

sample plots and the representativeness of the spatial sampling design with regard to soil properties 

(Arrouays et al., 2018, Schrumpf et al., 2011). The statistical methods applied to quantify the average change 

over the area of interest are of importance and have to be chosen according to the sampling design. The time 

needed for detectable changes in soil organic carbon stocks depends is reported to correspond to 

approximately ten years (Schrumpf et al., 2011).   

Soil sampling is conducted either with the core/cylinder method (non-stony soils) or the excavation method 

by digging a pit (stony soils) and cover, for instance at ICOS ecosystem sites, 1 m depth with decreasing 

increments towards the soil surface as this is sufficient to capture most of the detectable changes over 

decadal periods (Arrouays et al., 2018). Simultaneous measurement of soil organic carbon content and bulk 

density enable to avoid biases linked to the correlation between both. Sample processing differs between 

mineral and organic soil samples. Methods available for the analysis of the soil samples comprise simple 

laboratory estimations to diffuse reflectance spectroscopy, with wet digestion or titrimetric determination 

(Walkley and Black method) as the most common cost-effective method.  

2.2.1.3 Uncertainties of forest carbon inventories 

Measurement uncertainties in forest inventories are related, e.g., to the quality of manual field samples, 

which can be estimated by replication. Liang et al. (2016) concluded that TLS measurements provide accurate 

enough data for forest inventories, except tree height estimations, for which uncertainties are not yet 

acceptable. Measurement uncertainties for living aboveground biomass can further arise from the choice of 

allometric equations and account typically for a few percent. More specifically, these uncertainties represent 

modelling uncertainties, which also emerge in case remote sensing (e.g., satellite images, aerial photos, 

LiDAR, see section 2.2.5) is used, as the raw remote sensing data needs to be translated into forest 

parameters. With the help of quality control samples the variability in the residuals and potential directional 

bias can be calculated as difference between actual and modelled values. In case an inappropriate or less 

appropriate equation is used only at one site, the systematic error turns into a random error. Uncertainties 

related to living above-ground biomass measurements are propagated in case below-ground or dead above-

ground biomass are calculated as ratio of it. Furthermore, applying a generalised estimate of 0.5 for the 

carbon mass fraction induces additional systematic measurement uncertainties.  

Sampling and representativeness uncertainties depend, e.g., on the number and location of the inventory 

plots (and the stochastic model on which the spatial sampling scheme based) or the footprint of the satellite 

image, as well as on the heterogeneity of the stand (structure and species) or soil. The samples should be 
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representative for the whole stand, also when using them to train a remote sensing model. To estimate the 

sampling uncertainty the standard error can be calculated. The representativeness uncertainties can be 

minimised by using a statistically valid sampling design.  

Utilising remote sensing typically reduces the sampling uncertainty (and the amount of work) at the expense 

of a higher measurement (modelling) uncertainty. Careful consideration of the different sources of error help 

to make informed decisions, e.g., when it is worth to include remote sensing and to which degree. 

Monni et al. (2007) estimated for 2003 a carbon sink for Finnish forest vegetation and soil of 12 ± 12 Tg CO2 

and 8 ± 7 Tg CO2 for 2003, respectively. Due to improved methodology the current uncertainty estimate of 

forest sink in Finnish greenhouse gas inventory is ±31% (NIR 2018). 

 

2.2.2 Chamber techniques 
A chamber generally encloses the compartment of interest such as a leaf or branch or a certain tree stem or 

soil surface area (typically < 1 m2). It is equipped to measure the gas (particularly CO2, but also CH4 and N2O) 

concentration change within the chamber, based on which the gas exchange between the compartment of 

interest and the atmosphere is calculated. The chamber technique is particularly well-suited for laboratory-

based and in-situ process-level studies (Pavelka et al., 2018). 

Chambers are typically classified into steady-state, where the gas flux is calculated under constant gas 

concentration in the chamber, and non-steady-state, where the gas flux is calculated from the rate of change 

in the gas concentration within the chamber (Rochette and Hutchinson, 2005). Both classes have their 

individual advantages and disadvantages and can be further divided into flow-through and non-flow-through 

systems in dependence on whether air is circulated through the chamber or not. The non-steady-state non-

flow through soil chamber, from which air is sampled into vials and analysed in the lab by gas 

chromatography, is a rather outdated system but still in use due to their independence on power supply, 

particularly at remote sites. In case of sufficiently low vegetation, transparent soil chambers facilitate 

measurements of whole ecosystem NEE. In combination with opaque chambers, measured NEE can be 

separated into GPP and Reco. For CH4 and N2O typically opaque chambers are used.  

Flux calculation can be done following distinct schemes, differing in their theoretical basis and numerical 

requirements (Pavelka et al., 2018). A standard and robust scheme is a simple linear regression, which, 

however, may result in small flux underestimations due to non-linearity of the concentration change (e.g. 

Pihlatie et al., 2013). Auxiliary measurements required for flux separation into GPP and Reco, gapfilling and 

temporal upscaling comprise air temperature, soil temperature, soil moisture and photosynthetically active 

radiation (PAR) in case of transparent chambers. 

As for all in-situ measurements, the specific measurement locations have to be selected carefully. 

Replications are necessary for chamber measurements in order to represent the spatial heterogeneity of the 

area to be monitored. Spatial heterogeneity needs to be considered when upscaling this plot-scale 

measurement to a larger area. In forests, chambers are only applicable during the first years after 

afforestation, when the seedlings still fit into the chambers, or for observations of the gas exchange of forest 

understory and soil. However, chambers are in most cases not suitable for long-term or large-scale carbon 

stock change observations, at least not as the primary method. Besides the limited amount of plots and the 

tiny area they cover, resulting in high sampling and upscaling uncertainties, they disturb the object being 

measured, especially when it comes to photosynthesis. Thereby, systematic measurement uncertainties 

arise, e.g., from biological and physical disturbance related to the soil collar placement and measurement 

process (e.g., the chamber is blocking the wind). Ilvesniemi et al. (2009) show how upscaling matches with 

observations by eddy covariance and inventories over several years at one site. Even though automated, 
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quasi-continuous chamber measurements are not optimal for monitoring purposes, manual (labour-intense) 

soil chamber surveys can complement, e.g., eddy covariance measurements, investigating the spatial 

heterogeneity of GHG fluxes. In general, chamber measurements should cover seasonal changes and events 

such as fertilisation. A protocol for standardised soil chamber measurements was recently developed for 

ICOS stations (see Pavelka et al., 2018). Other recommended references include Pumpanen et al. (2004) and 

Butterbach-Bahl et al. (2016). 

Chamber- based flux measurements can be combined with several other biometric methods such as plant 

growth assessment and repeated stock inventories to get a direct estimation of the component processes of 

the ecosystem carbon cycle (Campioli et al., 2016). This technique is applicable to almost any site and 

environmental conditions, which is of great advantage in comparison to the eddy covariance technique and 

offers potential for an integration of both techniques. However, the approach is too labour-intense for long-

term and large-scale monitoring and is characterised by high upscaling uncertainties, as biometric 

measurements are typically performed on few replicated individuals and plant organs or small ecosystem 

plots. Making linkages between specific weather events and changes in carbon dynamics is complicated by 

the fact that not all methods can easily be applied continuously. Furthermore, potentially important 

components of the carbon budget might not be accounted for.  

 

2.2.3 Tower-based eddy covariance flux measurements 
The eddy covariance technique is a widely used and one of the most direct and defensible methods for 

quantifying exchanges of CO2, CH4, N2O, H2O, various other gases and energy between the surface of the 

earth and the atmosphere at ecosystem scale. It is based on determining the turbulent vertical transport of 

matter and energy at a certain measurement height above the ecosystem, typically averaged over a 30-

minute period. In a ground-based setup, sensors are mounted on a tower or tripod for measuring fluxes over 

the surface. The quasi-continuously measurement system imposes minimal disturbance on the environment 

once operational. Eddy covariance measures the gas exchange on ecosystem-scale and requires a minimum 

area of homogeneous land cover in dependence on the size of its footprint (source area of the flux). The total 

upwind distance represented by tower can be estimated based on the 100 to 1 fetch-to-height ratio as a 

rough ‘rule-of-thumb’ (Burba, 2013). The strongest contribution originates from about 10 times of the 

measurement height. In addition to the measurement height, the exact footprint depends on surface 

roughness and atmospheric stability. The setup should be installed well above the canopy, however, installing 

it too high will result in a violation of the underlying assumptions on turbulent transfer and the source area 

becomes more uncertain as the "tail" of the footprint distribution can extend kilometres away. 

The eddy covariance technique features continuous monitoring with high temporal resolution and a sampling 

area well suited for the scale of ecosystem-level estimates. Measurements are routinely conducted since the 

1990s, providing long-term, continuous flux measurements at a variety of sites and biomes in different 

climatic zones. FLUXNET, a global network of regional eddy covariance flux tower networks considerably 

improved the standardization of the data acquisition, processing and provision since the early 2000s 

(Baldocchi et al., 2001). State-of-the-art protocols for standardized eddy covariance measurements and data 

processing are provided by ICOS (Rebmann et al., 2018, Sabbatini et al., 2018, and Nemitz et al., 2018). 

Observations at remote areas without grid power might require individual setup solutions, which, however, 

should be as close as possible aligned to common standards. Recommendations for further reading are 

Aubinet et al. (2000, 2012) and Burba (2013), and Urbanski et al. (2007) and Ilvesniemi et al. (2009) on long-

term measurements in forest ecosystems. 

The basic instruments include a fast-response sonic anemometer and gas analyser. High-frequency and -

precision instruments are crucial to accurately determine the flux. Additional measurements needed to 
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achieve high-quality eddy covariance fluxes are air temperature, relative humidity and air pressure. 

Measurements of net radiation, photosynthetic photon flux density, as well as soil measurements including 

soil temperature profile and soil moisture/ water table depth are further of value for the interpretation of 

the fluxes. Depending on the measurement height above the ground and the time scale considered, it might 

be important to include storage flux measurements to the eddy covariance setup (Montagnani et al., 2018). 

Cautious and standardised post-processing of the raw flux measurements is essential for the reliability and 

intercomparability of the observations and should include footprint modelling to estimate the source/sink 

area of the measured fluxes. With regard to CO2, specific algorithms can help to separate the measured NEE 

into GPP and TER (see e.g. Reichstein et al., 2005). It is one of the important drawbacks of eddy covariance, 

that these two main components need to be estimated indirectly by post-processing. Another drawback is 

that advective and low-frequency flows of gases, which are particularly important in case of variable 

topography, are difficult to capture and might result in an underestimation of fluxes during periods with low 

air turbulence (as typically for ecosystem respiration at night) (Campioli et al., 2016). 

Systematic uncertainties can be minimized with an optimal measurement setup (including the measurement 

height and the location of the tower, also determining the characteristics of the flux footprint) and 

standardized post-processing of the eddy covariance raw data, making the random uncertainty of the fluxes 

(e.g., related to precision limitations of the instruments) to the dominant uncertainty at short timescales. 

Random uncertainties are getting particularly important for the interpretation of small fluxes in terms of 

turbulent exchange or signal-to-noise ratio (SNR) of the instrumentation, and the role of the ecosystem as 

source or sink might be unclear. They can be estimated in total for each averaging period as well as separated 

into its main components such as instrumental noise and the one-point sampling error (Rannik et al., 2016). 

Estimates for systematic and random uncertainty of eddy covariance derived carbon budgets, e.g., on annual 

scale are available in the literature. The annual random uncertainty is typically < 50 gC m-2 depending on the 

flux magnitudes, whereby larger fluxes bear larger uncertainties. Richardson et al. (2006) reported an annual 

random uncertainty in the order of 20 gC m-2. Moffat et al. (2007) calculated a gapfilling uncertainty of the 

same magnitude, whereas Gielen et al. (2013) report very large uncertainty based on turbulence filtering and 

gapfilling, which might be related to a very high carbon sequestration during one year. Estimating the 

systematic uncertainties is not trivial as it requires independent reference data which in turn have their own 

systematic and random errors. Studies comparing eddy covariance flux measurements with other methods 

such as inventories are: Black et al. (2007) and Campioli et al. (2016). The ballpark estimate for NEE systematic 

uncertainty is typically about 10-20%. Eddy covariance-based estimates of carbon sink strengths are rather a 

slight overestimation rather than underestimation, as daytime flux measurements (net uptake) are less prone 

to errors than night-time fluxes (efflux). However, this implies that there are no issues with footprint 

heterogeneity. GPP and TER systematic uncertainties are larger than for NEE due to the additional 

uncertainty of the partitioning process, whereas the random error is of the same order as for NEE (e.g., ranges 

of partitioned fluxes in Desai et al., 2008). GPP and TER should only be used as tools to understand the 

dynamics of the carbon balance, not as absolute budgets. 

 

2.2.4 Large-scale atmospheric GHG concentration measurements 
Atmospheric GHG concentration measurements are spatially integrating measurements and, thus, mixed 

signals of different GHG sinks and sources including fossil fuel emissions. For large scale observations, 

platforms for continuous monitoring and flask sampling are, for instance, continental stations (tall towers 

specifically built for this purpose or existing television, radio and cell phone towers, see e.g. Timokhina et al., 

2018), mountain and coastal stations and airborne platforms (aircrafts, helicopters). The source area of an 

atmospheric measurement is increasing with the height at which the air is sampled and can be on the order 

of 100 km. Thus, the source area is considerably larger compared to eddy covariance flux measurement. 
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Close proximity (< 40 km distance) to strong anthropogenic sources such as cities should be avoided 

especially if located upstream of the prevailing wind (unless particularly the emissions of these cities are of 

interest), to make sure that the observations can be represented in atmospheric transport models of certain 

spatial resolution.  

