
CANCER GENETICS RESEARCH METHODS IN THE NEXT-
GENERATION SEQUENCING ERA

Riku Katainen

Department of Medical and Clinical Genetics, Medicum
Applied Tumor Genomics Research Program
Doctoral Programme in Biomedicine (DPBM)

Faculty of Medicine
University of Helsinki

Finland

ACADEMIC DISSERTATION

To be presented for public discussion with the permission of the Faculty of 
Medicine of the University of Helsinki, in Haartman Institute, Lecture hall 2, 

Haartmaninkatu 3, Helsinki, on the 20th of March, 2020 at 12 noon

Helsinki 2020



2

 

Academy Professor Lauri A. Aaltonen, M.D., Ph.D.
Department of Medical and Clinical Genetics, Medicum 
Applied Tumor Genomics Research Program
Faculty of Medicine, University of Helsinki, Finland

&

Docent Esa Pitkänen, Ph.D.
Institute for Molecular Medicine Finland (FIMM)
Applied Tumor Genomics Research Program
University of Helsinki, Helsinki, Finland

Docent Merja Heinäniemi, Ph.D.
Institute of Biomedicine
University of Eastern Finland, Kuopio, Finland

&

Turku Bioscience Centre
University of Turku, Turku, Finland
 

Jussi Paananen, Ph.D.
Institute of Biomedicine
University of Eastern Finland, Kuopio, Finland 
Blueprint Genetics Oy

Supervised by

Reviewed by

ISBN 978-951-51-5898-7 (paperback)
ISBN 978-951-51-5899-4 (PDF)

Helsinki 2020



3

 

“We are at the very beginning of time for the human race. It is not 
unreasonable that we grapple with problems. But there are tens of 

thousands of years in the future. Our responsibility is to do what we can, 
learn what we can, improve the solutions, and pass them on.

Richard P. Feynman
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ABSTRACT

The research in cancer genetics aims to detect genetic causes for the 
excessive growth of cells, which may subsequently form a tumor and 
further develop into cancer. The Human Genome Project succeeded in 
mapping the majority of the human DNA sequence, which enabled modern 
sequencing technologies to emerge, namely next-generation sequencing 
(NGS). The new era of disease genetics research shifted DNA analyses 
from laboratory to computer screens. Since then, the massive growth of 
sequencing data has been facilitating the detection of novel disease-causing 
mutations and thus improving the screening and medical treatments of 
cancer. However, the exponential growth of sequencing data brought new 
challenges for computing. The sheer size of the data is not only expensive 
to store and maintain, but also highly demanding to process and analyze. 
Moreover, not only has the amount of sequencing data increased, but new 

the consequences of detected mutations, have also emerged. To this end, 
continuous software development has become essential to enable the 
utilization of all produced research data, new and old.

This thesis describes a software for the analysis and visualization of NGS 
data (publication I) that allows the integration of genomic data from various 

user-friendly methods that could be used to analyze and visualize massive 
variant, and various other types of genomic data. To this end, we developed 
a multi-purpose tool for the analysis of genomic data, such as DNA, RNA, 
ChIP-seq, and DNase. The capabilities of BasePlayer in the detection of 
putatively causative variants and data visualization have already been used 

demonstrated in this thesis with two distinct analysis cases - publications II 
and III.

The second study considered somatic mutations in colorectal cancer (CRC) 
genomes. We were able to identify distinct mutation patterns at the CTCF/
Cohesin binding sites (CBSs) by analyzing whole-genome sequencing (WGS) 
data with BasePlayer. The sites were observed to be frequently mutated in 

the source for the mutation accumulation remained unclear. On the contrary, 
a subset of samples with an ultra-mutator phenotype, caused by defective 
polymerase epsilon (POLE) gene, exhibited an inverse pattern at CBSs. We 
detected the same signal in other, predominantly gastrointestinal, cancers as 
well. However, we were not able to measure changes in gene expressions at 
mutated sites, so the role of the CBS mutations in tumorigenesis remained 
and still remains to be elucidated.
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ABSTRACT

The third study considered esophageal squamous cell carcinoma (ESCC), and 
the objective was to detect predisposing mutations using the Finnish Cancer 
Registry (FCR) data. We performed clustering analysis for the FCR data, with 
additional information obtained from the Population Information System of 
Finland. We detected an enrichment of ESCC in the Karelia region and were 

samples from the region. We reported several candidate genes, out of which 
EP300 and DNAH9 were considered the most interesting. The study not only 
reported putative genes predisposing to ESCC but also worked as a proof 
of concept for the feasibility of conducting genetic research utilizing both 
clustering of the FCR data and FFPE exome sequencing in such studies.
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INTRODUCTION

The concept of cancer is easy to understand; there are too many cells in the 

simple subject to research and straightforward disease to cure. Decades of 
cancer research have, however, revealed the diverse nature of tumors and 
cancer; the understanding of the process, in which cells of a healthy tissue 
have become harmful to its host, requires research from the molecular to the 
tissue level. This thesis introduces challenges and methods of modern human 
cancer genetics research, the primary goal of which is to detect early events 
leading to tumors by analyzing the code written in the largest naturally 
occurring molecules - chromosomes.

Almost all human cells hold 46 chromosomes, large DNA molecules that 
contain instructions to build and maintain the essential functions and 
structures in and between all the trillions of cells, which form our bodies. 
Alterations in these instructions, mutations, may lead to abnormalities in 
the complex life-sustaining mechanisms and to an excessive reproduction of 
abnormal cells. The methods in cancer genetic research have been developed 
to detect these DNA alterations that may predispose to, or drive a particular 
cancer. 

The key technique is the sequencing of DNA, where the information inside 
chromosomes is translated into an analyzable form. Next-generation 
sequencing enables the sequencing of all chromosomes or the genome of the 
tissue sample, which then allows researchers to compare DNA sequences 
between healthy and diseased samples, and thus detect abnormal alterations. 
The interpretation of NGS data is performed with computers, containing 
challenges such as: are the detected genetic alterations correctly read or 

What is the function of the alteration? How to combine or integrate data 

massive sequencing data sets? The aim of this thesis is to introduce novel 
methods and solutions to these challenges and to clarify the concepts that 
are needed in everyday analysis of NGS data. The main focus is on cancers 
originating from solid tissues, however, presented techniques and principles 
are applicable to hematological malignancies as well. The biological concepts 
are described in the level of detail needed to understand the big picture of 
modern cancer genetics research and to follow the publications of this thesis.
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5.1 Cancer as a disease

Healthy tissues of our bodies are composed of networks of collaborating, 
specialized cells, which all contain practically identical genetic material 
1. Normal tissue renewal, for instance, in skin or epithelium of intestine, is 
maintained by controlled cell divisions that occur continuously throughout 
the lifetime of an organism 2. Tissue grows, when the rate of cell divisions 
exceeds the number of controlled cell death events 3, 4. While the growth 
can be desired in cases such as the development of muscle mass or wound 
healing, it can be undesirable when it occurs unsuppressed, for instance, 
in internal organs. The basic concept of cancer is easy to understand - 
malfunctioning cells have started to divide excessively, forming a tumor, 
and have subsequently gained malignant abilities to spread to other parts 
of the body, leading to cancer. The tricky part, however, is to determine the 
underlying cause of the uncontrolled growth of cells - the genetics of cancer 5. 

tumor. Moreover, a single solid tumor may be a combination of multiple 
cell populations harboring distinct pathogenic mutations and tissue 
environments, further complicating cancer treatment and research 6. Tumors 
generally arise from a cell or cells of the healthy tissue of an individual 
through decades of accumulated mutations in DNA and changes in the 
tissue environment. During the development, benign tumor cells can gain 
additional, stem cell-like properties, which enable the primary tumor to 
invade into foreign tissues (Figure 1) 7. These properties can be gained 
through several distinct features, or hallmarks, listed below 8.

1. Autonomous growth and proliferative stimulation. Growth factors 
are useful when individuals are maturing and when damaged tissues need to 
be healed 9. However, the cell controls its division rate in normal conditions 
by suppressing the growth factor mediating pathways 10. One of the essential 
features of tumor cells is the sustained growth stimulation, and this is 
achieved by disrupting growth factor mediating pathways through mutations. 
In addition, tumor cells can gain the ability to stimulate the division of 

8.

2. Evasion of growth suppressing signals. The continuous proliferation 
of single-celled organisms, such as bacteria, is restrained almost merely 
by the depletion of nutrients and ecological competition. Multicellular 

interplay of which is vital in sustaining the growth balance in the ensemble 
of various tissues and organs to form a viable body 11, 12. Not only are cells 
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limiting their individual growth, but they also receive suppressive signals 
from surrounding cells. By ignoring the suppressive signals, the cell can gain 
a growth advantage compared to surrounding cells and ignite tumorigenesis 
8.

3. Avoidance of programmed cell death (apoptosis) and immune 
destruction. Cells have an internal guard system for the detection of 
malfunctions 13. For instance, checkpoint proteins can send a cell death signal 
if excess damage in the DNA is detected. However, a broken checkpoint 
protein may give the cell permission to continue with the cell cycle and 
divide despite the disturbed homeostasis in the nucleus, leading to growth 
of damaged cells 4. Also, abnormalities can alert the immune system, which 
is poised to deal with misbehaving cells. The ability to be hidden from the 
immune system and avoid an immune response have been proposed to be an 
additional hallmark of cancer (Figure 1) 8.
 

. Every cell division requires 
the replication of all chromosomes. Chromosome ends have repetitive 

of functional DNA and prevent the conjoining of chromosome ends 14. 
Replication mechanisms operate such that chromosome ends get shorter 
during every division process. Hence, the number of cell divisions is limited 
to approximately 50 times 15. In normal conditions, cells do not reconstruct 
the telomeres, but through activation of the telomerase protein, the function 
of which is to lengthen telomeres, the cell can divide perpetually in terms of 
DNA replication 8.

5. Maintaining genome instability and mutation accumulation. 
A tumor can be seen as a microenvironment with its own evolutionary 
system, where individual cells are reproductive units under constant 
selective pressure 16. Tumors encounter multiple natural and unnatural 
barriers during their evolution, such as malnutrition, immune responses, 
and possible cancer therapies 17, 18. Like in any evolutionary system, tumor 

tumor cells survive, and by proliferation of these mutated cells (clonal 
expansion), they can grow a new, more resilient tumor mass 18. Through, 
for instance, increased sensitivity to mutagenic agents and defective 
guard systems (see 3rd feature on this list), a tumor cell can maintain and 
accelerate instabilities in its genome 8.

6. Ensuring the availability of extra energy and nutrients for 
tumorigenesis. Solid tumors can generally not grow larger than ~2 mm 
in diameter, without a system to provide nutrients and oxygen to peripheral 
cells 19. The ability to generate blood vessels (angiogenesis) enables the tumor 
to grow beyond that limit (Figure 1). Also, the tumor needs extra energy 
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for its excessive cell proliferation, which is provided through reprogrammed 
metabolism.

7. Ability to invade adjacent and distal tissues (metastasis). At 
later stages of tumorigenesis, the tumor cells can gain the potency to sustain 
growth or even thrive within foreign environments. Cancer of solid tissues 
originates from a primary tumor, which starts to invade adjacent tissue 
and disseminate its cells to the bloodstream (Figure 1). These circulating 
cells can then after a long period of dormancy invade other tissues, causing 
the tumor to metastasize 8. These events, invasion of adjacent tissue and 

cancer.

