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Abstract

Motivation: Accurate and dense linkage maps are useful in family-based linkage and association studies,
quantitative trait locus mapping, analysis of genome synteny and other genomic data analyses. Moreover,
linkage mapping is one of the best ways to detect errors in de novo genome assemblies, as well as to orient
and place assembly contigs within chromosomes. A small mapping cross of tens of individuals will detect
many errors where distant parts of the genome are erroneously joined together. With more individuals and
markers, even more local errors can be detected and more contigs can be oriented. However, the tools that
are currently available for constructing linkage maps are not well suited for large, possible low-coverage,
whole genome sequencing datasets.
Results: Here we present a linkage mapping software Lep-MAP3, capable of mapping high-throughput
whole genome sequencing datasets. Such data allows cost-efficient genotyping of millions of single
nucleotide polymorphisms (SNPs) for thousands of individual samples, enabling, among other analyses,
comprehensive validation and refinement of de novo genome assemblies. The algorithms of Lep-MAP3
can analyse low-coverage datasets and reduce data filtering and curation on any data. This yields more
markers in the final maps with less manual work even on problematic datasets.
We demonstrate that Lep-MAP3 obtains very good performance already on 5x sequencing coverage and
outperforms the fastest available software on simulated data on accuracy and often on speed. We also
construct de novo linkage maps on 7-12x whole-genome data on the Red postman butterfly (Heliconius
erato) with almost 3 million markers.
Availability: Lep-MAP3 is available with the source code under GNU general public license from
http://sourceforge.net/projects/lep-map3.
Contact: pasi.rastas@helsinki.fi
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
High-throughput sequencing and computational advances have enabled
practical ways to assemble genome sequences de novo (Simpson and
Pop, 2015). However, typically (de novo) assemblies contain assembly
errors and are fragmented in many short contigs (or scaffolds), making it
difficult to know how the sequences are physically located with respect
to each other (Fierst, 2015; Simpson and Pop, 2015). When applicable,
linkage mapping provides a practical way to anchor and orient the
sequences into chromosomes (Fierst, 2015). This information can directly

be used for scaffolding contigs into longer sequences or enable local
reassembly given the approximate locations and partial orientations of
the sequences. There are some software for integrating assemblies and
linkage maps, like ArkMAP (Paterson and Law, 2013) and Chromonomer
(http://catchenlab.life.illinois.edu/chromonomer/, Catchen (2015)).

The number of individuals (offspring) in a mapping cross defines how
many recombinations can be detected. To orient a contig, there must
be at least two markers in that contig and at least one recombination
between those markers. Moreover, each recombination can orient at most
one contig. Even a mapping cross of tens of individuals can detect many
assembly errors where distant parts are erroneously joined together (Rastas
et al., 2013). With more individuals, even more local errors can be detected
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and more contigs can be oriented and placed into chromosomes. As
well as the number of individuals, the number of markers affects the
map resolution. With too few markers, shorter contigs remain without
any/proper linkage information, and some recombinations will be missed
which reduces information on the orientation.

Low-coverage high-throughput whole genome sequencing has large
potential in linkage mapping. It cost-efficiently obtains genotype
information for millions of single nucleotide polymorphisms (SNPs) and
thousands of individuals even for non-model species, enabling to pinpoint
most recombinations within narrow regions in the genome. However, the
tools that are currently available for constructing linkage maps are not well
suited for this many markers and even less so for low to medium coverage
sequencing data.

Dense high-quality linkage maps are useful, as well as required, for
family-based linkage and association analysis (Laird and Lange, 2008),
quantitative trait locus (QTL) mapping (Doerge, 2002), analysis of genome
synteny and other genomic data analyses.

1.1 Previous work

Linkage map construction is well studied and a fundamental computational
problem in genetics. Most available software are listed in the review
(Cheema and Dicks, 2009), some notable software being CRI-MAP
(Lander and Green, 1987), JoinMap (Van Ooijen, 2011) and MSTmap
(Wu et al., 2008). More recent software since this review include Lep-
MAP (Rastas et al., 2013), High-MAP (Liu et al., 2014) and Lep-MAP2
(Rastas et al., 2016).

In this article, we present a novel linkage mapping software Lep-MAP3
(LM3), capable incorporating all potential markers from whole genome
sequencing, while being equally useful on smaller dataset obtained from,
e.g. RAD-sequencing. Its most novel feature is that it accepts and makes
use of data as genotype likelihoods. This allows LM3 to obtain information
on genotype uncertainty and enables linkage mapping on low-coverage
sequencing data.

It also reduces mapping errors by modelling recombination
interference and scales, in speed and modelling accuracy, to much larger
datasets than was possible with the existing software. LM3 is memory
efficient and automated, and can use simultaneously data on multiple full-
sib families (or crosses that can be analysed as such, e.g. F2 crosses,
half-sibs, doubled haploid, backcross, RIL). Finally, it can take into
account achiasmatic meiosis, a special feature of Lepidoptera and some
other taxa with recombination only in one sex.