For automated in-situ measurements, air is sucked by a pump and passed through one or several gas 

analyser/s. High precision measurements are needed in order to accurately capture the atmospheric signal 

which is smoothed out during the transport in the atmosphere. For example, for CO2 concentration an 

accuracy of 0.1 ppm is necessary in remote areas to facilitate the detection of spatial patterns against the 

background concentration. Auxiliary measurements required are air temperature, relative humidity, wind 

direction and speed (needed for the calculation of the source area), atmospheric pressure as well as planetary 

boundary height, which is of specific importance for atmospheric inversion modelling (Kretschmer et al., 

2012). 

At ICOS stations, an accuracy as defined in the GAW report n° 213 

(https://library.wmo.int/pmb_ged/gaw_213_en.pdf) of the World Meteorological Organization (WMO) is 

required, however, over an extended concentration range as given in the report. For the estimation of source 

distributions on regional scale, observations from a distributed network of stations and regional land cover 

maps are required. An optimal distribution of ICOS measurement stations, aiming to avoid large spatial gaps, 

was yielded from a thorough network design assessment including footprint simulations. The atmospheric 

station network of ICOS comprises continental, coastal and mountain stations, targeting predominantly 

continental air-masses, marine air-masses and free tropospheric air (during night), respectively. The 

standardised specifications for atmospheric GHG concentration measurements within ICOS are available at: 

https://icos-atc.lsce.ipsl.fr/filebrowser/download/27251. Standardised measurement protocols and 

calibration procedures are crucial for assimilating measurements at various stations, e.g. for the validation 

of climate models and the reduction of their uncertainties, and as input for atmospheric inversions (section 

2.4.2). Additional periodic measurements with independent methods, such as the analysis of flask samples 

with gas chromatography, should be performed to reduce the risk of a systematic bias in the observations. 

The inclusion of stations in international inter-comparison programs facilitates compatibility with other 

international networks such as the WMO GAW.  

Campaign-based airborne measurements of atmospheric GHG concentrations (e.g. NASA's Carbon in Arctic 

Reservoirs Vulnerability Experiment (CARVE; 

https://daac.ornl.gov/CARVE/guides/Alaskan_CH4_CO2_Fluxes.html) are of particular advantage for 

observations in remote areas, where the setup of a ground-based station is impossible, for instance with 

regard to power supply. In case the gas concentration measurements are conducted at high frequency, the 

measurements can, in combination with three-dimensional wind measurements, be used for GHG flux 

calculations (see section 2.2.3; e.g. Kohnert et al., 2017). The use of commercial aircrafts as done by the 

European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) allows global 

observations of atmospheric GHG concentrations on a periodic basis. 

Large scale atmospheric GHG observations might be useful for a rough estimation of the carbon storage 

change in case the area of interest such as the afforested area is sufficiently large to represent a considerable 

part of the footprint.  

 

2.2.5 Aircraft and satellite remote sensing 
There are several ways how remote sensing can support the quantification of forest carbon storage and its 

changes on different spatial scales and new techniques are progressively developed (see 

https://library.wmo.int/pmb_ged/gaw_213_en.pdf
https://icos-atc.lsce.ipsl.fr/filebrowser/download/27251
https://daac.ornl.gov/CARVE/guides/Alaskan_CH4_CO2_Fluxes.html
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https://earthdata.nasa.gov/user-resources/remote-sensors for an overview on sensor types). However, it is 

not suitable as stand-alone method as it requires ground-truthing. Spectral, spatial and temporal resolution 

are important attributes of remote sensing data, determining their uncertainties (see Matese et al. 2015 for 

typical attributes of different approaches, also section 3.2.2). Combining datasets retrieved in different 

spatial and temporal scales by different satellites helps to refine the resolution of the remote sensing 

products. It has to be kept in mind, that satellites provide snapshots only, which might even be affected by 

cloud cover (Sims et al., 2005).  

Remote sensing of the land surface and the elaboration of these data to regional and global land cover maps 

and vegetation indices such as leaf area index (LAI) are particularly useful for the upscaling of plot-, 

ecosystem- and landscape-scale GHG flux measurements to regional and global scales (section 2.4.1). 

Thereby, Landsat represents the longest continuously acquired collection of satellite-based, moderate-

resolution data. However, based on a combination of various land-surface datasets even more advanced data 

products can be yielded, such as estimates for primary production of the global vegetated land surface over 

an 8-day interval at 1-km resolution (Heinsch et al., 2006; based on meteorology, land cover and LAI). 

Remote sensing, e.g. with airborne and satellite-based LiDARs is further very helpful for inventories of above-

ground biomass, e.g. by mapping the spatial distribution of canopy characteristics, and can substitute labour-

intense field work (see e.g. Muukkonen et al., 2006; Popescu et al., 2011). Field surveys of these variables 

should be used as ground-truths. Within the EU project “North State” 

(https://cordis.europa.eu/result/rcn/201350_de.html) a method was developed to infer the forest carbon 

balance from land cover and forest variables such as wood biomass and tree species predicted with satellite 

image data of Sentinel missions as part of the Copernicus program (Earth observation programme of the 

European Union), supported by Landsat satellite data. Image analysis was done by self-learning and 

intelligent tools being able to analyse big data. The combination of land cover and forest variables with 

specific forest growth models resulted in detailed maps of carbon sequestration in boreal forests. 

Apart from generating canopy maps, the LiDAR technique is further capable to profile GHG gas 

concentrations and wind velocity along the lidar line of sight or in 2D or 3D (Gibert et al., 2011), allowing for 

airborne (and ground-based) flux measurements by means of the eddy covariance method. 

Aircrafts and satellites can be further utilised as platforms for indirect measurements and large-scale 

mapping of GHG concentrations averaged over the atmospheric column between the Earth´s surface and the 

observation platform. Thereby, airborne remote sensing systems such as the Methane airborne MAPper 

(MAMAP, CO2 and CH4) fill the gap in spatial resolution between ground-based and satellite-based 

measurements of atmospheric composition and are particularly helpful for the detection of surface sources 

of GHGs. The measurements are revealed by comparison of direct sunlight and sunlight backscattered to 

space measured by spectrometers at different wavelengths. Prominent examples for such solar backscatter 

instruments on board satellites are the European Scanning Imaging Absorption Spectrometer for 

Atmospheric Chartography (SCIAMACHY; CO2 and CH4) instrument on board ENVISAT, the US-American 

Orbiting Carbon Observatory-2 instrument (OCO-2; CO2), TANSO-FTS on board Japan’s Greenhouse Gases 

Observing Satellite (GOSAT; CO2 and CH4) and the European TROPOspheric Monitoring Instrument 

(TROPOMI; CH4 and N2O) on board the Copernicus Sentinel-5 Precursor satellite, which was launched as the 

first of the atmospheric composition Sentinels.  

 

 

 

https://earthdata.nasa.gov/user-resources/remote-sensors
https://cordis.europa.eu/result/rcn/201350_de.html
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2.2.6 Modelling approaches 
2.2.6.1 Modelling dynamics in aboveground biomass and respective carbon stocks 

The number of modeling approaches used in forest related questions is enormous (cf. Barredo et al. 2012, 

Charru et al. 2017, Nabuurs et al. 2018). The range covers from traditional empirical stand level models (e.g. 

MOTTI, Hynynen et al. 2002) to the Dynamic Global Vegetation Models (DGVM) which are complex process-

based ecosystem models which could be used as a module in a fully coupled system connecting vegetation 

to atmosphere (Nishina et al. 2015). Between these extremities there are regional data-driven models (MELA, 

MONSU, EFISCEN) and a bit more complex models like CBM-CFS3 (Kull et al. 2016); CO2FIX (Schelhaas et al. 

2004); ForClim (Gutierrez et al. 2016); EFISCEN (Schelhaas et al. 2007, Verkerk et al. 2019), or models 

approaching mechanistic description of the most processes in the model (e.g. PREBAS Valentine and Mäkelä, 

2005, Peltoniemi et al. 2015, Minunno et al. 2016, Minunno et al. 2019, 4C model Lasch-Born et al. 2015). 

The DGVMs are the most generalized and thus could be used to predict forest growth in large regions (e.g., 

ORCHIDEE-CAN Naudts et al. 2016; PnET-CN Peters et al. 2013, JSBACH applied to Finnish forests in 

Peltoniemi et al. 2015; JULES Harper et al. 2016; CLM oleson2010). Both DGVMs and models like PREBAS and 

4C could be applied conditions outside of which they were parameterized, such as changing climate and CO2 

concentration.  

The selection of the used model in specific projects depends on the purpose of model use and especially the 

scale of the project. The empirical models parameterized for the species and conditions of the region usually 

provide the most accurate estimates. However, they could not be used in changing conditions and without 

proper data for parameterization. In this kind of situation, process based model could be applied. Depending 

on the level of how ‘process based’ the model is there is higher degree of freedoms for application outside 

the original parameterization. However, all these models have parts which are more or less semi-empirical 

and their behavior depends on the parameterization. Important general aspect to keep in mind in forest 

models is that no model is better than the data used for it (parameterization-validation-calibration). Models 

could be used in synchrony with the measurements to fill the gaps of the measurements, move from the one 

scale to another and as tools to cover discontinuities. Mechanistic models enable to address questions 

otherwise difficult/impossible to formally quantify. 

Good example of large-scale complex model is ORCHIDEE-CAN, which takes climate data based on the 

latitude and longitude of the pixel to compute the amount of carbon assimilated by groups of identical trees 

of different diameter classes at 30-minute intervals.  At the end of every day, this carbon is allocated to 

different pools representing various parts of the tree (roots, sapwood, and leaves), and the various pools 

undergo turnover to convert the carbon into other pools (such as hardwood and litter).  Once a year, the grid 

square can undergo management, wherein woody biomass is removed from site.  The model thus stores the 

amount of carbon available in each of the pools at daily resolution.  ORCHIDEE-CAN can also simulate tree 

species instead of more generic plant functional types.  Like some forest-specific models, ORCHIDEE-CAN 

does not recognize the horizontal spatial arrangement of vegetation within a pixel, though it does recognize 

vertical distributions.  While simplified, ecosystem models share many of these concepts, depending on the 

specific model.  Some ecosystem models can be coupled directly to atmospheric circulation models, 

providing insight into forest growth at large scales and the resulting climatic impact; such models are often 

called ``land-surface models'' and generally contain less complexity (in terms of processes included and their 

descriptions) than stand-level ecosystem models. 

Nowadays there are approaches where process based model is coupled with satellite data to derive both the 

parameters of the model and input data for the description of the initial state of the forest. Future 

development of the forest depends on the processes of the model. Pixel size of the model projections can 

vary from several square kilometers to the tens of meters (Fig. 2.2). These approaches are under rapid 
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development. Application costs of these approaches depend on the specific objectives of mitigation project 

e.g. needed time and spatial resolution. 

 

 

 

Figure 2.2 The model approach used in North State project (http://www.northstatefp7.eu/). Satellite data 
(EO = Earth Observational) was used for deriving initial state of PREBAS model. Detailed maps of high 
resolution (e.g. 20 m x 20 m of forest height here) were produced with PREBAS. Courtesy of figure: Annikki 
Mäkelä, Francesco Minunno, Tuomas Häme.  

 

2.2.6.2 Modelling changes in soil organic carbon stocks 

Due to the great spatial variation together with the laborious and expensive nature of collecting field samples 

(Mäkipää et al. 2008), there are numerous efforts to model soil organic carbon dynamics. First models of soil 

biogeochemical processes were drafted already in the 1930s (Salter and Green, 1933; Nikiforoff, 1936), and 

today there are various stochastic, empirical and mechanistic models featuring soil carbon dynamics with 

varying terms of complexity and biological processes (Manzoni and Porporato, 2009). In general, the models 

produce similar carbon stocks, variations and uncertainties as observations (e.g., Ortiz et al. 2013), thus 

enabling response studies even if there is no data available. However, a variety of observational studies is 

needed to validate the model performance for different ecosystem types.   

Soil carbon models operate on different time steps typically from one day to one year. The amount and 

chemical characteristics of carbon input as litter are determined by the vegetation and often taken as a 

measured or modelled input outside the soil organic carbon models. The decomposition rate of soil organic 

carbon depends on the litter quality, soil temperature, moisture and oxygen availability, soil texture and its 

chemical properties (Swift et al., 1979, Chapin et al., 2011). Therefore, a selection of these are the most often 

used drivers for the modelled biological, chemical, and physical transformations in soils. As there is increasing 

evidence of the significance of microbial litter playing a key role in the stabilization of soil organic carbon 

(Kallenbach et al. 2016), the dynamics of microbial litter and the interaction between microbes and mineral 

particles are currently introduced to soil organic carbon cycling models. The required number of parameters 

and variables increases with the model complexity whereas the information on soil characteristics and other 

input variables may be limited in many cases. On the other hand, the complex process-based models may 

simulate the most accurate responses for example to changing environmental conditions.  

One of the most widely used models include CENTURY (Parton, 1987), RothC (Coleman and Jenkinson, 1996) 

and ECOSSE (Smith et al. 2010) but these models are conceptual without measurable soil organic carbon 

pools. In comparison, the YASSO model (Tuomi et al. 2009, 2011) follows IPCC guidelines and fulfils UNFCCC 

requirements and it is used for example in Finnish national carbon inventories as well as in the JSBACH model 

(Goll et al. 2015), a land component in the MPI Earth System Models MPI-ESM. YASSO describes the 

http://www.northstatefp7.eu/
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decomposition of soil organic carbon by dividing it into five measurable pools based on solubility and thus, it 

differs from the majority of the soil organic carbon models. The Millennial model (Abramoff et al. 2017) is 

another, new attempt to model soil organic carbon dynamics with different carbon pools as measurable 

entities but currently it is not in general use. 