Even though only a handful of hallmarks is required for cancers to develop, 

unique microenvironment that allows tumors to grow and spread 20. This 
microenvironment of billions of specialized cells harbors numerous genetic 
and epigenetic aberrations and abnormalities in extra- and intracellular 
signaling that make cancers particularly challenging to study and cure 21. 
However, recent advancements in disease genetics and medical research 
have enhanced the survival of cancer patients through improved screening 
and targeted treatments. Although cancer is considered to be a common 
disease, one could argue that the formation of a cancerous tumor is, in fact, 
an infrequent and unlike event in terms of scale and time. An average adult 
human body is an assemblage of roughly 40 trillion cells, which are dividing 

and still, it commonly takes decades before a population of cells which have 

Figure 1: Multi-step evolutionary process of tumor. Tumor evolution from benign to 
malignant.

Normal tissue

Tumor cells New blood vessels

New tumor cell population

Cancer cells invading
the underlying tissue

Cancer cells
in bloodstream

Inflammation
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5.2 Cancer as a research subject

Cancer genetics research aims to detect cancer-driving or predisposing 
alterations in the genome. Typically, cancer drivers can be detected by 
comparing somatic mutations present only in tumors of the same type, 
whereas predisposing alterations are studied by comparing germline 
variants between patients carrying the same disease 22–24. Both approaches 
have their own challenges and procedures, however, they share the same 
research questions: what is the function of the found alteration, and how 
does it contribute to the studied disease? Genetic research begins with 
the detection of an alteration or defect in a certain genomic region, that is 
enriched in cancer cases. Next, the function of the alteration is assessed by 

linked to cancer based on numerous cancer genetics studies 22, 25. Often in 
general-audience publications, the term “cancer gene” is used to describe 
the results of cancer genetics research. While this is not entirely false or 
misleading, the gene itself is not cancer-causing when functioning normally. 
On the contrary, the “cancer gene” BRCA1 (named after breast cancer), for 
instance, protects the cell or tissue from becoming cancerous, but when 
damaged by mutation, it can lose this protective function 26, 27.

Figure 2: Tumor heterogeneity and purity. Heterogeneous tumors contain multiple tumor 

Research on somatic mutations requires the DNA from diseased cells. Most 
current technologies require DNA material from a large mass (up to millions) 
of cells in order to produce accurate measurements. Moreover, a tumor 
sample constitutes only a small part of the whole tumor, and the sample is 
commonly a bulk of multiple cell populations (normal and tumor), that 

28–30. Tumor heterogeneity (multiple cell populations in a single tumor) and 

Blood vesselsClonal evolution

Tumor sample Immune cells

Tumor cell

Tumor cell
Normal cell

Progenitor cell
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purity (the contamination of normal cells in a tumor sample) are factors, 

preparation to computational processing and genetic analysis (Figure 2) 31, 

32.

Studies on cancer susceptibility do not necessarily require utilization of 
tumor samples, hence heterogeneity and purity are not issues in these 
analyses. Practically all variants that can be detected from healthy tissue 
samples are inherited from the parents of the donor. By comparing these 
inherited variants between patients (cases) and healthy individuals 
(controls), it is possible to detect potential predisposing alterations to a 
particular disease 33. For example, the variant present only in cases (i.e., 

disease in the family. However, analysis of small pedigrees is challenging, 
especially when studying common diseases, due to the possible presence 
of phenocopies (Figure 3
same disease but without the same inherited component 34. The presence of 
phenocopies hampers the predisposing variant detection as they do not share 
the inherited variant with the “real” familial cases 33, 35. Also, penetrance 
may be incomplete, meaning that some seemingly healthy individuals may 
be carriers of the inherited pathogenic variant (Figure 3). Thus, small-

scale familial studies are often intended for the 
detection of rare variants in monogenic diseases. 

The availability of large biobanks and variant 
databases has enabled large-scale genome-wide 
association studies (GWAS) of more common 
DNA alterations (SNPs) and more complex traits 
on population level. GWAS utilizes statistical 
models to detect associations between diseases 
and SNPs 36, 37. A decade worth of GWAS with 
thousands of samples and sample sets have 
revealed more than 16,000 trait associations; 
however, the causativity and functions of the 
reported loci are still vastly unknown 38–40. The 
majority of these cancer predisposing SNPs 
reside in the noncoding genome, particularly in 
the enhancer rich regions, which are discussed 
further in the “Regulatory and the noncoding 
genome” chapter 25.

Figure 3: Familial cancer. 
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5.3 Cancer types relevant in this thesis

This thesis describes two distinct cancer genetics studies. Publication II 
focuses on somatic mutations in colorectal cancer, whereas publication III is 
a study of predisposing alterations in esophageal squamous cell carcinoma. 
Somatic mutations in the noncoding genome had not been thoroughly 
characterized, which prompted us to sequence over two hundred CRC 
samples genome-wide. Likewise, the role of inheritance in ESCC had not 
been extensively studied, and with the help of the Finnish Cancer Registry, 
we were able to collect familial cases for research. The two cancer types are 
described in more detail below.

5.3.1 Colorectal cancer

CRC is the most common type of gastrointestinal tract cancers arising from 
the inner lining (epithelium) of the large intestine (colon) or rectum 41. 
It is also the third most common cancer worldwide and one of the leading 
causes of cancer-related deaths 42, 43. While CRC prevention and survival have 
improved, the global CRC burden has been increasing alongside economic 
growth and the increasing life expectancy of the human population 42, 43. The 
incidence rate is highest in wealthy countries with the western lifestyle, and 
the rate is increasing most rapidly in countries that have recently made the 
transition from low-income to high-income economy 42, 43. The major lifestyle 
risk factors are excessive consumption of red meat (especially processed), 
alcohol, smoking, obesity, and physical inactivity 43. Other risk factors 

adenomatous polyps. Family history has been estimated to account for up to 
30% of CRC cases, where the proportion of inherited monogenic disorders 
such as Lynch syndrome, Familial Adenomatous Polyposis, and MYH-
associated polyposis is estimated to be 5%. At least 70% of all CRC cases are 
sporadic (i.e., without family history). Colon and rectum are under strong 
mutagenic pressure due to nutritional exposures and rapid renewal of the 
epithelium tissue. Mutation patterns and mechanisms in CRC, including the 
ones found in Lynch syndrome, are described in the later sections.

5.3.2 Esophageal squamous cell carcinoma

ESCC is the most common cancer of the esophagus, and like CRC, it arises 
from the epithelial cells of the gastrointestinal tract. Albeit being one of 
the lesser-studied cancer types, ESCC is one of the most aggressive ones 

of cancer-related death and the eighth most common cancer worldwide 44. 
Incidence rates of ESCC vary greatly internationally; the highest rates are 
found in Eastern Asia, China in particular, and in Eastern and Southern 
Africa, whereas the lowest rates are found in Western Africa. As with 
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CRC, the incidence of ESCC is increasing. However, the incidence rate 
of esophageal adenocarcinoma, the other main histological subtype of 
esophageal cancer, has exceeded the incidence rate of ESCC in some western 
countries such as the UK, USA, Finland, and France. Risk factors for ESCC 
include smoking, consumption of alcohol, poor oral hygiene, and nutritional 

correlations with smoking and alcohol imply that external factors cause the 
vast majority of ESCC cases, several studies have suggested that genetic 
factors may also contribute to the susceptibility of the disease 45, 46.

5.4 Genetics in cancer research

Cancer is fundamentally a disease of the genome 47. The research on 
pathogenic alterations requires knowledge about the functional sites of 
the genome, which can drive cancer when defective. This section describes 
functionally relevant regions of the human genome and various types of 
alterations in the context of cancer genetics.

5.4.1 Structure of the human genome

The genome is a complete set of information coded with nucleotides, which 
are the units that form the large DNA molecules called chromosomes. 

thymine (A, C, G, T), and they constitute the alphabet of our genetic code. 
The bonds between base pairs (bp) A-T and C-G maintain the double-
helical structure of DNA 48. The term “base pair” is often used as a length 
measurement unit of DNA sequences; for instance, the human genome is 
approximately 3 billion bp, and includes 16 kbp mitochondrial DNA located 
outside the nucleus in the cytoplasm. The nuclear DNA of a human is 

which are packed into an extremely tight chromatin structure in the nuclei of 
almost all cells of our bodies 49. In comparison, the genomes of a carrot and a 
donkey are composed of 9 and 31 chromosome pairs, respectively. Chromatin 
is a functional assembly of chromosomes and histone proteins, which provide 

Figure 4) 50.

Inside all nuclei, there are approximately two meters worth of DNA, with 
accessible) and closed, tightly packed 

regions depending on the cell type 51. The accessibility of DNA can determine 
the activity of genomic regions, for example, whether a particular gene 
is expressed or not in a cell 50. The alterable structure of chromatin is an 
example of a mechanism responsible for gene regulation 52, 53. DNA contains 
sections, which have distinct functions and purposes. Some parts of the DNA 
sequence, the genes, contain a code, that can be translated into proteins. 
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Other parts contain regions, which determine or regulate which proteins are 
produced and to what extent (Figure 4). Although the regulatory regions 
constitute the “second genetic code”, only the protein-coding regions are 
considered to be coding and the rest of the genome is referred to as the 
noncoding genome.

5.4.2 Coding and noncoding genome

The division of the genome into coding and noncoding regions is rationalized 
by the distinct functions of these two; coding regions (exons in genes) can be 
translated into proteins, and they constitute ~1.5% of the human genome. 
The regulatory parts of noncoding regions determine which genes are 
expressed and their expression level at given conditions. The vast majority 
of the noncoding genome contains regions possessing unknown or seemingly 
redundant functionality. Moreover, only a small part of functional regions 

54.

5.4.2.1 Genes and the coding genome

The human genome holds, according to current estimations, approximately 
22,000 protein-coding genes, which encode all functional and structural 

contain ~30,000 and ~15,000 genes, respectively 55. Genes are segments of 
the DNA sequence, that are seemingly randomly dispersed throughout the 
genome. A typical gene contains untranslated regions (UTRs, Figure 5) and 
multiple protein-coding sequences, exons, which are separated by noncoding 
sections (introns). The size of a gene (sum of exon lengths) varies from ~200 
bp to 100,000 bp. The total length of a gene (sum of exon, intron, and UTR 
lengths) can span over two million base pairs of the chromosome.

Figure 4: DNA, chromatin, genes and regulatory regions.
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Figure 5: Structure of a gene and its relation to protein

Exons contain the protein-coding sequence, divided into base triplets, 
codons Figure 5). The protein 
synthesis, in short, goes as follows: the base pair sequence of exons are read 
(transcribed) by the transcription machinery, which forms the messenger 
RNA (mRNA) molecule. The mRNA is transferred outside of the nucleus, 
where the codon sequence of mRNA is translated into an amino acid chain, 
which is then able to fold into a three dimensional, functional protein. 
Cancer-driving mutations occur often inside exons, as they have the potential 
to directly change the protein sequence and break the homeostasis of a cell 56. 
These and other mutations are discussed further in the “Genetic alterations” 
chapter. 

Introns are noncoding sequences between exons, which are spliced out of 
the mRNA during and after transcription. However, despite this exclusion, 
introns have a multitude of functions in the process of mediating gene 
expression 57. The most prominent and well-known feature of introns is the 
enabling of alternative splicing
exon combinations, isoforms from a single gene, thus expanding the 
protein diversity of an organism. Introns and their splicing have also been 

export, and even translation of a gene 58. Mutations in introns, especially in 
proximity to exons (splice sites), are known to hamper splicing and change 
the normal function of the protein product in tumor genomes 59. 
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UTRs are end sections of mRNA, which do not code amino acids, but are 
involved in various gene regulatory processes. Genes are transcribed in the 5’ 
(5-prime) to 3’ (3-prime) direction (Figure 5), so UTRs are referred to as 5’ 
and 3’ UTR depending on their location in the mRNA. MicroRNAs (miRNAs) 
are short (~20 bp) sequences, which predominantly bind to the 3’ UTRs and 
repress the protein synthesis of the target gene 60. This is the best-known 
regulatory function of UTRs, which have also been reported to be damaged 
in some cancers 61. For instance, a point mutation in the 3’ UTR can break 
the binding site of a miRNA and thus prevent the repression of the otherwise 
repressed gene 62. 

tumor 
suppressors or proto-oncogenes. As discussed in the hallmarks of cancer, 
one of the critical features of tumorigenesis is sustained growth stimulation. 
In normal conditions, proteins coded by proto-oncogenes participate in 

Proto-oncogenes are silenced or suppressed when not needed, for example, 
by the binding of miRNAs or by a suitable DNA conformation, as discussed 
above 63. Proteins coded by tumor suppressor genes, on the other hand, 
work as repressors of cell growth and may promote apoptosis or both. DNA 

in which these two types of “cancer genes” are damaged by gain or loss of 
function mutations in favor of tumorigenesis. The characteristics of proto-
oncogene versus tumor suppressor mutations are further discussed in the 
“Genetic alterations” chapter.

be part of biological pathways or protein complexes. Gene family is a term 
referring to a group of genes with a similar function and DNA sequence. 
Genes in a family have a common ancestor gene, which has been duplicated 
and altered by mutations during evolution 64. In cancer genetics, for instance, 
genes in Ras and Raf proto-oncogene families, have been widely studied and 
are among the most mutated genes in tumors, colorectal in particular 65, 66. 
The name of a gene does not necessarily reveal which family the gene belongs 
to; for example, the BRCA1 tumor suppressor gene, which was discussed 
earlier, does not belong to the same gene family as the BRCA2 gene, 
although they operate in the same pathway and have similar functions in 
the maintenance of genome integrity 67. Neither does the gene name always 
relate to the protein function, as is the case with for example BRCA1. The 
name often merely corresponds to a disease or organism that the gene was 
found or studied in 68.
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MYC Encodes a protein (transcription factor) that 
can activate multiple pro-proliferative genes. 
Overexpressed in multiple cancers.

KRAS Controls cell proliferation. Pathogenic 
mutations cause sustained proliferative 
signaling in a cell.

BRAF Controls cell growth. Activating mutations 
result in excessive cell growth. Often mutually 
exclusively mutated with Ras family genes.

TP53 “The guardian of the genome”. Has multiple 
essential functions in prevention of 
tumorigenesis. Highly mutated in various 
cancers.

APC The most commonly mutated gene in 
colorectal cancer (~80% of cases).

POLE Involved in DNA repair and replication. A 
single point mutation can cause an ultra-
mutator phenotype.

MLH1, MSH2, MSH6, 
PMS2, EPCAM

Mismatch repair genes. Germline mutation 
can predispose to Lynch syndrome. Causes 
microsatellite instability (MSI) when 
defective.

CTCF Protein commonly associated with insulators 
and TAD borders. Binds cohesin complex to 
DNA.

RAD21 Part of the cohesin complex. Used as a 
measurement marker of cohesin in the 
publication II of this thesis.

Table 1: The most relevant genes in this thesis.
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5.4.2.2 Regulatory and the noncoding genome

The majority of, a typical bacterial genome is composed of protein-coding 
regions while, in contrast, around 99% of the human genome is noncoding 
69. The noncoding genome contains regions that determine when, where, 
and how actively every gene in the genome is expressed in a particular cell or 
tissue type at given conditions (Figure 6a). These regulatory regions can be 

promoters, enhancers, and insulators, which together 
account for ~10-20% of the whole human genome sequence (Figure 4) 70. 
Human DNA also contains hundreds of noncoding RNAs (e.g., miRNAs), 
which do not encode proteins but are involved in gene regulation by binding 
to the UTRs of freshly transcribed mRNAs, for example 71. Regulatory 
regions contain DNA sequences which are recognized and bound by dozens 

gene regulation indirectly, by granting or denying a particular transcription 
machinery access, or directly, by changing DNA conformation, thus enabling 
or preventing transcription 49, 72.

Promoters are located in the proximity (within 1000 bp) of the 
transcription start sites (TSSs) of genes (Figure 6b). They provide the 
foundation for the binding of TFs, assembly of the transcription machinery 
and, subsequently, the initiation of transcription 73. A gene can have multiple 

determine the expressed isoforms or transcripts of a gene. Genes that are 

or DNA repair are generally activated through an interplay between their 
promoters and distal enhancer element(s). In contrast, some promoters, such 
as those responsible for the transcription of housekeeping genes or other 
continually expressed genes, can contain an integrated enhancer or in some 
cases not require any external factors whatsoever to be activated 25. In cancer, 
the best-known and most frequently mutated regulatory hotspots are located 
at the promoter of the TERT gene (Table 1). The mutations generate novel 
binding sites for TFs, which elevate the expression of TERT, and through 
complex mechanisms, promote tumorigenesis 74, 75. Another example of a 
pathogenic promoter defect is hypermethylation of the MLH1 mismatch 

mutations (Table 1) 76.

Methylation of DNA is a chemical, genome-wide process, which can 
epigenetically change the activity of regulatory regions 77. Typically, 

where MLH1 is silenced. Methylation generally occurs in the CpG sequence 
context (cytosine is followed by guanine). It changes the physical properties 

three classes of regulatory regions 77, 78. Promoters and proximal regions of 
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genes commonly contain CpG rich DNA stretches - CpG islands - which are 

contexts are further discussed in the “Mutational signatures” chapter.
 
Enhancers share common structural and functional features with 
promoters 79. However, they regulate the expression of their target gene(s) 
from a longer distance than promoters. In fact, enhancers typically actualize 
their function by interacting physically with the promoter site of a target gene 
by DNA conformation changes or looping (Figure 6b) 80, 81. In the human 
genome, the majority of enhancers are located within a 100 kbp distance 
(~15 kbp median) from the promoters of their target genes, however, in some 

chromosome even 82, 83. The open, or accessible, enhancer DNA sequences are 
recognized and bound by a large group of collaborating TFs and mediators, 
which determine the expression levels of the target gene(s). At the same time, 
enhancers themselves can form large collaborating groups, super-enhancers, 

84. In various cancers, super-enhancers 
have been measured to be enriched, especially at the chromosomal loci 
of proto-oncogenes, such as MYC (Table 1) 85, 86. Also, at the same locus, 
a single SNP in an enhancer element has been reported to increase CRC 
risk ~1.5 fold, when present in both inherited chromosome copies of an 
individual (homozygosity) 87.

Insulators function as genome organizers that enable or disable putative 
enhancer-promoter interplay, i.e. initiation of gene expression. The key 
players in chromatin looping are the cohesin complex, which holds two 
separate DNA segments together, and CTCF, which physically binds the 
cohesin to DNA (Table 1) 88, 89. In addition to insulation, cohesin binding 
sites have been associated with various other essential genomic functions, 
such as DNA repair and maintenance of epigenetic homeostasis. Also, the 
boundaries between active and silent chromatin domains, or topologically 
associating domains (TADs), are bound by these ancient and highly 
conserved proteins of the cohesin complex (Figure 6a) 90, 91.

TADs are varied sized (tens of kbps up to 2 Mbp) regions in chromosomes, 
commonly spanning multiple genes and regulatory regions. The chromatin of 
these domains is either open or closed, which contributes to the expression 
of all the genes within. The exact mechanisms of how TADs are formed and 
contribute to gene regulation are still unclear 92, 93. However, both insulators 
and TADs manifest their regulatory functions through DNA conformation 
changes by looping, which is carried out by the cohesin complex and 
often with CTCF 92, 94, 95. In tumor genetics, aberrant CTCF binding due to 
hypermethylation (as in the MSI case) was detected in a subset of gliomas 
96. Methylation-sensitive CTCF binding was shown to break the TAD 
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the gene insulation function at the known glioma oncogene, PDGFRA. In 
publication II of this thesis, we reported an accumulation of mutations at 
CBSs in multiple cancers 23. In addition to gene regulation, TADs have been 

regions of the genome are replicated during cell division 93. In tumor 
genomes, replication timing has been detected to correlate strongly with the 
regional mutation frequencies and the forming of mutational landscapes 
across the genome. This phenomenon is further discussed in the “Somatic 
mutations” chapter.

Figure 6: Regulatory regions. (a) (b) CTCF 
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5.4.3 Genetic alterations (mutations and variation)

The exact meaning of the terms “mutation”, “variation”, “variant”, and 
“polymorphism” varies depending on context 97. In this thesis, the following 

mutation
individual or cell, and has been acquired spontaneously during one’s lifetime. 
Mutations can be divided into germline and somatic, where the former 
occurs in germ cells and can be transferred to the next generation. Somatic 
mutations accumulate in all other (somatic) cells. As they are only passed 

they can not be inherited. Despite the negative connotation of the term, 

of the term “mutation” is usually avoided especially in medical context 97. 
Variation
between individuals, populations, and organisms. In bioinformatics context, 
a variant is used to describe both mutation and variation, and generally 
means any measurable aberration or substitution in DNA. In population-
level context, a variant is a single unit of variation, and it can be either 
common, rare, or very rare. Polymorphism is a common variant, which is 

variants are present in less than 1% and 0.1% of the population, respectively.

functions. Point mutations are single nucleotide variants (SNVs), where a 
base has been altered to another (e.g., T > C; Figure 7). Also 1 bp insertions 
and deletions (indels) are considered as point mutations. Larger events, from 
~1 kbp up to chromosomal level, are considered structural variants. These 
include duplications, inversions, translocations, and large insertions and 
deletions (Figure 8).
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product of a gene by altering the protein-coding sequence or by breaking 
sequences (intronic/exonic) regulating splicing. Coding SNVs can be either 
synonymous and nonsynonymous, where the former changes the codon 
triplet but not the amino acid, and the latter changes both (Figure 7a, 
b & c). Nonsynonymous mutations can be missense or nonsense, where 
the former changes the amino acid to another and the latter changes the 
amino acid to a premature stop codon. A nonsense mutation can prevent 
translation altogether or truncate translation prematurely, which may lead 
to a damaged or destroyed protein. Point mutations in splice sites (often 
located a few bases from the exon boundary) can lead to exon skipping 

additionally shift the reading frame of the whole codon sequence if the length 
of the inserted or deleted sequence is not divisible by three (Figure 7d & 
e). Frameshifts lead to an aberrant amino acid sequence 98. In the context of 

loss or gain of function. Loss-of-function mutations are typically truncating 
(nonsense and frameshift) and break the protein products of tumor 
suppressor genes (Figure 7c & d). Gain-of-function mutations are often 

99.

chromosome from the length of hundreds of bps to the whole chromosome 
arm (Figure 8
of one or multiple genes by spanning regulatory regions or the genes 
themselves 100. For instance, the proto-oncogene MYC is activated by 

85, 86. While 
duplications usually increase and deletions decrease the expression of 

101. In cancer, the 
other copy (allele) of tumor suppressors such as TP53 is often lost by a large 
deletion accompanied by a point mutation in the remaining allele (Table 1) 
102.