 

2.3 Integrative approaches for reliable regional and global estimates 
 

Quantifications and predictions of carbon and GHG fluxes at regional and global scales are dependent on 

models, to combine temporally and spatially spread observations. The models are based either on a bottom-

up or top-down approach. As forest covers 67 % of the global land area (FAO 2015), reliable estimations of 

the forest carbon sink are of utmost importance.   

Bottom-up and top-down approaches are, for instance, combined within the H2020 project VERIFY 

(http://verify.lsce.ipsl.fr), aiming to develop a robust and transparent (pre-operational) system for the 

estimation of greenhouse gas emissions to support national emission reporting. Estimates of CO2, CH4 and 

N2O emissions are based on land, ocean and atmospheric observations (satellites, ground-based networks, 

fuel use and emission factors) and in case of CO2, fossil fuel emissions are separated from ecosystem fluxes. 

Within the project, the top-down approach delivers the net GHG budget estimates by combining all 

information available, including bottom-up inventories, which can attribute GHG budgets to sectors and 

processes.  

2.3.1 Bottom-up approach 
Bottom-up estimates of regional and global surface-atmosphere net GHG exchange build up on ground-based 

accounting methods and inventories. For bottom-up flux estimates of terrestrial ecosystems, plot- to 

landscape-scale GHG flux measurements (particularly by means of eddy covariance as provided by FLUXNET 

for instance, but also chambers) are assigned to specific land cover, soil or vegetation classes. The fluxes are 

then spatially extrapolated (upscaled), typically by machine learning, based on emission factors calculated 

for each class (average flux) and spatially resolved data (maps) on climate as well as land cover, soil properties 

or vegetation indices derived from remote sensing (section 2.2.5, see e.g. Xiao et al., 2011). Recent studies 

show that global upscaling of forest NEP from flux measurements using climate and remote sensing alone 

reveals forests as too large carbon sinks (Jung et al., 2011; Zscheichler et al., 2017; see references also for 

uncertainty estimation). For more reliable extrapolation of forest NEP, the forest age since afforestation or 

the last disturbance (e.g. fire, clear-cut) was identified as an important determinant to be considered, as the 

carbon sink properties of forest stands are changing with age (personal communication with Ville Kasurinen 

and Philippe Ciais). For this purpose, flux measurements of forest chronosequences have been utilised by 

Ciais et al. (2018) to define (biome-specific) hypothetical curves of NEP in dependence on forest age which 

are then used in the upscaling with the help of forest age maps (Amiro et al., 2010). However, especially 

recently disturbed forests are underrepresented with regard to flux measurements, and the 

chronosequences are not equally distributed among the biomes, with gaps in the tropics for instance. 

Nevertheless, it is evident that the carbon compensation period (time after afforestation/ disturbance until 

the forest switches from a carbon source to a sink) and, particularly, the carbon payback period (time until 

carbon sequestration equals carbon loss following afforestation/ disturbance) range considerably between 

biomes (Amiro et al, 2010; Coursolle et al., 2012; Aguilos et al., 2014). The partially long carbon payback 

periods and related uncertainty of what will happen to the forest in this period hamper some companies 

offering carbon compensation to include afforestation into their portfolio of projects (e.g., atmosfair, 

https://www.atmosfair.de.). In practice, long carbon payback time of forest use calls for long enough 

commitment periods to keep carbon in the storage from which the credits are gained.  Moreover, the claimed 

https://www.atmosfair.de/
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mitigation impact of the afforestation should be carefully assessed with best available methodology including 

direct and indirect effects.   

2.3.2 Top-down approach 
Atmospheric inversion modelling is an established method to receive top-down estimates of surface-

atmosphere net GHG exchange on regional and global scale and standardly used e.g. within the Copernicus 

Atmosphere Monitoring System (CAMS) and in IPCC reporting. Atmospheric inversions estimate surface-to-

atmosphere net carbon fluxes on the basis of atmospheric trace gas concentration measurements (see 

section 2.2.4), a priori knowledge of sources and sinks and an atmospheric transport model, which links 

sources and sinks to atmospheric observations. Flux information such as airborne or eddy covariance tower-

based flux measurements can be utilized for the validation of modelling results. On the other hand, the 

results of inverse modelling can be crucial to validate national emission inventories.  

Continuous and semi-continuous high-precision atmospheric trace gas concentration measurements are 

used in the inversions. Most atmospheric inversions are done for CO2, as it is the most important greenhouse 

gas and the uncertainties in the a priori information are better known than for CH4 and N2O. As for bottom-

up approaches, for example information on forest stand age can yield an improvement of the inversion 

results (Deng et al., 2013). 

In multi-model comparison studies the regional and global estimates are most often given as a range 

representing the outcome of several atmospheric inversions, which differ in the type of the atmospheric 

transport model, set of observations, prior information and flux optimisation technique. The modern 

atmospheric inversion results can be globally obtained in 1° resolution, and regionally even in higher 

resolution. The uncertainties of the estimations are heavily dependent on the individual uncertainties and 

spatial coverage of atmospheric trace gas concentration measurements in particular, but also of the a priori 

information. Dense observation networks of atmospheric concentrations exist in Europe and North America, 

whereas gaps are particularly concentrated on the southern hemisphere. In North Africa, a single station 

measuring atmospheric trace gas concentration is used within inversion modelling, strongly increasing the 

uncertainties of the estimates for this region (see https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php). Aircraft 

and satellite based remote sensing of GHG concentrations as done with MAMAP and TROPOMI (see section 

2.2.5) is a valuable tool to increase the spatial coverage of observations and to reduce uncertainty in inversion 

results. Higher spatial observation density enables higher resolution inversions. 

For further information, recent developments in atmospheric inversions and uncertainty estimates see e.g. 

Peylin et al. (2013), Bergamashi et al. (2015, 2018), Kountouris et al. (2018) and Le Quere et al. (2018).  

It should be kept in mind that lateral carbon transport (horizontal flow of dissolved carbon) is not observed 

by GHG exchange observations. In order to compare and reconcile bottom-up and top-down approaches, 

regionally varying corrections of bottom-up estimates are necessary to account for processes which, e.g., 

exchange CO2 with the atmosphere but do not store carbon in ecosystems such as the release of CO2 from 

imported and exported biomass, the riverine transport of CO2 and the carbon being released as non-CO2 

compounds such as volatile organic compounds (see 

http://www.globalcarbonproject.org/reccap/protocol.htm).   

 

2.4 Forestry field station Hyytiälä as supersite of forest research 
 

The SMEAR II station (Southern Finland, Northeast of Tampere) operated by the University of Helsinki, is 

located in an upland boreal forest (Scots pine and Norway spruce with understory vegetation) with lakes and 

https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php
http://www.globalcarbonproject.org/reccap/protocol.htm
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small wetlands. The station represents a densely equipped and wired lab for the comprehensive investigation 

of biosphere-atmosphere interactions and the impact of climate change (see Fig. 2.3), where measurements 

are operated continuously since 1996. Long-term monitoring of forest carbon storage, which was 

standardised with the integration of the station into ICOS (the station is officially labelled as Class 1 ecosystem 

and Class 1 atmospheric station), and individual process studies on various spatial and temporal scales deliver 

valuable input for carbon and GHG accounting and forest science. The various in-situ observations allow the 

exemplary quantification of fluxes and storages of atmospheric carbon in boreal forest ecosystems (Fig. 1.2b) 

and method comparisons (Ilvesniemi et al., 2009). SMEAR II is one of the few sites in Europe with long-term 

eddy covariance measurements and thus regularly included in large-scale studies such as on the effect of 

extreme weather events on ecosystem productivity (Ciais et al., 2005). SMEAR II is part of the INAR RI 

(Institute for Atmospheric and Earth System Research, a Finnish national research infrastructure) and 

traditionally included in European research infrastructures and global observation networks, apart from ICOS 

including ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure) and FLUXNET. The standardised 

atmospheric observations contribute further to European and global monitoring systems such as Copernicus 

and WMO GAW, and are, together with the in-situ GHG flux observations, valuable input for bottom-up and 

top-down approaches (see e.g. Kadygrov et al. 2015). SMEAR II was further one of the intensive study sites 

of the FP7 ‘North State’ project (see section 2.2.5). A considerable number of scientific publications are based 

on the observations gathered at the station, see also Hari and Kulmala (2005), Hari et al. (2012) and 

https://wiki.helsinki.fi/display/SMEAR/Measurements, https://www.atm.helsinki.fi/SMEAR/index.php for a 

general overview on SMEAR II and SMEAR stations in general.  

 

 

Figure 2.3 Forestry field station SMEARII in Hyytiälä as supersite of forest research 
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3. Non-carbon climate effects of forests and how to measure them  
Markku Kulmala, Ekaterina Ezhova, Pasi Kolari and Pekka Rantala 

 

3.1 Introduction  
 

The surface temperature of the Earth is determined by the radiation balance between the Earth and the 

space. The Earth receives electromagnetic radiation from the Sun. Part of the incident radiation is reflected 

back to space by the atmosphere and the Earth surface, the rest absorbed. The atmosphere and the surface 

ultimately emit the absorbed energy as long-wave thermal infra-red radiation to the space. Any imbalance in 

radiation results in warming or cooling of the Earth system.  

 

Besides CO2 and other greenhouse gases that modify the exchange of thermal radiation between the 

atmosphere and the surface (greenhouse effect), there are other important factors that contribute to the 

absorption and reflection of shortwave radiation and the exchange of heat between the atmosphere and the 

surface (Bonan 2008). Land cover (section 3.2) and aerosols in the atmosphere (sections 3.3 and 3.4) affect 

directly how much incoming solar radiation is absorbed. Further, they have impact on how heat is distributed 

between the atmosphere and the surface; evaporation of water from the surface and subsequent formation 

of clouds in the atmosphere is the most important mechanism here. Any modification of the carbon cycle by 

removing or increasing CO2-binding vegetation has impact on the complex climate - carbon cycle feedback 

(section 3.5). 

 

3.2 Surface albedo 
 

The radiation balance on the Earth surface is the sum of incoming shortwave radiation in the wavelengths 

emitted by the Sun (Isw,in), shortwave radiation reflected off the surface, incoming longwave (thermal 

infrared) radiation from the sky (Ilw,in) and longwave radiation emitted by the surface (Ilw,out) 

(1 − 𝑎)𝐼𝑠𝑤,𝑖𝑛 + 𝐼𝑙𝑤,𝑖𝑛 − 𝐼𝑙𝑤,𝑜𝑢𝑡 = 0  

where a is the reflectivity (albedo) of the Earth surface in the wavelengths emitted by the Sun. Albedo can 

range from 0 (black surface that absorbs all radiation) to 1 (perfect mirror that reflects all radiation). 

 

The incoming shortwave radiation on Earth surface depends on the optical properties of the atmosphere, 

that is, the reflectance of the atmosphere for shortwave radiation (atmospheric albedo). Surface 

temperature is also modified by the exchange of thermal radiation between the atmosphere and the surface 

(greenhouse effect). In this section, the direct effect of surface albedo on the radiation balance is considered. 

Any secondary effects of surface albedo change on the atmosphere are omitted for simplicity. 

 

Decrease in albedo leads to increased absorption of solar radiation by the Earth surface. Long-wave radiation 

from the surface must increase to match the increased absorption of short-wave radiation to close the energy 

balance. This can only be accomplished through an increase in the surface temperature.  

 

Surface albedo depends on land cover. Land covered by green vegetation typically has albedo of 0.05–0.28. 

Increasing vegetation cover usually decreases the albedo. Bare soil albedo ranges from 0.08 to 0.35 

depending on soil type and moisture. The albedo of snow is very high, up to 0.95. Typical albedos of different 

land cover types are summarized in Table 3.1.  
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Table 3.1 Albedos of different land cover types (Campbell & Norman 1998, Breuer et al. 2003, Hollinger et  

al. 2010). Perfect mirror reflects all light back, i.e. albedo of it is 1. 

Land cover type Albedo 

Snow 0.40–0.95 

Dry sand 0.35 

Wet dark soil 0.08 

Grassland/pasture 0.18–0.28 

Savanna 0.16–0.21 

Broadleaved forest 0.10–0.20 

Coniferous forest 0.05–0.15 

 

Albedo varies seasonally due to changes in surface properties like green foliage area of vegetation. The 

temporal variability is large especially in regions with seasonal snow cover. For long-term radiation balance 

calculations one must consider the effective albedo, that is, the average of momentary (e.g. daily) albedo 

weighted by the momentary incoming radiation. 

3.2.1 Climate effect of albedo change 
Radiative forcing is widely used metrics for expressing the climate impact of any change in the surface or 

atmospheric properties that determine the net radiation balance of Earth. It is the net change in the energy 

balance of Earth expressed in watts per square metre [W m-2]. Positive radiative forcing means that Earth 

receives more energy from the Sun than it loses to the space. Any change in land cover affects the Earth 

energy balance directly via surface albedo change and indirectly via other mechanisms that alter the radiative 

properties of the atmosphere, such as changes in the greenhouse gas, water vapour and aerosol 

concentrations (IPCC 2013).  

 

Radiative forcing by the albedo change can be estimated directly as the change in the average incoming 

minus reflected shortwave radiation or as the average incoming shortwave radiation multiplied by the 

change in the effective albedo. For comparing the direct radiative impacts of albedo change and carbon 

uptake, we can convert the C uptake to radiative forcing following Harvey (1997). The radiative forcing F [W 

m–2] that results from changing the atmospheric CO2 storage Ca [ppm] by dCa[ppm] is (Betts, 2000) 

 

𝐹 = 5.35𝑙𝑜𝑔 (1 +
𝑑𝐶𝑎

𝐶𝑎
)     (2) 

1 ppm of atmospheric CO2 corresponds to 2.123 Gt C and the earth surface area A is 5.1 1010 ha. The marginal 

radiative forcing from changing the surface carbon storage by dS [tC ha–1] is 

 

𝐹 =
 −128.521 𝑑𝑆

𝐶𝑎 
    (3) 

where 128.521 W ha t-1 m-2 is the conversion of one tonne of carbon per hectare to radiative forcing units. 
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Increasing carbon storage with afforestation decreases the radiative forcing through decrease in atmospheric 

CO2 which in turn cools the Earth surface. However, afforestation also changes the albedo of the surface. 

Afforested sites are often originally open pasture or grassland with more reflective vegetation cover than in 

forests. The change in the annual shortwave radiation balance can be significant and comparable to the 

radiative forcing caused by changes in carbon storage (Fig. 3.1). In other words, considerable storage of 

carbon in the vegetation may be required to offset the albedo change. On the other hand VOC, aerosols and 

clouds will help a lot, and at least in boreal conditions will counteract, at least partly, the albedo effect. 

 

Figure 3.1 Radiative forcing as a function of CO2 taken up from the atmosphere per unit land area (A), and 
carbon sequestration required to compensate the warming effect of decreasing albedo at three different 
values of mean annual shortwave radiation (B). The annual radiation inputs in ascending order correspond 
roughly to boreal high latitudes, temperate or subtropical zone and tropical zone. The conversion of C 
uptake to radiative forcing was taken from Harvey et al. (1997) assuming atmospheric CO2 mixing ratio of 
400 ppm. Only the direct effects of atmospheric CO2 and surface albedo on the radiative balance of Earth 
were considered. 
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The climate benefit of afforestation depends on the carbon storage potential of the site, the resulting change 

in albedo, and long-term radiation input. It may even become negative at locations with extended snow cover 

or poor growth potential of trees (Brovkin et al. 1999, Betts 2000, South et al. 2011), for instance in the cold 

climate of the high latitudes or in arid locations elsewhere. 

Carbon taken from the atmosphere must be stored in persistent biomass to cancel out the warming effect of 

albedo decrease. The magnitudes of the carbon storage and albedo decrease depend on time scale and 

should be integrated over the whole rotation time of a forest stand. The contribution of later growth stages 

is important as the carbon accumulates and the cooling effect of stored carbon becomes greater than the 

warming albedo effect. 

Land cover changes also alter radiative forcing via other mechanisms, especially through the hydrological 

cycle. These effects are more uncertain and more difficult to quantify than the direct radiative effects of 

changed surface reflectance and atmospheric CO2 (IPCC 2013). When very large areas are considered, the 

feedbacks between the vegetation and the atmosphere become increasingly important and may offset the 

direct impact of surface albedo change (Bala et al. 2007). 

 

3.2.2 Quantifying albedo and shortwave radiation balance 

3.2.2.1 Ground-based measurement of incoming and reflected shortwave radiation 

Albedo and shortwave radiation balance can be measured with two radiation sensors (pyranometers) that 

detect the wavelengths emitted by the Sun. One sensor is pointing to zenith while the other is looking in the 

opposite direction, towards the ground. The setup must be installed high enough to capture the small-scale 

heterogeneity in the surface properties and vegetation. As a rule of thumb, the radius of source area is three 

times the height above the top of the vegetation. Accurate levelling of the sensors is also crucial (Carrara et 

al. 2018). 

Monitoring of albedo and radiation balance with ground-based measurements provides continuous real-time 

data that reveals the short-term and seasonal variability in the radiation balance. Typical accuracy of long-

term radiation balance measured with pyranometers is 5–10% which translates to accuracy in the order of 

0.01–0.02 in the measured albedo. Setting up the measurements and data acquisition requires engineering 

skills. Maintenance, service, calibration and possibly guarding of the measurement setup requires labour 

continuously which can make continuous monitoring of radiation balance on the site inpractical. 

 

3.2.2.2 Remote sensing 

Another method to determine albedo in the long term is remote sensing by satellites. Spatial resolution in 

satellite images ranges from 30 m to several kilometres. Temporal resolution is governed by the orbits of the 

satellites, usually it's days or weeks. Presence of clouds disturbs the determination of surface reflectance and 

leads to sparser temporal coverage of useful data. Satellite data are often tradeoff between spatial and 

temporal resolution. Estimates of surface properties in finer resolution can be obtained by fusion of datasets 

retrieved in different spatial and temporal scales by different satellites, for instance Landsat albedo in 30 m 

grid and more frequently obtained surface reflectance data such as MODIS datasets in 500 m resolution (Qu 

et al. 2015). Besides surface reflectance, estimate of local incoming solar radiation and its seasonal variability 

is needed for calculating the radiative forcing caused by changes in albedo. One option is to use empirical 

models that predict the daily solar radiation as a function of maximum and minimum daily temperature or 

other local ground-based meteorological observations (Moradi et al. 2014). Another option is combining 

different satellite data products (Zhou et al. 2017). The accuracy of these approaches for the long-term mean 

or cumulative incoming radiation is in the order of 10%. 
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Remote sensing data products require little field work on the site of interest as many data products are freely 

available in the internet. However, processing and analysis of data requires good mathematical and 

programming skills. Furthermore, the accuracy of the remotely sensed data should be evaluated with 

repeated ground-based characterization of vegetation structure and measurements of albedo. This is 

especially important if the landscape is heterogeneous, consists of small patches of different land cover types 

or has steep slopes. The accuracy of remotely sensed albedo can be as good as in ground-based 

measurements if the landscape is homogeneous (Cescatti et al. 2012). 
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3.3 Volatile organic compounds  
 

Volatile organic compounds - usually referred as VOCs - are a wide group of different hydrocarbons that can 

evaporate rather easily in normal room conditions, meaning that they are volatile in the standard pressure 

(1013 mbar) and temperature of around 293.15 K (20°C). The number of different VOCs is enormous as 

carbon and hydrogen can form so many different structures. In addition to carbon and hydrogen, a VOC can 

contain also for example oxygen and/or nitrogen. 

In the atmosphere, VOCs are trace gases due to their low concentrations, meaning usually less than 1 ppb 

(parts per billion) or even less than 1 ppt (parts per trillion) depending on the compound. Major part of the 

VOCs originates from vegetation, such as tropical and boreal forests, whereas anthropogenic – i.e. human-

produced - VOCs originate from the traffic, industry and solvents, such as paint thinners. 

From the point of the atmosphere, VOCs are important because they affect the atmospheric boundary layer 

chemistry and aerosol particle formation. Thus, they are also linked to cloud formation and air quality. 

Globally, the most important VOCs are isoprene and monoterpenes that are almost exclusively emitted by 

plants.  In the boreal region, VOCs – especially monoterpenes – can have major contribution to the radiative 

forcing and therefore also to the regional climate (Paasonen et al., 2013).  

 

3.3.1 VOC Measurements 
VOC measurements are generally complex due to the amount of measured molecules and their low 

concentrations. During last two decades, a mass spectrometry has become more and more popular whereas 

a gas chromatography is a more traditional technique. Unfortunately, laser spectrometers – that are widely 

used for flux measurements of some other trace gases, such as CH4, COS and N2O – are not available for most 

biogenic VOCs, such as monoterpenes. Isoprene flux measurements can be obtained with a fast isoprene 

analyzer (FIS) but the technique is not applicable for other VOCs (Rinne et al. 2016). 

In the boreal region, the VOC concentration are typically very low and the used instrument should be as 

sensitive as possible (detection limit < 10 ppt). If the target is to measure VOC fluxes, the requirements are 

even stricter. In warmer climate and/or different ecosystem (Misztal et al. 2011; Kaser et al. 2013; Schallhart 

et al. 2016), the technical requirements are not necessary as demanding. However, this is very subjective 

thing. The more sensitive the instrument is, the more compounds it can detect. For example, the isoprene 

flux above an oak forest can be relatively large but the monoterpene flux is still as small as in Hyytiälä above 

a boreal forest (e.g. Park et al. 2013; Schallhart et al. 2016). In addition, more sensitive instrument makes 

also post-processing (e.g. different flux corrections, see Mammarella et al., 2017) easier and more reliable 

due to higher signal-to-noise ratio. 

3.3.2 Instruments 
Ionicon is currently the most well known manufacturer what comes to the mass spectrometers. 

Tofwerk/Aerodyne collaboration and Kore Technology sell also a similar type of VOC detectors. All these 

companies provide time-of-flight mass spectrometers with proton transfer reaction ionization technique. In 

addition, Syft Technologies (Selected Ion Flow Tube Mass Spectrometry) have developed their own 

quadrupole mass spectrometer for VOCs. Generally, time-of-flight mass spectrometry is the preferred 

technique because it is also capable of performing conventional EC flux measurements (Müller et al., 2010).  

Gas-chromatographies (GC) are manufactured by – for example – Agilent and Thermo Fisher Scientific. GCs 

have usually a quite long sampling period (e.g. 30 min) and they are not suitable for the direct VOC flux 
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measurements with the EC. Instead of that, a gradient technique is a reliable flux measurement method also 

for these instruments (Rinne et al., 2000). 

The cheapest instrument from Ionicon – PTRTOF 1000 (https://www.ionicon.com/product/ptr-ms/ptr-

tofms-series/ptr-tof-1000) – costs around 250 000 EUR and is capable of doing flux- and concentration 

measurements in various locations. 
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3.4 Clouds, cloud condensation nuclei and precipitation  
 

Forests play a crucial role in mitigating climate change. In addition to substituting fossil fuel use (bioenergy, 

carbon intensive materials), the forests act as a significant carbon sink and a source of climate cooling aerosol 

particles. At the same time, an enhanced forest cover decreases surface albedo and can have a warming 

potential while the aerosol effect on clouds is cooling.  We have recently shown with comprehensive 

observational data from SMEAR II station in Southern Finland that the boreal forests act as a source for 

volatile organic compounds (VOCs), aerosol particles and cloud condensation nuclei, cloud droplets and 

enhance the specific water content and water liquid content of clouds through evapotranspiration (Figs 3.2 

and 3.3).  

https://doi.org/10.5194/amt-9-4915-2016
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Figure 3.2a. Specific humidity as a function of time-over-land in the surface layer. 

 

 
 

Figure 3.2b. Liquid Water Path (LWP) as a function of time over land. As the air mass is transported over 
the boreal forest, water accumulates until 75h. Further decline is due to precipitation. Squares – mean 
values in 1 h bins of time over land. Grey shade shows 20 and 80 percentiles of data in the bins. 

 

Furthermore here we present here the first estimations, how big a forest is needed to dominate the aerosol-

cloud-precipitation interactions and produce self-sustaining cloud and precipitation system in the forest 

environment. Based on the data (Kulmala et al., 2019) from the boreal coniferous forest-dominated site, we 

estimate the forest size to be 1 000 000 km2. Such forested area will have carbon sequestration rate (carbon 

sink) of  1/50 of  the global annual carbon emissions. This can be utilized, when considering regional scale 

afforestation and reforestation activities in semi-arid and beyond regions that are significant and crucial tool 

to mitigate climate change through biosphere carbon sequestration and storage in a sustainable manner. 

Such actions could give humankind more time to significantly reduce carbon emissions and further  to control 

the carbon balance of the atmosphere – earth surface continuum.    
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Figure 3.3 Accumulated precipitation in a grid-box around Hyytiälä as a function of time-over-land. 
Precipitation accumulated during 1 h. Squares – mean values in 1 h bins of time over land. Curve – running 
average of the data shown by squares over 5 neignbouring points. There is an outlier at (78 h; 1 mm) not 
shown in the figure, corresponding to heavy rain. 

 

Overall, the aerosol-cloud processes actually make the forest even more effective in mitigation of climate 

change than in the case of carbon sink only. Kulmala et al. (2004) suggested a negative climate feedback 

mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to 

increased biogenic secondary organic aerosol (BSOA) and CCN concentrations, tending to cause cooling.  The 

consolidated process-level understanding together with scientific synthesis of the feedbacks facilitates 

breakthroughs in supporting the resilience of ecosystems to environmental stresses caused by the climate 

change.  These CarbonSink+ analysis will provide tools 1) to optimize afforestation and reforestation activities 

e.g.  in semi-arid and other dry environments,  and 2) to increase the carbon uptake of terrestrial ecosystems 

to tackle anthropogenic emissions of greenhouse gases and consequent warming. The first quantitative 

analysis was performed by Kulmala et al. (2014). The CarbonSink+ includes the continental biosphere-

atmosphere-cloud-climate (COBACC) feedback loop from carbon sink to aerosol source, and aerosol-cloud-

precipitation feedbacks.  For the complete analysis also forest vs no-forest surface albedo investigations are 

needed. 