Figure 8: Structural variants
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The deletion causes loss of heterozygosity (LOH) at the germline variant 
locus, which is one mechanism to actualize the pathogenic potential of 
predisposing variants 103. Insertions, inversions, and translocations can 

For instance, an inversion or translocation can transfer an active enhancer 
element to the proximity of an otherwise silenced gene, and thus ignite its 
expression 104. This mechanism is observed, for instance, in myometrium 
tumors (myomas), where a translocation between genes HMGA2 and 
RAD51b has been detected 105. 

5.4.3.2 Somatic mutations

The genomes of normal and cancerous cells harbor mutations (point 
mutations, short indels, and structural variants), which have accumulated 
during the lifetime of the individual. These somatic mutations are transferred 
to daughter cells during cell divisions, but are not inherited by the children 
of the individual. In cancer and tumor cells, the vast majority of somatic 
mutations have not been selected for during cancer evolution, but are merely 

106. 

hence been retained in the tumor cell lineage. These growth-promoting 
mutations, or drivers, take part in tumorigenesis, as was described in the 
hallmarks of “Cancer as a disease” chapter. 

Somatic mutations can occur due to internal (endogenous) or external 
(exogenous) factors. Exogenous factors such as radiation and tobacco smoke 
are known to be mutagenic in the cells of exposed tissue. Endogenous 
factors, such as DNA replication errors during cell division, have the most 

In an average adult human body, cell divisions account for over a light-year 
distance worth of DNA replication, requiring viable repair mechanisms 
to avoid accumulation of somatic mutations 107. Dysfunctional repair 

mutator phenotype. Such 
cells have a higher than usual genomic mutation frequency. The most 
striking mutator is a damaged exonuclease domain in the polymerase 
epsilon gene (POLE), which may lead to a mutation load which is over a 
hundredfold that of an average CRC cancer cell (Table 1) 108. In CRC, POLE 
mutants constitute ~1-2% of all cases. The more common mutator phenotype 
is MSI, which is characterized by small indels at short repeated sequences 
(microsatellites). The mutation load in MSI can be tenfold compared to the 
average CRC genome 108.

(Figure 9). Generally, more active and accessible regions have fewer 
mutations than inactive due to factors such as earlier replication timing, 
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109, 110. As 

so that later replicated regions have an increased mutation load compared 
to regions replicated in early S-phase (the DNA replication phase of the cell 
cycle) 111, 112

nucleotide pools in the late S-phase 113, 114. The mutational landscape of 

mechanisms, which often prefer distinct sequence contexts. These 
characteristic mutational patterns are called signatures 115, 116.

Figure 9: Genomic features forming mutational landscapes
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5.4.3.3 Mutational signatures

replication errors, and radiation, generate distinct mutational patterns - 
signatures. For instance, a common CRC tumor genome contains 10-20,000 
somatic mutations, of which only a handful are selected for during tumor 
evolution. The rest, the passengers, have not been under selective pressure, 
and can thus be used as a historical footprint of the mutational processes that 
have been operative in a cell lineage from the embryo to the full-grown tumor 
117, 118

(e.g., C > T) yielding six distinct mutation types C > A, C > G, C > T, T > A, T 
> C and T > G, where C and T also represent G and A on the opposing strand 
(i.e., C > A equals C:G > A:T). The simplest way to extract mutation patterns 
would be calculating the frequency of these six mutation types in a given 
tumor. While mutation type counts alone can be used as a rough projection 

the nucleus 116. For example, tobacco smoke has been shown to generate an 
excess of C > A transversions. Oxidation during DNA sample preparation 
has been shown to cause the same, in this case artefactual C > A mutations 
117. Separating these two phenomena in downstream analyses is impossible 
if only mutation types are considered. However, the mutation contexts of 

occur predominantly in the ApCpG and GpCpG context, whereas artefactual 
oxidation most frequently mutates CpCpG triplets 117–119. Mutations can be 

system results in 96 distinct mutation types. To this day, over sixty distinct 
signatures have been extracted from multiple cancer genomes by utilizing 
this sequence triplet context in signature detection 118, 120, 121. 

The extraction of signatures from NGS data, as was done in Alexandrov et 
al. 2013, was performed using non-negative matrix factorization, which is 
a method developed to detect “hidden” features or associations from data 
matrices 118. In this case, rows in the original matrix represent all 96 mutation 
types, and columns are individual samples. Each cell of the matrix thus 
holds the count of a given mutation type in a given sample. The challenge 
is to detect which mutations are the result of the same mutational process. 
Most cancer classes have multiple mutational processes active in a single 
tumor, and each process manifests mutations at varying magnitudes (i.e., 
exposures), further complicating analysis. Signature extraction results in two 
separate matrices, the product of which should match the original matrix as 
closely as possible. One of the matrices holds the extracted signatures and 
weights of all the mutation types in a particular signature. The other matrix 
holds signature exposure values for each sample, i.e.,  information on how 
strongly a given signature is present in the sample 116.



30

REVIEW OF THE LITERATURE

signatures. In the scope of this thesis, both CRC and ESCC exhibit at least 
Figure 10) 121. 

Signature 1 has been measured in the majority of cancer classes, as well as 
in normal cells, and it has been shown to correlate with the age at diagnosis 
117–119, 122. This signature is characterized by an excess of C > T transitions, and 
is probably related to the spontaneous deamination process of methylated 
cytosines in the DNA, especially in the NpCpG context (Figure 10a). 
This process is related to the methylation of CpG islands discussed in the 
“Promoters” paragraph. However, CpG islands are found throughout the 
genome and their methylation is a very frequent (majority of CpGs are 
methylated in human cells) and genome-wide epigenetic phenomenon 
123. Signature 1 is an example of an endogenous process, which causes 
mutation accumulation in cells during an individual’s lifetime. However, 

consequence of a decreased division rate as humans age 124. Signature 6 is 

excess of indels in microsatellites (i.e., MSI). However, signature 6 can be 
extracted using only SNVs, despite it having a similar mutation spectrum as 
signature 1 (Figure 10b). Signature 17 is characterized by an excess of T 
> G and T > C mutations, predominantly in the CpTpT context, the source of 
which is unknown (Figure 10c). These mutations were shown to accumulate 
particularly at the CBSs in publication II of this thesis. Signature 10, caused 
by a damaging mutation in POLE, has been measured to generate mutation 
frequencies that are a hundredfold higher than the frequency of spontaneous 
mutations in CRC and other cancers (Figure 10d). The mutations are 
almost exclusively C > T substitutions in TpCpG and C > A substitutions in 
TpCpT context. Signature 10 was discovered to display an inverse pattern 
at CBSs in Publication II. Genome-wide mutation signature analyses have 
been made possible by next-generation sequencing technologies, which are 
described in the next chapter.
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Figure 10: Mutational signatures and contexts. (a) Signature 1
(b) Signature 6

(c) Signature 17
(d) Signature 10
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5.5 The next-generation of cancer genetics

Modern cancer genetics analyses heavily resort to computing power and 
inventive algorithms that can manage vast amounts of data and process 
it for various research purposes. Indeed, computer-assisted biological 
data analysis, bioinformatics, has become instrumental in today’s genetic 

DNA sequence provided the foundation for the next-generation sequencing 
techniques to arise and thus caused a paradigm shift in genetics research.

5.5.1 Human reference genome

The map of the whole human DNA sequence, the human reference genome, 
forms an essential foundation for modern medical genetics research. The 

by the Human Genome Project, which was formally launched in 1990 125. The 

consisting of only the letters A, C, T, and G (the letter N is used to represent 

divided into chromosomes (1-22, X, Y, and mitochondrial), and alternative 

format for storing biological sequence data. The human reference genome 
was initially constructed using DNA from several donors, but the sequence 
has been subsequently updated to more precisely match the general 
population. Even though the reference genome does not represent the human 
population as such, but rather a small number of donors, the sequence is still 
to most part shared between all individuals.

by the Genome Reference Consortium (GRC), and since then, it has gone 
through four major updates till the current build 38 (GRCh38) 126. There are 
smaller update patches between the major ones, these address minor issues 
without changing the genome size and thus the overall topology. Changes 

reference through larger, structural updates that break the compatibility with 
earlier builds 126, 127. The reference genome is used as a model when individual 

studied individuals, the comparison of the sequencing data becomes highly 
cumbersome. Hence, the usage of a common genome build is essential in 
genomic analysis, when the data from multiple sources are integrated into 
the same study.
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genomic regions. Genes, regulatory regions, variation, and other information 
is added  on top of the reference sequence by genome annotations, which 
enable the research on disease-causing mutations, for instance.

5.5.1.1 Genome annotation

encode thousands of genes, regulatory regions, and structural features. 
However, the locations of these patterns are not encoded to the raw reference 
sequence itself, consequently requiring layers of data, genome annotation, 
on top of the reference genome. At the very simplest, a genome annotation 
contains a chromosomal position for a single base feature in the genome, 

annotation contains start and end positions for all exons and coding regions 
in the reference genome, which can be utilized in the detection of protein-
altering mutations. Regulatory annotation could, for instance, hold all 

Thus far, over 20,000 genes have been mapped to the human reference by 
the combination of automatic and manual methods 128. The mapping is still 
ongoing, and new gene annotation versions are published with an interval 
of several months, mostly adding new isoforms and noncoding RNAs to 
the annotation. For instance, the comprehensive gene annotation by the 
GENCODE project, initiated in 2003, can be obtained from the Ensembl 
and UCSC genome browsers 129, 130. The mapping of noncoding elements 
was revolutionized by methods such as ChIP-seq and DNase-seq, which 
enabled e.g., the detection of functionally active regions and sites of TF 
binding. In 2012, the ENCODE project released comprehensive regulatory 
genome annotation sets, which are available on their website (https://www.
encodeproject.org).
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5.5.2 Next-generation sequencing

DNA sequencing is a procedure, where the bases of the DNA are read from 
the molecule and translated into a human-readable form. Before modern 
sequencing methods were introduced in 2005, DNA sequencing was 
commonly performed with the Sanger sequencing method, which is able to 
sequence a few hundred bases (~0.00001% of the human genome) per single 
run. The Sanger method is still used for various purposes, such as validation 

scale genomic studies 131. The ultimate goal in the development of sequencing 
technologies is to produce an entirely accurate representation of a given DNA 
molecule, for instance, the whole chromosome. The ideal sequencer would be 
able to take DNA from a single cell as an input and then produce a FASTA 

various obstacles in reading accurately long strands of DNA, necessitating 

single-cell sequencing) bulk DNA from thousands or millions of cells. 

It is currently impossible to sequence whole chromosomes from start to 
end. However, it is possible to shear the DNA into smaller fragments (e.g., 
500 bp long) and sequence ~100-250 bp from both ends (Figure 11) 130, 

132. Next-generation sequencing, also called massively parallel sequencing, 
is a high-throughput technique, where bulk DNA from thousands of cells is 
fragmented and read simultaneously, resulting in millions of short sequence 
reads. The raw read data contains genetic information from the donor 
sample in small, unorganized pieces, which as such are unusable in genetic 
analyses. Thus, the next challenge is to organize the data so that it can be 
used to call genetic alterations of a given individual and make it compatible 
with the genome annotation and other studied samples. 