The frequent new particle formation events and subsequent growth to CCN sizes are observed all around the 

world in boreal or temperate forests and savannah (Kulmala et al. 2004, Kerminen et al. 2018). In order to 

analyze the net effect of the biosphere emissions to aerosol and cloud properties, we utilize air mass back-

trajectories and estimate, how long time the air mass has spent over the boreal environment. This is called 

time-over-land, similar to Tunved et al. (2006), who showed that the time over land is a crucial factor to 

determine, how the particles are able to grow to CCN sizes and beyond. Recently,  we have extended the 

analysis and analyzed aerosol size distributions, aerosol mass, mass of low and semi-volatile organic aerosols, 

in-situ measured CCN concentrations, backscattering observed both in-situ and ground-based remote 

sensing (which actually agreed nicely with each other), liquid water path and cloud droplet concentrations 

(Petäjä et al., 2019). All of those increase as a function of time-over-land and have a clear maximum at 70-80 

hours (see Petäjä et al., 2019). In some cases, after 70-80 hours the observed variable could also be rather 

constant. 
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The NPF is typical when the air mass is coming from the North Sea / the Arctic Ocean. The direct distance 

from SMEAR II station (Hyytiälä) to North Sea is around 800 km. The time over land analysis made by Tunved 

et al. (2006) as well as our present analysis show that the typical time to produce CCN, cloud droplets and 

precipitation is 70-80 h. The corresponding distance above land is 800 km. Anyhow, the time over the land 

analysis takes this into account and we can confidentially say that taking into account the clean sector the 

distance is 800-1000 km from the sea (Kulmala et al., 2019). Therefore, the conservative estimate to obtain 

precipitation is 1000 km distance corresponding ca 1 000 000 km2 area (Kulmala et al., 2019. However also 

800 x 800 km = 0.64 Mkm2 could be enough.  

The bigger the forest the higher the water flux from the ecosystem is. Furthermore the bigger forest produces 

larger amount of aerosol particles. At certain level of cloud liquid water content the more aerosol particle 

the more cloud droplets we have, and the smaller cloud droplets are. This will enhance cloud life time and 

increase cloud albedo. However, when there is enough cloud water the clouds will precipitate, and this is 

what we have seen. 

On the other hand, 1 000 000 km2 area of typical forest will have carbon sequestration of the same magnitude 

than the annual global carbon emissions within 50 years in boreal environment. In the case of subtropical dry 

the value is 6.7e15g and for Boreal conifer 4.8e15g (Pan et al 2013). 

Forests store carbon in aboveground biomass and soil (belowground biomass and soil organic matter, 

composed of e.g. decomposing plant material and microbes), yielding net primary productivity (NPP). The 

aboveground biomass gain can be harvested and used for production of energy and other materials to avoid 

CO2 emissions. However, in many ecosystems the soil organic pools are many times larger carbon storage 

and can provide significant additional climate benefit. To obtain proper knowledge on the amount of carbon 

stored in the soil, further investigations on soil organic carbon stocks (SOC) are needed. 
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3.5 Feedback loops and their observations in boreal forests 
 

3.5.1 Background 
Terrestrial carbon sinks have recently raised general interest, with forests playing an important role in this 

respect (Pan et al, 2011, Grassi et al., 2017) as the present rates of atmospheric CO2 growth can not be 

explained without a substantial increase in terrestrial carbon sinks (Sarmiento et al., 2010, O’Sullivan et al., 

2016). Boreal forests play a relevant role for the carbon balance of the planet being an essential carbon sink. 

Understanding the mechanisms regulating carbon exchange in the boreal forest ecosystems is therefore of 

crucial importance. Uncertainties in the carbon cycle in existing climate models substantially alter climate 

predictions (Friedlingstein et al., 2014). Besides rather obvious effect of changing green mass, although e.g. 

forest management effects are not included in all earth system models, on the ecosystem’s CO2 balance, 

chains of complex interactions between the ecosystem and atmosphere can be identified (Kulmala et al., 

2013). Here we describe two carbon-based continental biosphere-atmosphere-cloud-climate (COBACC) 

feedback loops in boreal forests (temperature-related and GPP-related) and our current understanding on 

the physical processes behind these loops.    

Schematics of the loops are shown in Fig. 3.4. CO2 increase may cause an increase in the gross primary 

production (GPP) of an ecosystem, the effect known as CO2 fertilization (CO2 – GPP link in Fig. 3.4). GPP 

quantifies the carbon dioxide flux towards the ecosystem, thus characterizing the ecosystem photosynthetic 

activity. Photosynthesis is responsible for carbon supply to the plants, necessary for their normal function. 

Some plants species have special carbon storages to allocate part of the carbon received in the process of 

photosynthesis. Plants can use this stored carbon, as well as the carbon from de novo photosynthesis, to 

produce biogenic volatile organic compounds (BVOC) (Ghirardo et al., 2010). Enhanced photosynthesis may 

therefore lead to an increase in BVOC emissions (GPP – BVOC link in Fig. 3.4).   

 

 

Figure 3.4 Schematic of the continental biosphere-atmosphere-cloud-climate (COBACC) feedback loops. 
Temperature-related feedback loop is shown in green color, GPP-related feedback loop - in orange color. 
CO2 – concentration of carbon dioxide, GPP – gross primary production, BVOC – biogenic volatile organic 
compounds, SOA – secondary organic aerosol, CS – condensation sink, CCN – cloud condensation nuclei, 
Rd/Rg – fraction of diffuse radiation in global radiation, T – temperature. See the detailed description of the 
loops in the text. 
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In addition, an increase in CO2 concentration in the atmosphere leads to the temperature increase due to the 

greenhouse effect (CO2 – T link in Fig. 3.4). Temperature increase boosts emissions of many BVOCs (mono- 

and sesquiterpenes) through the mechanisms similar to evaporation (Grote et al., 2013). The growing 

exponential dependence of BVOC emissions on temperature is observed for the emissions using carbon from 

the storage pool (Tingey et al., 1980). The emissions processing carbon from de novo photosynthesis (e.g. 

isoprene) decreases after some threshold value of temperature because high temperatures destroy the 

photosynthetic apparatus of plants (Monson et al., 1992). However, these values of temperature (40°C) have 

so far been almost never observed at the middle and high latitudes; therefore, all emissions 

in boreal forests generally grow with temperature (T-BVOC link in Fig.3.4). Climate change induced heat spells 

may have some effect on BVOC production in mid latitudes in the future. However, in ever-green trees 

growing in dry region of tropics, like pines and eucalypts, the monoterpene emissions are not only related to 

daily conditions but also on the stored VOCs in long-term. 

Note that both temperature-related and GPP-related loops share BVOC-aerosol link. BVOCs are oxidized in 

the atmosphere to form low-volatile organic vapours (Hallquist et al., 2009). The vapours contribute to the 

processes of new particle formation and growth (Ehn, 2014), which have two important consequences. One 

is an increase in the number of particles able to act as cloud condensation nuclei (BVOC-CCN link in Fig. 3.4), 

and another is an increase in the condensation sink (BVOC – CS link in Fig. 3.4). Condensation sink (CS) is a 

parameter proportional to aerosol surface area and mainly sensitive to aerosol particles’ increase in size 

(Lehtinen et al., 2004, Ezhova et al., 2018). The link between BVOC and secondary organic aerosol (SOA) was 

investigated using different approaches. Particles inside one air mass moving over land are constantly 

growing because organic vapours produced from BVOCs emitted by forests condense onto aerosol particles. 

The increase in total aerosol mass with time over land has been demonstrated by Tunved et al. (2006) and 

Liao et al. (2014). With this approach, the authors were able to show that aerosol growth is a process 

essentially non-local in space and time. However, the applicability of this method is limited at the continental 

sites. Besides, while aerosol characteristics are measured, the monoterpenes’ emissions are parameterized 

by Tunved et al. (2006) and Liao et al. (2014). Kulmala et al. (2014) proposed a different approach to study 

BVOC-SOA link, based on in-situ atmospheric observations. The authors considered CS to be a function of the 

particles’ growth rate (GR), calculated from the particle number-size distribution. The GR is larger for higher 

concentrations of BVOCs and organic vapours, and CS was observed to increase with GR. This approach 

considers BVOC-related processes indirectly, as growth rate as a parameter obtained from aerosol 

measurements and it accounts for all the condensing vapours present in the atmosphere. However, this 

approach reduces the data set to only NPF days, which can be relatively rare in summer (Dada et al, 2017). 

One more approach accounting for BVOCs effect indirectly is linking temperature to aerosols. The increase 

in CCN with temperature has been demonstrated by Paasonen et al. (2013) based on atmospheric 

observations from eleven sites in different parts of the world. While evidence for BVOC-SOA link in general 

has been obtained, the role of particular BVOCs and organic vapours for the processes of new particle 

formation and growth based on the observations in boreal forest remains largely an open question.  

The next step of the temperature-based feedback loop is from CCN to clouds (Fig. 3.4). The effect of aerosols 

on cloud cover is not well established and is itself a subject for various feedbacks. However, the first indirect 

effect (Twomey, 1977) has been confirmed by many studies (Rosenfeld, 2014).  Cloud reflective properties 

strengthen when the number of cloud droplets increases at the constant liquid water content (Twomey, 

1977). Therefore, increase in CCN leads to an increase in clouds’ albedo (reflection of solar radiation), 

resulting in cooling of the atmosphere (clouds-T link in Fig. 3.4). Thus, the temperature-related COBACC 

feedback loop (shown in green color in Fig. 3.4) prescribes a negative feedback on temperature.  
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The GPP-related loop (shown in orange color in Fig. 3.4) includes two effects on solar radiation due to 

secondary organic aerosol, namely particles acting as CCN and increasing aerosol loading (CS). CS-related link 

corresponds to the ‘clear-sky’ part of the GPP-related loop, whereas CCN-related link corresponds to the 

‘cloudy’ part. In what follows we focus mainly on photosynthetically active radiation (PAR) which corresponds 

to the range of wavelengths between 400 and 700 nm in the solar radiation spectrum. Incoming PAR consists 

of direct and diffuse radiation. Direct radiation comes from the direction of the sun whereas diffuse radiation 

comes from all other directions. Increase in aerosol loading under clear sky, as well as clouds present in the 

sky, lead to an increase in the diffuse fraction of solar radiation due to scattering (SOA-Rd/Rg links in Fig. 3.4). 

Under clear sky and at the low aerosol loading, PAR is mainly direct. In this case, only tops of the canopies of 

forest ecosystems can get enough light for effective photosynthesis. At the same time, well-pronounced 

shadows appear inside the canopy decreasing light availability and reducing photosynthetic activity of the 

whole forest ecosystem. When the diffuse fraction of radiation increases, more incoming radiation arrives 

from different angles. As a result, more light photons penetrate inside the canopy and can be captured and 

used for photosynthesis (Gu et al., 2002, Niyogi et al., 2004). This leads to an increase in light use efficiency 

(LUE) - a parameter, quantifying amount of carbon dioxide fixed by an ecosystem per unit absorbed PAR. At 

the same time, increase in the diffuse fraction of radiation is the consequence of the increase in scattering 

and reflecting agents (aerosol and clouds) in the atmosphere. Therefore, total incoming radiation reaching 

the surface decreases when the diffuse fraction of solar radiation increases. A significant increase in diffuse 

radiation usually leads to decrease in GPP, because total radiation decrease can be strong and light becomes 

a limiting factor for photosynthesis. However, a moderate increase in diffuse radiation due to aerosol and 

some types of clouds may lead to an increase in ecosystem GPP (Rd/Rg – GPP link), due to the effect of diffuse 

radiation fertilization (DRF).  

At remote sites in boreal and hemiboreal forests, on clear days, aerosol (CS) can lead to the increase in the 

diffuse fraction of solar radiation from 10%, corresponding to clean atmosphere, to ~ 27% characteristic of 

relatively high aerosol loading (Ezhova et al., 2018). The corresponding DRF effect estimated from 

observations is 6-14% increase in GPP.  Maximum increase, up to 10-30% for different ecosystems as 

compared to clean atmosphere and clear sky conditions, is associated with some particular types of clouds. 

At the same time, optically thick clouds reduce GPP of an ecosystem. Therefore, the ‘clear sky’ or CS-related 

part of the feedback loop results in the positive feedback for GPP, while the ‘cloudy sky’ or CCN-associated 

effect for GPP may be either negative or positive.  

3.5.2 GPP-based, ’clear-sky’ part of the feedback loop: estimates and instrumentation  
The focus of the present project is on the quantification of the carbon-induced terrestrial feedback loop 

based on field observations. The feedback loop (constituting part of the loop in Fig. 3.4) is illustrated in Fig. 

3.5 and the main idea under this loop can be formulated as follows (Kulmala et al., 2014). The increase in the 

CO2 concentration stimulates photosynthesis and, consequently, leads to an increase in GPP. More active 

plants produce more BVOC, a source/precursors of low-volatile vapours responsible for the formation and 

growth of atmospheric aerosol particles. Subsequently, there are more secondary organic aerosol (SOA) able 

to scatter solar irradiance increasing the diffuse fraction of solar irradiance. The latter, in its turn, enhances 

the plant LUE. This may lead to an increase in GPP and a larger CO2 uptake, so CO2 can be removed from the 

atmosphere more effectively. The aim of the project is to understand how significant this effect can be and 

how can it be taken into account in the commercial carbon sinks or is it too complicated and expensive to 

measure. 
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Currently, only one station in Eurasia (SMEAR II, Finland) provides the data set needed to quantify the whole 

feedback loop (Fig. 3.6). Four stations in Finland, Estonia and Russia have enough data to quantify at most 

two steps of the loop. All these stations lack BVOC measurements, some also lack diffuse radiation or aerosol 

measurements. 

 

 

 

Figure 3.5 Continental Atmosphere-Biosphere-Climate-Cloud feedback loop (GPP-based, clear sky 
conditions). 

 

Instruments that are needed for quantification of the feedback loop: 

1) BVOC measurements: PTR-MS (Proton Transfer Reaction Mass Spectrometer) or GC-MS (Gas 

Chromatography Mass Spectrometer) – ca 450 000 Euro; 

2) SOA measurements: DMPS+CPC (Differential Mobility Particle Sizer and Condensation Particle 

Counter) – ca 95 000 Euro; 

3) Radiation measurements: diffuse and global radiation sensors – ca 5 000 Euro; 

4) Photosynthesis measurements: micrometeorological set of instruments (CO2 fast response 

concentration measuring device + 3D anemometer) – ca 30 000 Euro. 

If this is a new station, then standard meteorological measurements should be added (Väisälä station – ca. 

50 000 Euro); it is likely that the effect of clouds needs to be considered, therefore ceilometer can be added 

to this set (can be included into Väisälä package). 
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Figure 3.6 First calculations based on the feedback loop observed in Hyytiälä.  Values:  Increase of 
atmospheric concentration is  + 10 ppm, if this is ca 50% of emissions i.e. that emissions are  + 20 ppm. 
Terrestial carbon sink (25% of emissions) ca. 5 ppm. 

 

If there is a positive feedback in the system (the system can be considered as a nonlinear amplifier with a 

positive feedback): 

1) The amplifying coefficient K = 1.08 due to CO2 fertilization effect from the scheme in Fig. 3.4 (if we 

assume that the effect of feedback is not there yet). 

2) Then also, 0.07GPP continuously comes to the input of the system during clear sky time time due to 

the positive feedback from diffuse radiation fertilization (DRF).  

3) The resulting amplification coefficient will be: K1 = GPPout/GPPin= K/(1-0.007K) =1.08/(1-0.007*1.08)= 

1.088 due to the feedback. The increase in carbon uptake due to diffuse radiation would be 8.8% instead 

of 8%, so 0.44 ppm instead of 0.4, if 5 ppm is assumed to be a total carbon sink. Clear time constitutes on 

average 12% of all time at SMEAR II, then: 0.44*0.12 + 0.4*0.88 =  0.405 ppm increase. 

Max 6% increase in GPP due to aerosol-associated DRF at SMEAR II: K1 = GPPout/GPPin= K/(1-0.06K) 

=1.08/(1-0.06*1.08)= 1.154. The associated increase in the carbon sink is 0.77 ppm. Clear time constitutes 

on average 12% of all time at SMEAR II: 0.77*0.12 +0.4*0.88= 0.44 ppm increase. 

However, ca 50% of time we have clear sky or clouds favouring GPP increase (12% clear sky and ca 40% 

Cumulus and Altostratus/Altocumulus clouds). Clouds DRF effect on GPP is more than 0.7%.   

 One can expect max 11% increase in GPP in Hyytiala due to clouds, on average 6% for estimates. The 

amplification coefficient due to clouds: K1 = GPPout/GPPin= K/(1-0.06K) =1.08/(1-0.05*1.08)= 1.154. It 

would give ca 0.77 ppm increase for 5 ppm total sink. For 50% of cloudy time favouring GPP increase due 

to DRF feedback, the resulting estimate would be 0.77*0.5 +0.4*0.5= 0.585 ppm increase instead of 0.4 

ppm without feedback effect. . 
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4. How to strengthen ecosystem carbon sinks?   

Tuomo Kalliokoski 

 

The Paris Agreement includes strategic Nationally Determined Contributions (NDCs) which main aim is strive 

development of pathways toward low net GHG emissions. Almost 70% of nations indicated in their NDCs 

they will use the land sink to reach their mitigation targets. Also in IPCC sr1.5 (IPCC 2018) virtually all 

integrated assessment model (IAM) scenarios that limit either peak or end-of-century warming to 1.5°C use 

land-intensive carbon dioxide removal (CDR) technologies (see Cross-Chapter Box 7 in IPCC sr1.5 and 

references therein). Thus, following the climate objective of Paris Agreement and the pathways outlined in 

IPCC sr1.5 the role of ecosystem carbon sinks in the mitigation of climate change has been further 

emphasized. There are international programs for improving state of forests especially in tropics (e.g 

Reducing Emissions from Deforestation and forest Degradation in developing countries, REDD+). Also the 

potential role of land-focused negative emission technologies is studied and explored actively (e.g., large-

scale afforestation, bioenergy combined with carbon capture and storage BECCS, biochar formation, soil 

carbon sequestration). All these approaches include large uncertainties and therefore mitigation by land use 

sector needs to be done on a sound scientific basis (Keenan & Wiliams 2018). 

The roadmap for rapid decarbonization (Rockström et al. 2017) estimated the potential of stopping 

deforestation and afforestation to be 0,5 – 3,6 GtCO2eq year-1 (Fig. 4.1, ‘Land use sector’). In their analysis, 

the remarkable amount of negative emissions by BECCS were needed in addition to the changes in land use 

sector. Also most of the IPCC sr1.5 scenarios include high deployment of BECCS, the highest estimates of 

bioenergy produced through BECCS globally being over 400 EJ year-1. However, there is wide consensus that 

sustainable limit for bioenergy is somewhere around 100 EJ year-1 (current production around 50 EJ year-1, 

Creutzig et al. 2015, see also chapter 5 in IPCC sr1.5). 

Global vegetation currently stores around 450 Gt of carbon. In the hypothetical absence of land use, potential 

vegetation would store around 916 Gt of carbon, under current climate conditions. Deforestation and other 

land use changes explains up to 58% of the difference between current and potential (Erb et al. 2018). 

Mitigation potentials are concentrated in tropical regions and dominated by reduced rates of deforestation 

and reforestation (Houghton 2013, Canadell and Schulze 2014, Grace et al. 2014, Houghton et al. 2015, 

Griscom et al. 2017). However, according to the analysis of Erb et al. (2018) over 40% of the difference is not 

due to land use changes but due to intensive land use, e.g. forest management. The large difference between 

current situation and potential emphasizes the mitigation potential of land use sector, especially forests. 

Potential storage of global vegetation could never be reached but in the specific study (Griscom et al. 2017) 

considering land area restrictions due to food, fibers and other production, infrastructure and biodiversity 

etc., the estimate of land use sector total mitigation potential was 23,8 GtCO2eq year-1 net emission 

reductions through 2030. The study presents versatile mitigation measures labeled as “Natural Climate 

Solutions” (NCS) for strengthening ecosystem carbon sinks (Fig. 4.2). This value, however, does not include 

economic constrains. This estimate is ≥30% higher than estimates from some earlier studies (see Table 1, in 

Cross-Chapter Box 7 of IPCC sr1.5). For example, Smith et al. (2013) estimated the lower end of the mitigation 

potential of land-use sector to be only 3  GtCO2eq year-1. The higher end was, however, 19.9  GtCO2eq year-

1 when both supply- and demand-side measure were accounted for.  
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Figure 4.1 We need to halve fossil emissions every decade and transform land use sector from source to 
notable sink for keeping global warming under 2°C during this century. In addition for those actions, we 
need negative emissions (“BECCS” in figure) or considerable strengthening of ecosystem carbon sinks 
(“FORESTS” in figure). Land use sector, fossil emissions and BECCS are based on Rockström et al. (2017). In 
the net emissions with FORESTS curve, the mitigation level reached on 2030 by actions in forests (Griscom 
et al. 2017) is projected to be stable during whole century. 

 

Griscom et al. found possible to reach about half of this total mitigation potential (i.e. 11.3 GtCO2eq year-1) 

cost-effectively (<100 USD MgCO2e−1 y−1). Half of this cost-effective mitigation was reached due to increased 

carbon sinks by different actions, while other half of the mitigation was obtained by the pathways avoiding 

further emissions of GHGs. These cost-effective NCS’ provide 37% of the necessary CO2eq mitigation 

between now and 2030 and 20% between now and 2050. The NCS could be seen as partly substituting the 

enormous deployment of BECCS (Fig. 4.1).   

Most NCS pathways can maintain the 2030 the reported mitigation levels for more than 50 years. Thereafter, 

the proportion of mitigation provided by NCS further declines as the proportion of necessary avoided fossil 

fuel emissions increases and as some NCS pathways saturate. Higher estimate by Griscom et al. than found 

in earlier studies is partly explained by including more mitigation options from wetlands and agriculture than 

included by others, partly due to larger mitigation in temperate and boreal ecosystems. The activities 

targeted for increasing forest carbon storages offer over two thirds of cost-effective NCS mitigation needed 

to hold warming to below 2 °C, yielding 7,32 GtCO2eq year-1 (Griscom et al. 2017, “FORESTS” in Fig. 4.1). The 

actions in the forests include e.g. reforestation, avoided forest conversion, improved plantations, fire 

management and natural management of forests (Table 4.1). This level was reached when cost efficiency 

was accounted for. However, the maximum mitigation potential of forest based measures was estimated up 

to 16,2 GtCO2eq year-1. Thus, the actual potential depends on the development in the other sectors and the 

relative cost-efficiency of the actions in the forest sector. The NCS improve also other land based ecosystem 

services like biodiversity, water filtration, flood control, and soil quality. Due to these synergistic effects the 

cost-effective implementation of NCS could be higher than in the analysis of Griscom et al (2017). 
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Figure 4.2 Different ecosystem related mitigation pathways at the year 2030 labeled as Natural Climate 
Solutions in the study of Griscom et al. (2017).  Light blue = cost-effective mitigation levels when global 
warming <2 °C (<100 USD MgCO2e−1 y−1). Dark blue = portion of low cost (<10 USD MgCO2e−1 y−1) when global 
warming <2 °C. The error bars are 95% confidence intervals. Improved forest management (both forest 
management changes and improved plantations) offers large and cost-effective mitigation opportunities, 
many of which could be implemented rapidly without changes in land use or tenure. 
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Table 4.1 Estimated mitigation potential of different actions related to forests (Griscom et al. 2017). Values 
are the flux at year 2030. Different actions have different time span until they saturate, e.g. in temperate 
vegetation zone the effect of reforestation saturates > 30 years, whereas avoided forest conversion effect 
saturates only after 100 years. Max mitigation = no cost costrain, Cost effective = marginal abatement 
mitigation cost not greater than ∼100 USD MgCO2−1 as of 2030, Low cost = <10 USDMgCO2−1. 
 

 Gt CO2eq year-1 

Action Max Mitigation Cost effective Low Cost 

Avoided forest conversion 3,603 2,897 1,816 

Reforestation 10,124 3,037 0 

Natural Forest Management 1,470 0,882 0,441 

Improved Plantations 0,443 0,266 0 

Fire Management 0,212 0,127 0 

Avoided Woodfuel Harvest 0,367 0,110 0 

Total 16,219 7,319 2,257 

 

For Finland, the study of Griscom et al. (2017) gives a maximum mitigation potential of NCS to be 54,2 Mt 

CO2eq year-1 at 2030. Changes in forest management practices by increasing forest rotation length and 

having milder thinnings the forest sink could be increased by 13,71 Mt CO2eq year-1. The study gives very 

high potential for peatlands where restoration of ditched peatlands could decrease emissions by 34,32 Mt 

CO2eq year-1 and avoided emissions from peatlands up to 8.35 Mt CO2eq year-1. Other actions, like 

reforestation 1,69 Mt CO2eq year-1, are less important but not totally marginal. All these region specific 

values are very uncertain and should be considered as realizations of specific study with given assumptions. 

However, the mean age of Finnish forests is around 50 yrs and there are many studies showing that Finland 

has good potential for increasing forest carbon storage during next 30-50 years due to young and well 

growing forests (Sievänen et al. 2015, Kallio et al. 2013, Heinonen et al. 2017). On the other hand, gaining 

climate change mitigation by the increased use of forest biomass seem to be challenging mainly due to 

difficulties to obtain high enough displacement of fossil fuels (Soimakallio et al. 2016). In Finnish case, model 

analyses have shown that forest carbon sink may reduce up to two tons of CO2 per harvested m3 during next 

decades (Sievänen et al. 2014, Lehtonen et al. 2016).    

The persistence of the carbon stored in the ecosystems in the mitigation projects is well-known challenge. 

How to suppress abiotic (e.g. storms) and biotic damages (insects, pathogens etc.) in large regions needs 

specific attention in the ecosystem based mitigation projects. Climate change induced adverse effects could 

reverse terrestrial carbon sinks by midcentury and erode the long-term climate benefits of NCS (Keenan & 

Williams 2018).  Also aspect to keep in mind is that reducing rates of deforestation constrains the land 

available for agriculture and grazing, with tradeoffs between diets, higher yields and food prices (Chapter 4 

in IPCC sr1.5, Erb et al. 2016, Kreidenweis et al. 2016). This raises a concern of cross-biome leakage (Popp et 

al. 2014a, Strassburg et al, 2014, Jayachandran et al. 2017) and encroachment on other ecosystems (Veldman 

et al. 2015).  

Also the importance of old forests increases along the efforts to increase the long-term storage of carbon in 

ecosystems. The carbon dynamics in the old forests are not well known although common belief of old forests 
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being carbon sources is not valid in the light of current scientific understanding (Zhoul et al. 2006, Luyssaert 

et al. 2008, Schulze et al. 2012, Clemmensen et al. 2016). Focused measurements both in pristine Northern 

boreal forests and in tropical forests are in demand if long-term success of these mitigation projects are 

wanted to ensure.  

There is urgent need for aggressive, simultaneous implementation of mitigation from both NCS and fossil 

fuel emissions reductions. Emerging regional assessments offer new perspectives for upscaling. 