.
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paired-end reads

fastq1 fastq2

Read alignment

CC
GGCATTGGTCTTACGTGCCGACCCGTGCGGGTAATAAATGTGCCGGTTACAGTCA
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The raw data is organized by the read alignment algorithm, which searches 
positions for all reads by using the reference genome as a model (Figure 
11
sorted by chromosomal position, which enables the pileup of short reads “on 
top” of the reference sequence. The pileup is used to construct a consensus 

the individual and reference genome i.e., the variants. The challenge in read 

of reads in a reasonable time. In principle, the alignment algorithm compares 
short read sequences with the reference and reports a position where the 

position 3). However, the read sequence does not necessarily match the 
reference precisely due to genetic alterations and sequencing errors (or 
sequencing artefacts), which complicates the alignment.

Sequencing errors also complicate variant calling, which is the phase 

the reference, and genomic positions of variants are reported (Figure 11). 
Sequencing errors are the reason why multiple overlapping sequences from 
the same location are required in variant calling. By comparing multiple 
sequences from the same location, it is possible to create a consensus 
sequence, in which random mistakes in the sequencing have been ignored. 
The amount of overlapping sequences is called coverage - the higher the 

sequence and the called variants. Each overlapping read represents an 
individual cell and its DNA at a given locus. Also, as a reminder, a single 
cell contains a copy of the DNA from both parents, and thus it produces two 
distinct consensus sequences. In the following chapters, read alignment and 
variant calling procedures are described in more detail.
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5.5.2.1 Read alignment for the next-generation sequencing data

The most popular NGS technologies, which are also applied in all projects of 
this thesis, are provided by Illumina 131. Sequencer instruments, such as the 
NextSeq, HiSeq, and NovaSeq, produce millions of short reads per sample. 
A single DNA fragment can be sequenced from both ends, resulting in two 
100 bp paired-end read sequences, which are printed to separate FASTQ 

Figure 11
corresponding base quality data. Read aligners, such as BWA and Bowtie, 

chromosomal positions for each read in the reference genome 133, 134. The 

positional information of reads and their pairs, and also FASTQC derived 
base quality scores. The information can be utilized in subsequent analysis 
phases, such as variant calling and read data visualization.

After the introduction of NGS, aligning the produced short read data 
formed a bioinformatic challenge - how to make the alignment for millions 
of reads in a reasonable time 135. Various approaches to tackle the alignment 
problem were introduced, commonly resorting to read or genome sequence 
hashing techniques, which were soon discovered to be too slow and memory 

alignment is to allow varied number of mismatches (potential variants) 
and gaps/insertions (potential indels) in search of the best matching 
genomic location for any given read. The hashing based methods were not 
lenient enough to overcome this challenge. All these alignment challenges 
were solved with fast string search operations, which were enabled by the 
properties of . In computer science, tree data structures are 

CCATTG, CATTG, ATTG, TTG, TG, G). The tree is constructed so that 

consume too much memory for modern computers to store (in the order of 
n2

matching and at the same time compress the structure to be small enough to 
adhere to memory restrictions. The solution was introduced in 1994 with the 

to an even smaller size than the original genome sequence and to enable fast 
136. The most commonly used read aligners, such as BWA 

(Burrows-Wheeler Aligner), are based on this method. For example, BWA 
can align roughly a billion reads (whole-genome data) against the human 
reference genome in a single day in a modern server environment.
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5.5.2.2 Variant calling

After read alignment, the variants of the donor individual can be called 

overlapping reads have the same mismatch or indel in the same position 
relative to the reference sequence (Figure 12). A mismatch in a read is 
either an artefact that has emerged during sample preparation or processing 
phases, or a real variant/mutation that is present in the DNA of the 
individual or cell. The challenge is to separate true variants from artefacts 
using the information from reads that overlap the putative variant position. 
In general, the more overlapping reads at a particular location, the more 

call is assessed using a combination of determinants, which can be used to 

Germline variant callers, such as HaplotypeCaller used in the Genome 
Analysis Toolkit (GATK) best practices pipeline, report multiple quality-
related values for the variant call 137. Determinants, including base quality 
scores, coverage, allelic fraction, strand bias, and sequence context, are 
considered in the quality assessment. The depth of coverage (DP) and allelic 
depth (AD) denote the number of all overlapping reads and the number of 
reads, which call the reference and alternative allele at the variant locus. 
The AD ratio, or allelic fraction, can be used to determine the genotype of 
the variant; the ratio of one and less than one would denote a homozygous 
and heterozygous variant, respectively (Figure 12). However, due to 
imperfections in NGS data preparation, such as sequencing errors and 

Figure 12: Variant calling. (a)

(b)
repeat. (c) 

(d)

...ACCAATTTTTTCATTTCAGGCATGTCATGTGCATCATTTGCCGGCCTTCGGTAGTCCTGATGCGGGATTCCGTC...
CCAATTTTTTTTTTTCAGGCCTGTCATGTGC
CCAATTTTTTCATTTCAGGCCTGTCATGTGC
CAATTTTTTTTTTTTAGGCCTGTCATGTGCA
AATTTTTTTATTTCAGGCCTGTCATGTGCAT

TTCATTTCAGGCATGTCATGTGCATCATTTG
TCATTTCAGGCATGTCATGTGCATCATTTGC
ATTTCAGGCATGTCATGTGCATCATTTGCCG

TCATTTGCCGGCCTTCGGTAGGCCTGATGCG
CATTTGCCGGCCTTCGGTAGGCCTGATGCGG
CATTTGCCGGCCTTCGGTAGGCCTGATGCGG
ATTTGCCGGCCTTCGGTAGGCCTGATGCGGG

TGCCGGCCTTCGGTAGGCCTGATGCGGGATT
CCGGCCTTCGGTAGGCCTGATGCGGGATTCC

GGCCTTCGGTAGGCCTGATGCGGGATTCCGT
GCCTTCGGTAGGCCTGATGCGGGATTCCGTC
CCTTCGGTAGGCCTGATGCGGGATTCCGTCA

a)

c)

b)

d)
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duplications, the HaplotypeCaller uses Bayesian statistics to determine 
the most likely genotype for a given variant locus and reports the genotype 
quality (GQ). The number of false-positives can be reduced by applying 
variant calling to multiple samples simultaneously. This joint calling method 

138, 139

from a normal/healthy and the other from a tumor tissue sample. Basically, 
somatic variant callers, such as Mutect2 140, compare putative variant loci 
found in the tumor BAM against the corresponding normal BAM, and output 
variant calls only present in the tumor. Similarly to germline variant calling, 
an additional set of normal samples, or a pool of normals, can be utilized 
to reduce the number of false-positive calls, especially in error-prone loci.

5.5.2.3 Exome vs whole genome sequencing

Exome sequencing (WES) is an NGS technique, in which only transcribed 
or protein-coding regions are sequenced by exome capturing protocols 
(Figure 13). Although WES involves more sample preparation steps 
(capturing phase) than WGS, overall costs are substantially lower. Not 

sizes. Naturally, WES does not allow analysis of the noncoding regulatory 
genome, for instance. Still, it is an attractive option for most disease genetics 

estimated to lie in coding regions 56.

Reads cover the coding and 
noncoding genome

Reads cover only targeted (coding) 
sites

Expensive (to produce and to 
handle)

Relatively cheap

Comprehensive structural variant 
analysis

Limited SV analysis

Comprehensive signature analysis Limited signature analysis

Mutation studies on the coding and 
noncoding genome

Mutation studies almost exclusively 
on the coding genome

Table 2: Comparison of the targeted and non-targeted sequencing

available resources.
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Figure 13: WES and WGS data in a gene region
(a) FH

FH KMO gene. (b) 
FH

(c)

5.5.3 Noncoding genome mapping

The noncoding genome was long referred to as dark matter, or even junk 
DNA, due to unknown functions of intergenic regions 38. However, novel 
biochemical methods coupled with NGS have shed light on this unknown 
territory. Methods such as ChIP-seq/exo/nexus and DNase-seq enable 
the mapping of protein-DNA interactions. They reveal active sites of the 
coding and noncoding genome by determining the exact positions where 
DNA interacts with proteins such as transcription factors, the transcription 
machinery, and histones. For instance, knowing the interaction sites of 
transcription related proteins makes it possible to determine which genes 
are transcribed/active in a particular cell or tissue type. Indeed, protein-DNA 

similar tissue type are usually comparable.

FH KMO

Chromosome 1

Reference sequence

a)

b)

c)

Coverage

Coverage

Gene annotation

Aligned
reads

WES
sample

WGS
sample
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5.5.3.1 ChIP-seq/exo

DNA is bound by numerous proteins, which are involved in maintaining 
chromatin structure and gene regulation. Chromatin immunoprecipitation 

DNA, and further estimate the abundance of that protein in a given genomic 
region 135, 141. ChIP was introduced in the 1980s, when it was used on selected 
genomic regions. Microarray techniques (ChIP-chip) enabled mapping of the 
whole genome. Coupled with NGS techniques, ChIP became ChIP-seq, which 
could be used without the selection of regions to cover the entire genome 
with a considerably higher resolution than with the microarray-based 
methods 142. In ChIP-seq, protein-bound DNA fragments are enriched and 
NGS technologies are then used to sequence and align the sequence reads to 
the reference genome. The resolution of ChIP-seq determined binding sites is 
in the 100-1000 bp range. A more recent method, ChIP-exo, is more precise, 
as it provides the exact position of the binding site. This has enabled an 
enhanced resolution of noncoding genome mapping 143, 144. The exo method 
also reduces background noise, and thus requires fewer sequence reads to be 
produced 144.

sample of ~10 million cells is fragmented with, for instance, sound waves 
(sonication). At this point, functional and structural proteins are still 

and protein complexes, which are found across the genome. The goal is to 
capture the interaction sites of a single protein. The number of binding sites 
depends on the function of the protein or protein complex; for example, the 
number of CTCF binding sites in the human genome is tens of thousands, 
whereas histone proteins are bound to millions of sites 145–147. In the second 

is used to bind the protein of interest. Now, the solution contains DNA 
fragments, of which a fraction are bound by TF proteins, of which a fraction 
are bound by the antibody. In the third phase, all the DNA fragments 
without a bound protein-antibody complex are washed away. Proteins are 
removed before sequencing, leaving only the captured DNA fragments in the 
solution. In practice, washing and capturing phases are not perfect, adding 
varied levels of background noise and missing regions to the produced 
data. Similarly to exome sequencing, the captured fragments are enriched, 
sequenced, and aligned to the reference genome, ultimately revealing the 
binding locations of the studied protein 148.
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5.5.3.2 SELEX for transcription factor binding sites

An in vitro selection method, systematic evolution of ligands by exponential 
enrichment (SELEX), was introduced in 1990 149. The technique is used to 
determine short DNA or RNA molecules (oligonucleotides) that a given 

bound by the studied protein are probed in vitro in SELEX. The method can 
be applied to e.g., TFs. TFs recognize short (~6-20 bp) sequences in the DNA, 
which they use as binding sites. SELEX is used to determine the binding 

142, 150 (Figure 14). 
However, a single TF can bind to a series of similar sequences with varying 

most preferred one. 

frequency matrices (PSSM/PSFM) and graphically as a sequence logos, 

other molecule binds (Figure 14). The higher the score in the matrix, the 
more essential the base is for binding. The SELEX-seq method uses NGS to 
determine multiple TF binding motifs parallelly 150. The alignment of PSSM 
to the reference results in a map of possible TF binding sites across the 
genome. The challenge is to determine which of the aligned loci represent 

gives the similarity between the motif and the reference sequence. It is an 
estimate of the binding probability for each site and can thus be used as 
indirect evidence of actual binding. The real binding positions of TFs can be 
determined at base-pair precision by integrating SELEX data with ChIP-seq/
exo mappings and picking sites of overlap, as was done in the publication II 
of this thesis.