Strengthening coordination, additional funding sources, and access and disbursement points increase the 

potential of e.g. REDD+ and other frameworks in working towards 2°C and 1.5°C limits (Well and Carrapatoso, 

2017).However, the only sustainable way in the long-term to obtain mitigation through NCS and land use 

intensification is to implement them in locally appropriate ways with best practices that maximize resilience 

(IPCC sr1.5, Chapter 5). 

 

Initiatives for further reading 

The New York Declaration on Forests, https://nydfglobalplatform.org/ 

The Bonn Challenge, http://www.bonnchallenge.org/content/challenge 

World Business Council on Sustainable Development Vision 2050, 

https://www.wbcsd.org/contentwbc/download/1746/21728 

The “4 pour 1000” initiative, https://www.4p1000.org/ 

 

References 

Canadell & Schulze 2014. Global potential of biospheric carbon management for climate mitigation. Nature 
Communications 5, 5282.  

Clemmensen et al. 2016. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science 
339, 1615-1618. 

Creutzig et al. 2015. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944. 

Erb et al.  2016. Exploring the biophysical option space for feeding the world without deforestation. Nature 
Communications, 7, 11382 

Erb et al. 2017. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 
553, 73–76. 

Grace et al. 2014. Perturbations in the carbon budget of the tropics. Global Change Biology 20, 3238–3255.  

Griscom et al. 2017. Natural climate solutions. PNAS 114, 11645-11650.  

Heinonen et al. 2017. Scenario analyses for the effects of harvesting intensity on development of forest resources, 
timber supply, carbon balance and biodiversity of Finnish forestry. Forest Policy and Economics, 80, 80-98. 

Houghton 2013, The emissions of carbon from deforestation and degradation in the tropics: Past trends and future 
potential. Carbon Management 4:539–546. 

Houghton et al. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nature Climate Change 5, 1022–1023. 

IPCC Special Report on Global Warming of 1.5 °C. 2018. An IPCC special report on the impacts of global warming of 1.5 
°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening 
the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty 

https://nydfglobalplatform.org/
http://www.bonnchallenge.org/content/challenge
https://www.wbcsd.org/contentwbc/download/1746/21728
https://www.4p1000.org/


63 
 

Jayachandran et al. 2017. Cash for carbon: A randomized trial of payments for ecosystem services to reduce 
deforestation. Science 357, 267–273. 

Kallio et al. 2013. Sequester or substitute—Consequences of increased production of wood based energy on the 
carbon balance in Finland. Journal of Forest Economics 19, 402–415. 

Keenan & Wiliams 2018. The Terrestrial Carbon Sink. Annual Review of Environment and Resources, 43, 219-243. 

Kreidenweis et al. 2016. Afforestation to mitigate climate change: impacts on food prices under consideration of 
albedo effects. Environmental Research Letters 11, 085001 

Lehtonen, A., Salminen, O., Kallio, M., Tuomainen, T. & Sievänen, R. 2016. Skenaariolaskelmiin perustuva puuston ja 
metsien kasvihuonekaasutaseen kehitys vuoteen 2045. Selvitys maa- ja metsätalousministeriölle vuoden 2016 
energia- ja ilmastostrategian valmistelua varten. Luonnonvara- ja biotalouden tutkimus 36/2016. 

Luyssaert et al. 2008. Old-growth forests as global carbon sinks. Nature 455, 07276  

Popp et al. 2014. Land-use protection for climate change mitigation. Nature Climate Change 4, 1095–1098.  

Rockström et al. 2017. A roadmap for rapid decarbonization. Science 355, 1269-1271. 

Schulze et al. 2012. Temperate and Boreal Old-Growth Forests: How do their growth dynamics and biodiversity differ 
from young stands and managed forests?, Geotechnical, Geological and Earthquake Engineering 16, 129-145.  

Sievänen et al. 2014. Carbon stock changes of forest land in Finland under different levels of wood use and climate 
change. Annals of Forest Science 71, 255–265.  

Smith et al. 2013. How much land‐based greenhouse gas mitigation can be achieved without compromising food 
security and environmental goals? 

Soimakallio et al. 2016. Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland. Environmental 
Science & Technology 50, 5127-5134. 

Strassburg et al. 2014. Biophysical suitability, economic pressure and land-cover change: a global probabilistic 
approach and insights for REDD+. Sustainability Science, 9(2), 129–141  

Veldman et al. 2015. Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. 
BioScience 65, 1011–1018. 

Well & Carrapatoso 2017. REDD+ finance: policy making in the context of fragmented institutions. Climate Policy 17, 
687–707. 

Zhoul et al. 2006. Old-Growth Forests Can Accumulate Carbon in Soils. Science 314, 1417. 

 

 

 

 

 

 

 

 

 

 



64 
 

5. Conceptualised  measurement scheme and costs 
Sami Haapanala, Tuomo Kalliokoski, Markku Kulmala 

 

A new carbon market system should consider all factors affecting climate. In addition to the carbon balance, 

necessary factors include balance of other greenhouse gases, surface albedo, and other feedback 

mechanisms, such as CarbonSink+. In this chapter we define a cost effective, i.e. as simple as possible but 

accurate enough, measurement scheme to verify climate effects of forest. The methodology is planned for 

commercial applications, rather than for scientific purposes. In 5.1 we describe the method and required 

measurements. In 5.2 we estimate the amount of required manpower and prices of the equipment.  

For a successful carbon market system, objective criteria for site selection should be defined. Items to 

consider when selecting an area having good potential for commercial carbon sink include at least: 

Ownership of the area, terrain and soil properties, current status of the ecosystem and potential for 

increasing stored carbon in a sustainable way, and infrastructure. 

 

5.1 Method description 
 

Figure 5.1 describe a scalable scheme for creating and verifying climate friendly forest. Details for 

measuring the initial state of and monitoring afforestation/reforestation site are presented separately on 

Figs 5.2 and 5.3. 

5.1.1 Planning phase 
The upper part of the scheme (Fig. 5.1) show the planning phase of the project. For the design of a 

monitoring system applied as part of an afforestation project (e.g. for the carbon credit market) many 

factors need to be considered, such as the total costs, desired level of accuracy and, with it, its reliability.  

Step 1: The project should begin with a careful description of the current status of the ecosystem, and 

external factors affecting it (Management history, Climate data). 

Step 2: Initial vegetation and carbon inventory (Fig. 5.2) consists of the same elements as monitoring by 

manual inventory methods. The main parts are forest biomass and soil carbon measurements which must 

be conducted in dense enough grid, or other systematic manner e.g. circular sample plots. The grid 

resolution or number of the sample plots depends on the vegetation type and needed accuracy.  

Step 3: Management and Monitoring plans (Fig. 5.3). 

Management plan: Description of the actions which will take place for fulfilling the objectives of 

the mitigation project. The Plan has to include the time span (e.g. for next 10 years) and description 

of planned forest management operations like tending of saplings, thinnings, damage preventions 

etc. All these have to be given specific timing in the plan. These management actions should be 

related with monitoring plan in order to catch changes due to operations.  

Monitoring plan: Apart from the number of afforested areas, their sizes, ranging from several 

hectares to several hundreds of square kilometres, and the desired frequency of the observations is 

crucial for the monitoring strategy, with regard to its feasibility and the costs. 

Monitoring methods: As the expenses for labour-intense methods such as ‘manual’ inventories 

increase with an increasing area (more samples necessary to ensure representativeness) and 
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desired frequency of the surveys, the use of automatically and continuously measuring eddy 

covariance systems, which are more expensive in terms of investment costs, might become more 

economical at a certain point. The number of sample plots for an inventory or eddy covariance 

towers within an afforestation area depends on the heterogeneity of the area (soil, biomass).  

Publicly available remote sensing data such as canopy height estimates offer a more cost-efficient 

alternative for biomass inventories of, particularly, large areas, however, at the cost of the 

accuracy. Instead, terrestrial laser scanning offers an increased accuracy compared to manual 

recordings, but might imply higher costs, especially with regard to the instrument. While comparing 

the costs one has to keep in mind, that an initial determination of the carbon stock in soil and 

biomass is essential also for eddy covariance setups, in order to define a baseline of carbon stock 

changes. 

Measurements of biosphere-atmosphere GHG fluxes are preferably done by means of eddy 

covariance. Carbon dioxide (CO2) is the crucial component in afforestation projects in arid zones. 

Following good practices, methane (CH4) flux measurement have to be included only at those sites 

where CH4 is expected to significantly contribute to the GHG balance (e.g. wet sites). Nitrous oxide 

(N2O) flux measurement need to be included at sites where N2O is expected to significantly 

contribute to the GHG balance (e.g. agricultural sites or heavily fertilised sites). For the net balance 

of incoming and outgoing carbon fluxes  i) gaseous carbon exchange with the atmosphere and ii) 

lateral carbon transport comprising particulate organic carbon fluxes such as fertilisation (as an 

import) or export of biomass (e.g. wood), iii) dissolved carbon flux in waters and iv) lateral transport 

of soil carbon through erosion should be monitored. For afforestation projects in arid zones it is most 

probably sufficient to simplify the balance to the first two components. 

In addition, basic meteorology, soil condition and solar radiation (including diffuse radiation) should 

be measured at each site. Solar radiation measurements should include representative short wave 

albedo measurement. Albedo is important to measure since afforestation tend to change albedo.  

In larger project areas (starting from about 100 km2) CarbonSink+ -effect could be verified. A good 

proxy, enabling cost effective determination for VOCs and aerosol growth, is air ion size 

distribution. That can be measured using NAIS (Neutral Cluster and Air Ion Spectrometer). The 

instrument enables determination of formation rates for ion clusters, neutral clusters and their 

growth rates as a function of particle size (Kulmala et al. 2012). NAIS, manufactured by Airel Ltd. 

(Estonia), measures mobility distribution of naturally charged and neutral nanoparticles in high 

time resolution. The measurement ranges are 2-42 nm and 0.8-42 nm for the neutral clusters and 

ions, respectively. The NAIS is a robust, field-worthy instrument, which can be operated for 

extended periods even unattended (Manninen et al. 2010).  

For a complete description of CarbonSink+, the VOC emission, aerosol particle growth and diffuse 

solar radiation can be measured directly. For the measurement of VOC concentration and emission 

rate, the PTR-MS (Proton Transfer Reaction – Mass Spectrometer) should be used. Aerosol particle 

size distribution is best measured using DMPS (Differential Mobility Particle Spectrometer). The 

DMPS system (Aalto et al. 2001) is the standard aerosol particle size distribution monitoring 

instrument. The DMPS provides a total size range from 10 to 800 nm, which will be complemented 

by NAIS in the ultra-fine range. The DMPS is system is the backbone of various parameters inferred 

from the particle size distribution, which are needed in further analysis.  
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These parameters include   

- particle formation and growth rates  

- condensable vapor concentration source rates  

- vapor condensation sink  

- analysis of aerosol formation events, formation event type classification  

The DMPS system provides us a direct comparison against the measured condensable vapor concentrations 

(from precursor measurements) and the effective aerosol size increase that is linked to the abundance of 

the vapors. 

 

5.1.2 Operational phase 
The lower part of the scheme (Fig. 5.1) show the operational phase of the project.  

Step 4: The main part of the operational phase is monitoring, i.e. conducting the measurements. 

Depending on the selected method this part may be seasonal and very labor intensive (manual inventories) 

or continuous with high level of automation (eddy covariance measurements), or integrating both of them. 

Step 5: Both inventory and eddy covariance data need professional post processing and data analysis. This 

involves quality control, gap filling and some modelling to consider the whole area on interest. After 

appropriate processing, the eddy covariance data will result in reliable annual greenhouse gas balance of 

the site. Inventory methods will result in reliable carbon stock values but on limited time scale. 

Step 6: The operational phase (measurement -> data analysis -> reporting) will repeat in cycles of e.g. one 

year. 
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Figure 5.1 Flow chart for a carbon sequestration project. 
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Figure 5.2 Details of initial vegetation and carbon inventory. 

 

 

Figure 5.3 Details of monitoring plan. 
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5.2 Estimated costs of the measurements 

 

5.2.1 Costs of carbon inventories 
Based on Hyytiälä-ICOS station experience, it takes about 200 working hours for field and laboratory staff (> 

1 person-month) to conduct a biomass inventory for an eddy covariance footprint sized forest with manual 

tools, in case suitable allometric functions are already available. Sampling with TLS (terrestrial laser scanning, 

see Ch2) is more time-efficient, whereby the time needed depends on the forest density. The processing of 

the data requires specific expertise as so far there is no commercial software available. The instrument price 

is about 50 000 €. 

For a soil organic carbon inventory in an eddy covariance footprint sized forest, including soil sampling in the 

field, preparation and analysis in the lab about 300 working hours (< 2 person-months) have to be estimated.  

 

5.2.2 Costs of eddy covariance measurements 
For carbon balance, a low cost and easy to deploy station can be used. Depending on the ecosystem, other 

components of the GHG balance, particularly CH4 and N2O, must be included as well. Those measurements 

are technically more demanding and the cost of the measurement infrastructure will be significantly higher 

compared to CO2 measurement. 

The main components in eddy covariance measurement system are listed below, instrument specifications 

‘listed in Appendix 1 and estimated prices indicated in Table 5.1. 

 

 EC: Fast response 3D ultrasonic anemometer and fast response gas analyser(s) to measure turbulent 

fluxes of the target gases by eddy covariance. 

 STORAGE: Slow response gas analyser(s) to measure sub canopy storage change flux of the target 

gases. 

 ENVIRONMENT: Environmental sensors to measure basic meteorology and soil conditions. 

Meteorological sensors include air temperature and relative humidity, net radiation balance and 

photosynthetic photon flux density. Air pressure is measured by fast response gas analysers which is 

sufficient for a basic setup. Soil measurements include soil temperature profile and soil moisture. 