Figure 14: Sequence logo example
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5.5.4 Next-generation sequencing powered cancer genetics 
research

Successful detection of pathogenic variants by NGS typically requires layers 
of genetic knowledge, annotation data, control material, computation, and 
validation, as well as proper sample selection and preparation. Thus, modern 
disease genetics research is a multidisciplinary process, requiring skills 
in medicine, biology, and computer science. The literature review part of 

genetics. Finally, all this knowledge and available data require integration, 
which enables genetic discoveries in both germline and somatic settings.

5.5.4.1 Data integration in cancer genetics

The “Genome annotation” chapter described the integration of the reference 
sequence with gene annotation data. As discussed earlier, without this data 
integration, the reference genome would be useless in cancer genetics. 
Similarly, all the data types introduced in this thesis can utilize previous 
data integrations and build new layers of information on top of the old 151, 

152. For example, integration of germline variant and control data, gene 
annotation, and enhancer element mapping can be used to recognize cancer 
risk increasing SNPs in the regulatory genome, as was described in the 
“Regulatory and the noncoding genome” chapter 87. The main advantage 
and the main challenge is the interpretation of the integrated data 152. Data 

on TF binding or a protein product. The challenge is to make the correct 

compatible? Does the integration make biological sense? Compatibility issues 

types in data production. 

Visualization is often essential when assessing data compatibility and 
interpreting the integration results 153. It is for example possible to detect 
the increase in somatic mutation frequency (discussed in the “Somatic 
mutations” chapter) of late replicating regions by visualizing replication 
time data and somatic mutation data in multiple samples simultaneously 
(Figure 15a). The conservation of a TF binding site can be determined 
by visualizing integrated TF motif and conservation data (Figure 15b). 
However, more sophisticated data integration in cancer genetics requires the 
use of mathematical models, which combine relevant biological components 
and strive to determine their relations 151. The ultimate goal of biological data 
integration is to construct a complete model of how living systems function. 
The detection of cancer predisposing or driving mutations is performed by 
integrating germline variants or somatic mutations with genome annotation 
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5.5.4.2 Germline variant analysis

Germline studies in cancer genetics research aim to detect variants that 
cause a particular cancer or predispose to it. The research method used 
is selected based on the assumed frequency of the causative variant in a 
population. Also, penetrance and trait complexity (i.e., whether the studied 
disease is mono- or multigenic) determine which parameters are used in a 
particular research setting 36. The basic idea in these analyses is to compare 
the frequency of germline variants between cases and controls. In the search 
for common causative variants, large datasets (thousands of samples) of 
cases and controls are analyzed by genome-wide association. GWASes have 
typically been performed with SNP arrays, while smaller, rare variant studies 
on monogenic (Mendelian) diseases have been feasible to be performed 

in an NGS dataset could go as follows: (1) sample selection, (2) NGS, (3) data 

analysis.

Figure 15: Data integration examples. (a)

(b)

data as was introduced in the “Cancer as a research subject” chapter. The 
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Variant analysis in germline studies is the data comparison, integration, and 
interpretation phase, in which the goal is to identify a shared predisposing 
variant from the massive amount (thousands to millions) of variants found in 

material, which is used to exclude common, likely benign variants from the 
analysis 34, 36. Publicly available gnomAD population control data, currently 
(v3) containing variants from over 70k genomes and over 100k exomes, 
has been instrumental in causative variant detection 154. The gnomAD data 

performed on samples from individuals of Finnish heritage leverage most 
from gnomAD, as Finnish individuals are overrepresented in the database 
155

Initiative Suomi, SISu) to sequence Finns, partly due to the particularly 
homogeneous gene pool of the Finnish population. Currently, gnomAD 
contains variant data from over 5,000 and over 10,000 Finnish genomes 
and exomes, respectively 154. Moreover, Finland has an exceptionally 
comprehensive cancer registry, which facilitates genetic research even 
further 156. The registry contains information on over a million cancer cases. 

increased cancer risk. Publication III is an example of a germline study, 
where these assets are utilized in both the sample selection and variant 
analysis phases.

by comparing case and control data (e.g., gnomAD). The strength of 

which heavily depends on the sizes of the case and control data (Table 3). 
Basically, the higher the sample count, the higher the probability that the 
association is correct.The fact that there are commonly several variants that 
predispose to the same phenotype constitutes a challenge in enrichment 

predisposing variants, enrichment would be impossible to detect and prove 

protein complex, or genetic pathway level. In case of the other extreme, 

the putative causative variant. This scenario is much more probable in 
homogenous populations. Hence, e.g., Finnish and Icelandic samples have 
been of considerable interest in genetic research.

Table 3: Odds Ratio.

Variant

No variant

Affected Healthy

Av Av / An
Hv / Hn

Hv
HnAn

OR =
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may be the result of sequencing or calling errors. Moreover, the probability of 

or tests, necessitating multiple testing corrections 157. The quality-based 

results. Variant callers, such as HaplotypeCaller, typically report quality and 

allelic fraction (number of reads supporting the variant call per coverage), 

values does not always give the best results, visual inspection of variant loci 
is often necessary in the variant validation phase 158. Also, Sanger sequencing 
is routinely performed to verify variant calls 24, 159. However, the pathogenicity 
of candidate variants is commonly determined by various prediction 
algorithms to separate benign variants from damaging ones before validation 

Protein-truncating mutations (e.g., nonsense) are in general considered 

synonymous, and in particular noncoding mutations require more scrutiny. 

as conservation of the variant site, exonic position (e.g., putative splicing 

used for pathogenicity assessment of candidate variants 160–162. The fact that 
some genes are more tolerant to loss of function mutations than others can 
also be used to predict the harmfulness of variants in genes 163. In addition to 
these predictive algorithms, there are a multitude of processed data that can 

genomes, such as CADD, GERP, and aligned TF binding motifs 164–166. The 
accuracy of the predictions increases as more processed data emerges and is 
integrated with the old. The challenge in applying these data to the variant 
analyses is the interpretation of integrated data, as was discussed in the 
previous chapter.

5.5.4.3 Somatic variant analysis

Somatic mutation data can be used to determine pathogenic drivers, 
mutational patterns, signatures, and landscapes in cancer genomes 167. 
Detecting driver mutations follows the same basic principles as the search for 
predisposing variants where the aim is to detect recurrently mutated genes or 
genomic regions 159, 168

minor adjustments to the used parameters. For instance, tumor purity, 

Figure 16).
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The major challenge in somatic variant analyses is separating driver 
mutations from a mammoth amount of passengers. As discussed in the 

across the genome. Hence, recurrently mutated hotspots are more likely 
to be a byproduct of frequently mutating genomic regions or genes than 
evidence of selection. Integration of background mutation frequency 
estimations and functional genomic data can be utilized to identify mutations 
in genes or other functional sites, which have been putatively selected for 
during tumorigenesis 168–170. In coding regions, the rate of synonymous 
and nonsynonymous mutations can reveal a functional bias towards the 
accumulation of damaging mutations in genes 168, 170. However, the functional 
impact of noncoding somatic mutation enrichment is considerably more 

functional and contextual genomic properties and produce base level 
predictions for the whole genome have been made. The CADD score data, 
for instance, has been created by integrating genomic features such as 
conservation, DNase-seq, TF motif disruption, and sequence contexts 
164. Furthermore, tools such as OncodriveFML can utilize CADD scores 
to identify genomic regions exhibiting evidence of selection 169. The basic 
principle in Oncodrive analysis is to determine whether the observed variants 
in a certain region have hit functionally important bases more frequently 
than by chance alone.

Figure 16: Heterogeneity and purity at read level
(a)

(b)
a germline variant).

Whether the research concerns coding or noncoding regions, or is focused 
on germline or somatic variants, variant analysis commonly requires 

such as IGV, bcftools, bedtools, and Annovar have been developed for 
153, 171. Designing 

and developing a software that can handle all these variant analysis tasks 

Tumor

Stromal

Blood

a) b)
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The aim of this thesis was to develop novel methods for next-generation 
sequencing data analysis and apply them in various cancer research settings. 
The method that we developed allowed us and others to characterize and 
detect putatively causative mutations in various cancer and tumor types. The 

I To develop a versatile and user-friendly software for next-generation 
sequencing data analysis in disease genetics

II To analyze and characterize regulatory somatic mutations in colorectal 
cancer to identify novel drivers or patterns in tumorigenesis

III To detect candidate susceptibility genes behind esophageal cancer 
using the Finnish cancer registry and archival tissue material
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7.1 Software requirements and availability

7.1.1 Requirements

BasePlayer runs on Windows, Linux, and macOS systems with Java runtime 
version 1.8 or later installed. At least 1 GB of memory is recommended to be 
allocated for the software, and for human studies, at least 3 GB of hard disk 
space is required for the reference genome.

7.1.2 Additional Java packages

• HTSJDK (https://github.com/samtools/htsjdk) for BAM, CRAM and 

• 
Integrative Genomics Viewer (Broad Institute) obtained from https://
github.com/lindenb/bigwig

7.1.3 Software and code availability

The software, additional materials, and an online manual are available at 

page on https://github.com/rkataine/BasePlayer.

7.2 Study materials and ethics approvals

7.2.1 Colorectal cancer samples

A total of 213 matched normal-tumor pairs were used in publication II. The 
samples constitute a subset of CRC material collected from Finnish hospitals 
starting from 1994 172, and include 198 MSS, 12 MSI, 3 POLE mutant tumors, 
and the respective normals. The study was reviewed and approved by the 
Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS). 
Signed informed consent or authorization from the National Supervisory 
Authority for Welfare and Health were obtained for all used materials.

7.2.2 Esophageal cancer samples

The FFPE samples from selected ESCC cases were collected from Finnish 
hospitals, which were located using the FCR data. Sample selection was done
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by clustering FCR data by cancer type, family name at birth, and municipality 
at birth. See publication III for a more detailed description of the clustering 
analysis. We were able to successfully extract and sequence the DNA from 30 
individuals, out of which 24 were born in the region of ceded Karelia. When 
available, both tumor and normal samples were obtained.

Studies on FFPE samples collected in this way have been approved by 
the National Supervisory Authority for Welfare and Health (Valvira; 
1423/06.01.03.01/2012), National Institute for Health and Welfare (THL; 
1071/5.05.00/2011 and THL; 151/5.05.00/2017), and the ethics committee 
of the Hospital District of Helsinki and Uusimaa (HUS; 408/13/03/03/09). 
All living patients signed informed consent for genetic studies on tumor 
susceptibility.

7.3 Sequencing methods and data processing

Paired-end WGS of the 213 CRC and respective normal samples, used in 
publication II, was performed with an Illumina HiSeq 2000. Sequenced 
reads (100 bps each) were aligned to the 1000 Genomes Project Phase 2 
reference assembly hs37d5 with BWA. We removed duplicates with the 
SAMtools rmdup and performed local realignment around suspected 
indel sites. Base score quality recalibration was performed using GATK 
IndelRealigner and BaseRecalibrator. After these steps, the genome-wide 
median coverages were over 40x in all samples. We used MuTect version 
1.1.4 with default parameters for somatic SNV calling. Indels were called with 
the GATK SomaticIndelDetector. The UCSC genome browser tracks “Duke 
excluded regions” and  “HiSeqDepth top 5%” were used to exclude poorly 
mappable regions from SNV, indel, and SV calling. Structural variants were 
called from the same data using DELLY 173. Somatic SVs were produced by 
comparing calls from tumor and corresponding normal samples.

The DNA from 34 ESCC FFPE samples was extracted with the phenol-
chlorophorm method. Samples were prepared for exome sequencing with 
the KAPA Hyper Prep and SeqCap EZ Exome + UTR kits. Normal tissue 
blocks were preferred in the extraction process to prevent somatic mutation 
contamination of the data in the subsequent germline analyses. 30 samples 
were successfully prepared for NGS, which was performed with either 
Illumina HiSeq 2000 or 4000. Reads were aligned and processed essentially 
as described above with the exception of duplicate removal; Samtools rmdup 
was applied to both paired- and single-end reads due to highly fragmented 
DNA caused by time and procedures related to tissue archiving (FFPE) 174. 
Germline variants were called with the GATK HaplotypeCaller 137.



50

MATERIALS AND METHODS

7.3.1 ChIP-seq / exo

High-Throughput ChIP-seq experiments were performed for 239 TFs in the 
MSI-CRC LoVo cell-line (American Type Culture Collection, CCL229TM). 
Experiments were carried out essentially as described in 87. Sequencing was 
performed with Illumina GAIIx and HiSeq 2000. The resulting reads were 
aligned to the human reference genome (hg18) with BWA. ChIP-seq peaks 
and peak summits were called with MACS software 175

(BED) were converted to the newer reference genome version (hg19) to make 
them compatible with other data used in the study.

The ChIP-exo data for RAD21, CTCF, KLF5, HNF4A, REST, MYC, and MAX 

LoVo cell-line was used in data production. Short-reads were aligned to hg18 
with BWA. Coverage peaks were called with GEM using default parameters 
and converted to a newer reference version as described above 176. Raw 
data from ChIP-exo experiments are deposited in the European Nucleotide 
Archive (ENA) under accession PRJEB9477.

7.3.2 Transcription factor binding sites

The SELEX data used in publication II was produced with a high-throughput 
SELEX method described in 150. The data set contained in total 239 distinctly 

177. We used aligned SELEX data to determine the 
binding sites for HNF4A, KLF5, MAX, and REST TFs. The binding motif of 
CTCF was generated separately from the ChIP-exo peak summit data. The 
colocalization of ChIP-exo or ChIP-seq peak and corresponding binding 
motif was used as an indication of a real binding site of a particular TF. CBSs 
were determined by colocalization of CTCF and RAD21 ChIP-exo peaks as 
well as the alignment position of the CTCF motif.

7.4 Variant analyses

Both in publication II and III, an unpublished version of BasePlayer was 
utilized in variant analysis, visualization, and data integration. In publication 
II, we integrated somatic variant, LoVo ChIP-seq/exo, and ENCODE data 
to detect mutation clusters in the regulatory genome. Variant clusters were 
determined by using a 100 bp sliding window across the whole genome 
and between somatic variant calls from 198 MSS CRC samples. Mutation 
signature analysis was performed as described in the “Mutational signatures” 

and read counts. Common variants (allele frequency >= 1 %) were excluded 
by utilizing ExAC data 154

control set of 186 exomes from ceded Karelia and nearby regions, obtained 
from the Finland-United States Investigation of NIDDM Genetics (FUSION) 
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study (https://fusion.sph.umich.edu/).

7.5 Statistical analyses

In publication II, genome-wide and CBS mutation counts were modeled 
using negative binomial regression with the covariates including mutation 
statuses in key CRC genes, clinical features (e.g., sex, age of diagnosis and 
tumor location in the colon), as well as the relative exposures of the three 

occurring at a particular CBSs were modeled with covariates including strand 

In publication III, Fisher’s exact test was used in case-control enrichment 
analyses (P < 0.01).
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8.1 The development of an analysis software for next-
generation sequencing data

We published an analysis and visualization platform, BasePlayer, for 
research in various disease genetics settings utilizing NGS data. BasePlayer 

release. We demonstrated the usage of the software with two distinct studies 

detection of the predisposing variant in a family with inherited meningioma. 
The second case is described in the next chapter. The novelty of the software 
arises from its ability to integrate a wide variety of NGS data visually and, 

desktop computer. Also, the capability to visualize and analyze variants 
of hundreds or thousands of samples simultaneously is one of the unique 
features of BasePlayer among existing bioinformatic tools 178. The analysis 

possibly even using multiple platforms, can be done with one graphical user 
interface (Figure 17). Also, challenges related to analysis of the noncoding 
genome and tumor sample heterogeneity and impurity, have been given 
attention during the process of designing and developing the software.

NGS
Read alignment

Variant analysis
BasePlayer

Variants (VCF)
Reads (BAM)

Reference genome
Gene annotation

ChIP-seq/exo
Controls
SELEX

ENCODE
etc...

Quality filtering
Comparison
Visualization

Data integration
Annotation
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In this thesis, I have outlined reference genomes, genome annotations, 

and comparative analyses in germline and somatic analysis settings. In 
publication II, we demonstrated that the integration of these resources, data 
types, and procedures could be performed graphically in a matter of minutes 
or hours, rather than days. To facilitate the deployment of BasePlayer, we 

gnomAD, CADD, and ENCODE regulatory annotations, on the BasePlayer 

and tested mainly using the human genome, it can be used with any mapped 
reference genome, the number of which is constantly increasing.

accumulation in the regulatory genome present in multiple 
cancers

We examined somatic mutation clusters in the regulatory genome by 
analyzing variants from 213 CRC WGS samples (198 MSS, 12 MSI, and 
3 POLE mutants). By utilizing the variant clustering and regulatory data 

accumulation at CTCF/cohesin binding sites, especially in gastrointestinal 
cancers (Figure 18). Approximately 50% of all dense (i.e., adjacent variants 
within 100 bp) mutation clusters in the regulatory genome (annotated 
by ChIP-seq and ENCODE data) overlapped with the 39 bp wide CBSs 
(n=28,331). In contrast, POLE mutants showed an inverse pattern at these 
sites, suggesting that POLE does not replicate these sites, which in turn 
indicates that the clustered mutations arise during replication (Figure 
18
CRC genomes. We observed that variants compatible with signature 17 are 
more frequently than others subclonal, which suggests that they accumulate 
during tumorigenesis. Furthermore, CBS mutation count correlated with 

and then validated in the publicly available ICGC data 179. We found that 
especially gastrointestinal cancers had high levels of CBS mutations, which 
was somewhat expected, as signature 17 had been previously reported 
in esophageal and gastric cancers. However, MSI samples did not show 

unknown, since we were not able to detect changes in gene expression at 

set. Also, we did not observe accumulation of SV breakpoints at these sites. 
However, by analysing the precise SELEX motif hits, we showed that the 
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The mutation accumulation was not explained solely by the sequence context 
of the motif under signature 17 exposure, which was noted by observing the 
ratio of observed versus expected mutation frequencies. We also examined 
whether the mutation signal was present in CTCF binding sites that were not 
occupied by the cohesin complex (determined as RAD21 ChIP-exo signals; 
Table 1). Indeed, there was no mutation accumulation at these sites, which 
strengthens the conclusion that the sequence context is not the source of 
the signal. The result also suggests that the mutations are the consequence 

cohesin.

8.3 The detection of putative predisposing mutations in 
esophageal squamous cell carcinoma

We reported several candidate susceptibility genes for ESCC by analyzing 
the variants of 30 cases with BasePlayer. Based on variant enrichment and 
gene function, the strongest candidates were DNAH9 and EP300. The study 
material was selected based on the results of clustering cancer cases in the 
Finnish Cancer Registry data regionally by cancer type and last name at 
birth. Municipality and name at birth were obtained from the Population 

ESCC cases in the region of ceded Karelia, from where most of the samples 
were collected. We also included six samples from the highest-ranking (with 
regard to observed / expected values) ESCC clusters from within the whole 
country. Finally, we were able to collect 34 FFPE samples in total, out of 

DNAH9 was found to harbor a very rare nonsense (stop gain) mutation 
in 15% of our samples. We were also able to detect LOH in the tumor of a 
carrier, the only one from whom a tumor tissue sample was available. Four 
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individuals from four distinct clusters shared the variant. The frequency 

~0.27%, respectively. The gene itself has not been previously linked to 
ESCC. It has, however, been shown to be frequently mutated in invasive 
micropapillary carcinomas of the breast and aberrantly methylated in 
non-small cell lung cancer 180, 181. Furthermore, the chromosomal locus of 
DNAH9 (17p12) has been previously detected to be frequently lost in ESCC 
genomes 182. The enrichment of the variant in DNAH9 showed the highest 
odds ratio in the comparative analysis of all samples. We also detected rare 
missense variants in the GKAP1, BAG1, NFX1, DDOST, and FCSK genes. 
The variant in GKAP1 was shared by three and the rest by two individuals.

EP300 is a well-established ESCC related gene. It was found to be mutated 
in the largest sampled cluster consisting of four cases, which was also 

convincing variant shared by all individuals in the WES covered regions. 
Hence, there were three probable options; (1) the causative variant was 
located outside the targeted regions, (2) there was a phenocopy in the 

family, or (3) the ESCC in the family was 
sporadic rather than inherited. To this 
end, we analyzed these four samples in 

possible phenocopy. The EP300 (and some 

brothers and their cousin, which suggested 
the mother of the cousin to be the putative 
phenocopy. The pedigree structure supports 
this hypothesis, as the cousin is related to 
the brothers through his father (Figure 19). 

variants in the DCDC2B, ANK2, and CABIN1 
genes.

Figure 19: ESCC pedigree. 
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This thesis gives a glimpse of modern sequencing and computing 
technologies used in search of disease-causing genetic defects. As computing 
power, biological knowledge, and genomic data types continue to increase 
exponentially, the constant development and maintenance of bioinformatic 
tools are necessary. The methods presented in this thesis describe an 
exploratory or knowledge-based approach to analyze genomic variant 
data. In contrast to purely statistical analyses in genetics, such as GWAS, 

to utilize, as much as possible, accumulated knowledge to explain the role 
of genetic alterations within complex biological functions and structures 
183–185. However, the majority of biological systems are still too complex to be 
analyzed using a single approach or method; thus, statistics, data exploring, 
visualization, and machine learning are often required to produce sensible 
results from the data at hand. 