Depending on the site, soil properties need to be measured on several places and water table depth 

may be added. 

 DATA: Computer, data acquisition, and remote connection. Power supplies and other small 

electronics are included here. 

 ENCLOSURE: Enclosure provides protection against weather and vandalism. Larger cabinet is needed 

for CH4 and N2O gas analysers. 

 MAST: Depending on the site and vegetation height a mast of 2-30 meters is needed. A variety of 

mast solutions are available: From simple poles and lightweight composite masts to heavy lattice 

masts. 

 POWER: Grid power is always preferred. At sites where grid power is not an option, we can operate 

simple setups (CO2 measurement) with a solar panel / fuel cell -hybrid solution. 
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Table 5.1 Costs of the modules needed for eddy covariance system in different configurations. For a complete 

system, select one option of each module. Presented prices are exclusive of VAT, transportation and customs 

fees. 

MODULE OPTIONS 

EC CO2 + H2O CO2 + CH4 + H2O CO2 + CH4 + N2O + H2O 

  37 000 € 112 000 € 215 000 € 

STORAGE CO2 + H2O CO2 + CH4 + H2O CO2 + CH4 + N2O + H2O 

  8 000 € 15 000 € 70 000 € 

ENVIRONMENT STANDARD ADVANCED   

  7 000 € 20 000 €   

DATA STANDARD ADVANCED   

  5 000 € 8 000 €   

ENCLOSURE STANDARD ADVANCED   

  1 000 € 6 000 €   

MAST 3 m POLE   10 m MAST  30 m MAST 

  1 000 € 5 000 € 22 000 € 

POWER GRID OFF-GRID   

  1 000 € 20 000 €   

 

 

Typical eddy covariance setups for selected example sites are given below. The prices are obtained from 

Table 5.1. 

1) Site: Tall forest (20 m), dry soil, grid power available.  

Instrumentation: CO2 flux measurement with 30 m mast.  

Cost estimate: 80 000 € 

2) Site: Afforested wetland, grid power available.   

Instrumentation: CO2 and CH4 flux measurements with 10 m mast.  

Cost estimate: 140 000 € 

3) Site: Afforested field, without grid power.   

Instrumentation: CO2, CH4 and N2O flux measurements with 10 m mast, hybrid power solution.  

Cost estimate: 260 000 € 

The prices do not include detailed planning and construction of the station, which amounts to about one 

person-month. In addition, about one person-month per year needs to be accounted for maintenance and 

data analysis. In long-term use instrument replacement costs need to be accounted for. However, due to 

highly random nature of instrument failures the cost of replacement instruments is difficult to estimate.  

The given prices are for a single measurement setup. Substantial cost reductions are expected if multiple 

similar setups are constructed simultaneously. 

The estimated prices of the instrumentation are based on present-day situation, with scientific research 

being the main market. When commercial carbon sink measurements are widely used the instrument 

markets will be expanded, leading to significant price reduction. Early pilot projects will accelerate the 

development. 
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5.2.2 Costs of CarbonSink+ –measurements 
 

Neutral Cluster and Air Ion Spectrometer (NAIS) measures mobility distribution of naturally charged and 

neutral nanoparticles in high time resolution.  The estimated price of the instrument is 60 000 €. In addition, 

advanced environmental/meteorological sensors are needed. The estimated price is 20 000 € as given in 

Table 5.1. For the data analysis, one person-month per year should be included in the costs. 

For the complete description of CarbonSink+, the instruments needed are PTR-MS and DMPS. The investment 

cost for PTR-MS is about 250 000 € to 400 000 € depending on the selected version. For the DMPS, the 

investment cost is about 70 000 €. Detailed planning and construction of the station amounts to about 3-6 

person-months. In addition, significantly increased spare part and labor cost for maintenance of these 

devices should be taken into account. 
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Conclusions and further steps 
Markku Kulmala & Tuomo Kalliokoski 

 

The maximum CO2 concentration in 2018 was over 410 ppm. Right now global CO2 emissions (41,4 GtCO2 

year-1) are much higher than global carbon sink (11,7 GtCO2 year-1) . Current rate of atmospheric CO2 

concentration increase is > 2-4 ppm year-1. The atmospheric concentration of 500 ppm will be crossed within 

30 years without both curbing fossil greenhouse gas emissions and enhancing ecosystem carbon sinks. 

Therefore, global sinks have to be larger than global emissions within next 30 years. In Nordic countries we 

should be carbon negative by 2035. Afforestation and reforestation provide means for increasing ecosystem 

sinks. However, restoring carbon storages of ecosystems by planting new trees takes too long. We need to 

increase also carbon storages in existing forests if we want restrict global warming <1,5°C or even <2°C and 

avoid too heavy reliance on engineered sinks (e.g. BECCS). 

The actions what should be performed now: 

• As a first step, the emissions should get levelling off 

• Cut emissions as much and as rapidly as possible taking into account also societal and 

economic impacts 

• Enhance sinks 

• Include CarbonSink+ in the estimates. For this we need measurements in other 

vegetation zones than boreal forests since current understanding is based almost 

only on Hyytiälä SMEARII measurements.  

• Establish a Carbon Market – market place for emitted and sequestrated CO2 including also 

sinks 

• Global  

• Private sector  

• Proper observations to verify the sinks 

 

Some parties have proposed the global Carbon Market. We see the establishment of the global Carbon 

Market as one possible method to generate activities for supporting and speeding up climate mitigation. 

Since the atmosphere is global and does not see any sectors, the global Carbon Market should be 

seamless.However, this is only one model of possible changes of regulation and more research is needed 

for covering possible caveats. Carbon Market should also be reflected in the context of three pillars of EU 

climate policy, i.e. Emission Trading System – Burden Sharing – Land use, Land use change and Forestry. 

The Carbon Market as a market place should follow three main principles: 

• ”Who emits pays” 

• This means CO2 emission reduction obligations to companies. This ”Polluter Pays” principle 

is well studied in the field of environmental science, economics of environmental 

management and environmental law. The creation of the Carbon Market system should 

follow the scientific findings of these fields.  

 

• ”Who has verified sinks earns” 

• Central tenets here are the commitment period and permanence of stored carbon. 

Underlying concept is that the cumulative emissions largely determine the global mean 

warming. However, timing of emissions has also effect, especially from the perspective of 

overshooting scenarios (crossing the temperature limit for the period of time). 
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• ”Accurate observations to verify credits” 

• Inventory method could be used if accounting includes only carbon sink and, due to time 

resolution of measurements, commitment periods are long enough (from decades to 100 

yrs). If CarbonSink+ or higher time resolution (from real time to 12 months) are needed 

then more sophisticated measurement system should be used. 

 

If the framework and protocols of Carbon Market could be formulated following these principles it may 

increase the possibility to achieve carbon neutral EU by 2050. From the perspective of the leadership in 

climate policy, Europe should strive for carbon negativity already 2040. EU has well defined climate targets 

(-40% of GHG emissions by 2030, and carbon neutral at 2050). However, for the greater impact the 

emphasis on globally scalable measures and technologies could be set inside Carbon Market. Also 

allowance of CO2 reduction activities across the sectors and in the 3rd countries (incl. carbon sinks) along 

Article 6 of Paris Agreement should be included in the Carbon Market system. All these system level 

protocols of the Carbon Market should be created in the close collaboration of the scientific community, 

decision makers, and private sector acknowledging the risks for discontinuities in the market mechanism 

which may result in unwanted phenomena like carbon leakage, or firstcomers gathering highest benefits by 

accomplishing the easiest mitigation projects (“low hanging fruits”) .  

We can measure carbon sink and actually also CarbonSink+ (see chapters, 2,3 and 5). 

The international protocols and standards can be developed and they are already partially existing. The 

present situations is: 

• Greenhouse gases: ICOS standards and protocols 

• VOCs, aerosols, cloud droplets: ACTRIS protocols 

• Clouds, precipitation: WMO and satellites 

 

The ROAD map for further steps to standardize observations and verification methods are:  

1. Approval of international standards:  Metrology organisations , WMO, IPCC  

2. New cheap but accurate instruments: development and construction 

3. Verification of carbon sink and CarbonSink+  

4. Carbon market - Emission and sink market place(s) 

5. Schedule:  

1-3 possible within 24 months after big enough resources available 

 

Globally we need accurate observations & leadership. Pilot projects are needed to establish show cases 

how to enhance carbon sinks and CarbonSink+. At the same time we need to develop cheap and accurate 

devices to verify carbon sinks and CarbonSink+. To scale all this up we need international collaboration. 

Circa 50 Mkm2 of boreal forest (or corresponding ecosystem) is needed to reach global carbon neutrality 

with current level of GHG emissions. With the help of CarbonSink+ the needed area is only 30 Mkm2. 

However, in this order of magnitude calculation based on Hyytiälä / SMEAR II data includes significant 

uncertainties and therefore more observations are needed to verify this and carbon sinks more generally 

and also to enable accurate models to help verifications. 
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For accurate observations we need wider and deeper combination of different research infrastructure than 

current situation. This could be seen as a network of measurement stations with standardized protocols 

forming Global SMEAR approach with hierarchy of stations. This means collocation of ICOS (Integrated 

Carbon Observations System, www.icos-etc.eu), ACTRIS (Aerosols, Clouds, and Trace gases Research 

Infrastructure, https://www.actris.eu), ANaEE (Analysis and Experimentation on Ecosystems, 

https://www.anaee.com), eLTER  (Long-Term Ecosystem Research in Europe, http://www.lter-europe.net) 

and other research infrastructures under same principles endorsing the best scientific practices and data 

quality protocols. 

Anyhow it is important to take leadership with clear, ambitious vision to establish global carbon market 

with global Earth observatory. 

It is time to go from ideas to implementation.  
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Appendix 1: Specifications for instruments 
 

Requirements for fast response 3D anemometer 

Measurement range: wind components: 0 to ±30 m/s; sonic temperature: ±30°C 

Accuracy: horizontal components: 0,1 m/s; vertical component: 0,05 m/s 

RMS noise: <0,001 m/s 

Sample rate: 10 Hz 

 

Requirements for fast response CO2/H2O analyzer 

CO2, H2O and temperature measured simultaneously in the same sample volume. 

Sample rate: 10 Hz 

CO2 analysis specifications 

Measurement range: 0 to 1000 ppm 

Accuracy: within 1% of reading 

RMS noise (@400 ppm, 10 Hz): <200 ppb 

Cross sensitivity to H2O: <1,0 ∙ 10−4 𝑚𝑜𝑙𝐶𝑂2

𝑚𝑜𝑙𝐻2𝑂
 

Negligible cross sensitivity to other atmospheric trace gases 

 

H2O analysis specifications 

Measurement range: 0 to 50 ppt 

Accuracy: within 2% of reading  

RMS noise (@10 ppt, 10 Hz): <10 ppm 

Cross sensitivity to CO2: <1,0 ∙ 10−1 𝑚𝑜𝑙𝐻2𝑂

𝑚𝑜𝑙𝐶𝑂2

 

Negligible cross sensitivity to other atmospheric trace gases 

 

Requirements for fast response CH4 analyzer 

CH4, H2O and temperature measured simultaneously in the same sample volume. 

Sample rate: 10 Hz 

CH4 analysis specifications 

Measurement range: 0 to 20 ppm 

Accuracy: within 1% of reading 

RMS noise (@2 ppm, 10 Hz): <5 ppb 

Negligible cross sensitivity to H2O and other atmospheric trace gases 
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Requirements for fast response N2O analyzer 

N2O, H2O and temperature measured simultaneously in the same sample volume. 

Sample rate: 10 Hz 

N2O analysis specifications 

Measurement range: 0 to 4 ppm 

Accuracy: within 1% of reading 

RMS noise (@0,5 ppm, 10 Hz): <0,5 ppb 

Negligible cross sensitivity to H2O and other atmospheric trace gases 

 

Requirements for air ion and aerosol particle spectrometer 

Sample rate: 1 Hz 

Measurement size range: 2 to 40 nm for neutral particles and 1 to 40 nm for ions. 

Accuracy 10% of concentration at certain size range 

 

VOC concentration analyzers 

Sample rate: 0,1 Hz (grab sampling) or 10 Hz (continuous sampling) 

Measurement range, sensitivity and accuracy dependent on compound. 

Generally, integration times of the order of 1-10 seconds are sufficient for measurements of VOCs volume 

mixing ratios of the order of 10-100 pptv. 

Detection limit ranges from a few tens of pptv (e.g. 18 pptv for benzene) to several hundreds of pptvs (300 

pptv for methanol, which has a high background signal). 

PTR-TOFMS has a sensitivity for sesquiterpenes 20 pptv with a dwell time of 10 minute or more. 

 

Requirements for aerosol particle concentration analyzers 

Sample rate: 1 Hz 

Measurement range: 0,01 to 10000 particles per cm3 

Concentration accuracy: N1/2  when N is total particle concentration in certain size range 

 

 

Weather sensors 

Air temperature 

Measurement range: -50°C - 50°C 

Accuracy: ±0,1°C 

Precision: ±0,1°C 
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Response time: 60 s 

 

Air relative humidity 

Measurement range: 5 – 100% 

Accuracy: ±3% 

Response time: 60 s 

 

Air pressure 

Measurement range: 900 – 1100 hPa (range should be modified for high altitude sites) 

Accuracy: ±0,5 hPa 

Precision: ±0,5 hPa 

Response time: 60 s 

 

Requirements for net radiation components, PAR radiation, global radiation and diffuse radiation 

Accuracy: 10% 

 