In context of variant analysis with NGS data, a researcher should be aware 
of (1) possible error sources in sample preparation, data processing and 
used datasets, (2) the genetics behind the study, such as inheritance 
patterns, known driver mutations and predisposing variants as well as genes 
associated with the studied disease, (3) the types and qualities of studied 
samples, such as tissue type, estimated tumor percentages, average coverages 
and ancestries of donors, (4) required size for the sample set in order to 

5
of interest, and how to integrate data from multiple sources to narrow down 

processing steps for given samples, which requires knowledge of the issues 

people, for instance, a bioinformatician/computer scientist and geneticist, 
respectively. This kind of arrangement may lead to suboptimal variant calls 
for the genetic study setting. For example, when analyzing somatic mutations 
of tumor samples of unknown purity, the variant caller should have high 
sensitivity parameters to detect low-frequency variants. Although this 
leads to a high false-positive rate of variant calls, the comparison between 
multiple samples can be used to identify the correct causative mutation 
signal. BasePlayer was designed to tackle this challenge by providing built-in 

In addition, fast variant visualization by the read inspection was developed to 
facilitate the exclusion of false positive-calls.
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There is a plethora of tools available for visualization of various biomedical 
data types. It is essential to select the right visualization tool for the data 
at hand in order to recognize patterns and outliers in often massive and 

browsing and plotting the data; interactive and linear genome browser-
style tools such as BasePlayer, IGV, and UCSC genome browser are used 
when sequencing data is viewed alongside genes and other annotations 178, 

186

biological networks, and protein interactions are being analyzed 187–189. 
A circular view (e.g., Circos plot) of the genome can be instrumental when 
studying for e.g., genome-wide SVs 190. In the context of this thesis, mainly 
linear genome browsers were used in NGS data visualization. A recent article 

capabilities of BasePlayer in long-read sequencing data analysis. The authors 
also stated that it may be the only tool available for managing and visualizing 
variant data for thousands of samples simultaneously 178. Although 
BasePlayer is essentially a variant analysis and data integration software, it 
can thus also be considered a state-of-the-art tool for NGS data visualization.

Germline variant studies commonly rely on a case-control setting, where a 
high number of control samples is essential 36. The public release of ExAC, 
and later gnomAD, variant data, was a game-changer in germline variant 
analysis in disease genetics, in particular for research groups without control 
data of their own. Also, somatic calls could be produced with relatively high 
precision in cases where corresponding normal samples were not available 
191. Germline analyses previously utilized in-house control material and 
public variant databases such as dbSNP, which, however, was shown to be 
suboptimal for the purposes of disease genetics as it was contaminated by 
somatic and false-positive variants 192. The ExAC and gnomAD data were 
rapidly adopted in BasePlayer, increasing its applicability in human genetics 
research immensely.

Similarly to the ExAC release, the comprehensive noncoding genome 
annotation data sets, provided e.g., by the ENCODE project, were soon 
made usable in BasePlayer, which facilitated in particular human regulatory 
genome variant analysis. The value of variant data increases in time with 
the increased availability of genome annotation data through the added 
meaning of the data. BasePlayer was designed for straightforward integration 
of new annotations with variant data so that researchers could make the 
best use of their data as new annotations emerge. However, the search 
of causative variants often requires ranking or prediction tools to narrow 
down a massive list of candidates. The tools, such as Oncodrive, Mutsig, and 

169, 193, 194. 
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Various noncoding genome annotations were applied in the second work of 
this thesis, where we integrated somatic variants with ENCODE, ChIP-seq/
exo, SELEX-seq, and replication timing data. We used BasePlayer to detect 
somatic mutation clusters in the noncoding genome using variant data 
from 198 MSS CRCs and noncoding genome annotations. We had ChIP-exo 

binding site measurements. We had previously detected the mutation 
frequency decrease at RAD21 binding sites (a proxy for the cohesin complex 
occupation) in POLE mutants and saw a slight increase in MSS CRCs at the 

when the RAD21 ChIP-exo loci were used alone.

determine the precise loci of putative binding sites. Then we used the ChIP-
exo data from the corresponding TF to select motif sites with biological 
evidence of the TF protein binding (Figure 20). This data integration 
enabled us to inspect mutation accumulation across thousands of TF binding 

level precision. The mutation accumulation at CBSs was not observed as 

reference sequence positions, which leveled out mutation frequencies when 
all measured sites were observed at once. However, strong mutation peaks 
were observed, when the CTCF binding motif was used as an anchor point 
for CBSs. This is an example of a case where the value of mutations and 
measurement data is increased through data integration. 

The next challenge was to determine whether the CBS mutation 

signatures. Despite the CBS mutations being almost exclusively signature 

Figure 20: Determining cohesin binding sites

CTCF
ChIP-exo
peak

RAD21
ChIP-exo
peak

...ACCATTCATTTTCATGTA C C A C T A G G T G G C G C T GCATCATTTGCCGTC...

Aligned CTCF motif
...ACCAATTTTTTCATTTCAGGCATGTCATGTGCATCATTTGCCGGCCTTCGGTAGTCCTGATGCGGGATTCCGTC...

CTCF / Cohesin binding site
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17 compatible and the CTCF binding sequence including signature 17 

expected under the given signature exposures. We also showed that cohesin 
occupation was required for the excessive mutation frequency, which 
suggested the function of these sites to be involved in the observed mutation 
signal. Subsequent studies by others showed CBSs to be mutated more 
frequently at TAD borders and active genomic sites 195, 196. These studies 

TF binding sites show increased mutation frequencies due to hindered DNA 
repair 197. For instance, a bound TF can block the repair machinery and 
hamper its function during replication. TAD borders (often occupied by 
cohesin and CTCF) have been linked to the initiation of replication and one 
of the main functions of the cohesin complex is to maintain sister chromatid 
cohesion during replication. Thus, CBSs may act as repair machinery 
blockades during replication and cause the mutation accumulation at these 
sites 197, 198.

Although we detected recurrently mutated CBSs, we did not detect changes 
in the expression levels of the proximal genes. The expression analyses 
were not conclusive as we had only a limited number of expression data 
available for the corresponding samples. Also, low tumor percentages and 
heterogeneity may have hampered the results as well 199. In other studies, 

SNVs are still unclear 200, 201. In terms of detecting pathogenic point mutation 
hotspots in the regulatory genome, the results reported in this manuscript 
were somewhat disappointing, as they indicated that there are no highly 

CRC genome, such as TERT promoter hotspot mutations found in melanoma 
and other cancers. 

The subclonality of the detected CBS mutations also indicated that they have 

signal was present in only a small percentage of the studied sample set. 
These results suggest that point mutations that damage coding regions are 
more favored during colorectal tumorigenesis than mutations breaking, for 
instance, a certain TF binding site of a certain regulatory region. Indeed, a 
single regulatory region acts as a binding site for numerous TFs, the overall 
dosage of which determines the activity of the region 202. Moreover, a single 
gene may be regulated by multiple enhancers possessing similar activity. This 

203. 
Finally, a damaged regulatory region would still require a second hit on the 

maintain a healthy phenotype.
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We aimed to investigate annotated regulatory elements for mutation 

regions. This approach allowed us to search densely mutated regulatory 
regions genome-wide in an unbiased manner, with no particular set of genes 
or gene regions having been cherry-picked. The major drawback of this 
method is the incompleteness of regulatory annotation; in general, regulatory 
annotations are mere approximations of putative regions, which have been 
measured to have an activity in given cell-lines in vitro. Thus, for example, 

the study. Also, a major challenge is to link a particular regulatory element 
to its target gene or genes. Methods such as Hi-C have been developed for 
this task, but the understanding and complete characterization of regulatory 
targets are still largely incomplete 204, 205. Most regulatory regions in the 
human genome are located within 100 kbp up- or downstream of their 

of genes that have been linked to a certain cancer type. This method would 
make it possible to scrutinize raw sequences around established “cancer 
genes” so that no particular regions are favored (i.e., annotated as regulatory 
regions). Also, the putative target gene for a discovered hotspot would be 
known. However, the challenges are similar to the ones of the previous 
approach; mutation hotspots may not have actual functional relevance and 
the true target gene would still be uncertain. Moreover, restricting the search 

study. Finally, both approaches provide only putatively causative sites, and 

of found hotspots.

In the third study, we utilized the Population Information System and 
Finnish Cancer Registry data to detect familial ESCC cases with an in-
house developed clustering method. Case clusters were produced based 
on surname and municipality at birth. ESCC clusters from mainly ceded 
Karelia were selected for further analysis, and we managed to successfully 
exome sequence 30 FFPE samples. The challenge was to detect predisposing 
variants from the sample set, which in addition to cases with actual ESCC 
was likely to include an unknown number of  sporadic cases. Indeed, 
lifestyle related risk factors contribute to this phenotype in particular. Also, 

set is thus likely to show enrichment of a number of variants unrelated to 
ESCC. These factors should be taken into account when assessing variant 
enrichment in the studied sample set. In our study, we determined the 
enrichment of all variants that were shared by two or more individuals and 

of tissue samples cause excessive fragmentation and random artefactual 
mutations to the DNA, which hamper subsequent variant analyses through 
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inconsistent coverages and false-positive variant calls. We were, however, 
able to identify candidate predisposing mutations from the ESCC sample set 
by utilizing the case-control features of BasePlayer together with gnomAD 

familial cancer clusters, and convinced us that NGS of FFPE tissue-derived 
DNA and subsequent analysis of the data is feasible in studies on genetic 
predisposition.
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PROSPECTS

The impact short-read sequencing-based NGS technologies have had on 
cancer or any other genetics research can not be overestimated. The third-
generation sequencing platforms have taken steps towards reading much 
longer sequencing fragments. Long-read sequences (up to dozens of kbps) 
enable studies on genomic regions, which were challenging to cover with 
previous methods (e.g., long repeats). While short-reads are indisputably 
powerful in the detection of point mutations due to relatively low sequencing 
error rates, there are major limitations in determining, for instance, certain 
size SVs (~50-300 bp), transcript isoforms, and haplotypes. These and other 
challenges can be tackled with long reads, despite relatively high sequencing 
error frequencies currently contaminating the data. New sequencing and 
bioinformatic methods are also needed for single-cell sequencing, which 
has revolutionized the analyses, e.g., in developmental biology and tumor 
heterogeneity 29. Continually changing research questions and novel data 
types have created challenges in software development; the more features are 
added, the more complex the maintenance of the software becomes, which 
then may lead to software instability. Thus, modularity and documentation 
should be high-priority during software development. To this end, there have 

open-source software for science” and thus ensure the maintenance of such 
platforms.

The constantly growing data mass of DNA, RNA, methylation, ChIP, ATAC, 
HI-C, and other multi-omic NGS data types have provided unprecedented 
views to cancer genomes and genomic landscapes. Indeed, due to the 
increase of functional genomic data, cancer genetics research has been 
moving from causative variant detection towards more functionally oriented 

Hence, data integration platforms, such as BasePlayer, have become 
even more essential than before for modern cancer research. However, 

in vitro in silico analyses. The 
applications of CRISPR-Cas9 methods have been instrumental in functional 
genomic experiments at noncoding regions in particular, and will most 
likely dominate genetic research also in the coming years. At the same time, 
machine- and deep learning techniques have become increasingly more 

genomes.

Cancer genetics research provides the theory of the biological properties 
underlying tumorigenesis and malignancy. Translational medicine applies 
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“There is a computer disease that anybody who works with computers 
knows about. It’s a very serious disease and it interferes completely with 

the work. The trouble with computers is that you ‘play’ with them!

Richard P. Feynman

this theory to practice in developing novel treatments to cancer. However, 
base studies in cancer genetics not only provide information about diseased 
cells, but also elucidate the mechanisms sustaining all life.
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