Previously, the performance of many linkage mapping software has
been compared against each other. In Rastas et al. (2016), Lep-MAP2,
Lep-MAP, TMAP, JoinMap and HighMap were compared and Lep-MAP2
was found to be superior among compared software. Software MSTmap is
known to be very fast (Fierst, 2015), compared for example in Rastas et al.
(2013), and to our knowledge, MSTmap is the only available software
capable of mapping over 10,000 markers in a reasonable time (under
an hour). However, MSTmap has some limitations, for instance being
restricted to only single families and phased data, whereas LM3 does
not have such limitations. To allow comparisons between MSTmap and
LM3 in this article, we used simulated double haploid (DH) data given in
phase-known format.

1.2 Differences between LM3 and its previous versions

LM3 is based on a similar philosophy to it’s earlier versions LM1 (Lep-
MAP1) (Rastas et al., 2013) and LM2 (Lep-MAP2) (Rastas et al., 2016).
The main difference between LM3 and LM1&2 is that the input genotype
likelihoods are used in each step of the map construction.

The modules are named similarly as in LM2 with number 2 added if the
same name was used in LM2, e.g. ParentCall 7→ ParentCall2. The usage of

SeparateChromosomes2

SeparateIdenticalsParentCall2

Pedigree + 
genotype likelihoods 
(from a vcf file or  
from LM3 pipeline

JoinSingles2All

JoinSingles2Identicals

OrderMarkers2

JoinIdenticalLGs / 
SeparateChromosomes2

Final map

Filtering2

SeparateChromosomes JoinSingles

Fig. 1: Typical data processing pipeline with LM3 from the input genotype
likelihoods to the final map. Three alternative ways are described, where
the upmost path uses Lep-MAP2 modules.

each module is similar as in LM2, thus if you have previously used LM2,
you can easily run the same commands with LM3, just by producing (or
converting) the data in the new format.

The module ParentCall2, now supporting vcf files and grandparental
information, is an improved version of ParentCall in LM2 which is an
improved version of Counts2Genotypes found already in LM1. Other main
modules are mostly new, using similar hierarchy for inner classes as in
LM2. Code for handling input and output are mostly reusing earlier code.
The data processing pipeline is similar to one used in Rastas et al. (2016),
derived from the pipelines used with LM1.

The marker ordering (OrderMarkers2) is now now more robust to noisy
data and up to 450x-2000x faster (on simulated data, see the section 3).
It can also natively use genotypic information on grandparents to phase
the data accordingly, which eases QTL mapping. Finally, the underlying
haplotype model has changed (see Figure 2).

2 Methods
The LM3 (Lep-MAP3) workflow is illustrated in Figure 1. This workflow
consists of modules ParentCall2, Filtering2, SeparateChromosomes2
(SeparateIdenticals), JoinSingles2All (JoinSingles2Indenticals), JoinIndenticalLGs
and OrderMarkers2. Alternatively, Lep-MAP2 modules SeparateChromosomes
and JoinSingles (upmost row in Figure 1) can be used before
OrderMarkers2, providing faster alternative when genotypes can be called
with good quality.

The genetic input data for all modules consists of a pedigree describing
one or several full-sib families and genotype likelihoods for each marker
and individual. The first step of LM3, the ParentCall2 module will call
parental genotypes by taking into account genotype information on parents
and offspring (and grandparents if they are present).

The Filtering2 allows user to filter markers based on, e.g.
segregation distortion and amount of missing data. SeparateIdenticals and
SeparateChromosomes2 clusters (and separates) markers by calculating
LOD scores between all pairs of markers, the difference being that
SeparateIdenticals only clusters markers that segregate exactly identically
(recombination rate θ = 0) while SeparateChromosomes2 clusters actual
chromosomes or linkage groups. Modules JoinSingles2Identicals and
JoinSingles2All will add additional markers to the found marker groups.

JoinIdenticalLGs can be used to cluster found identical marker groups
to chromosomal (linkage) groups. The clustering of identical markers
reduces the required time on whole genome data where the number of
markers can be orders of magnitude larger than the number of differently
segregating markers.

Finally, the markers separated into linkage groups can be ordered
using OrderMarkers2 module. This marker ordering step is the main
computational step in linkage mapping.

Notation. We consider only markers where at least one parent is
(recombination) informative, i.e. heterozygous. We define an (informative)
haplotype as alleles inherited from informative parent, i.e. maternal or
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father mother child haplotype
only mother informative: AA AB AA 00 or 10 (= ?0)

AA AB AB 01 or 11 (= ?1)
only father informative: AB AA AA 00 or 01 (= 0?)

AB AA AB 10 or 11 (= 1?)
both parents informative: AB AB AA 00

AB AB AB 01 or 10
AB AB BB 11

Table 1. Genotypes and haplotypes for genetic marker with alleles A and B.
Haplotype alleles are 0 and 1 (? is an unknown allele).

paternal allele arbitrary denoted as 0 and 1. In a phased haplotype, alleles
are mapped so that a change in individual’s haplotype (0→ 1 or 1→ 0)
in the marker order indicates recombination or genotyping error. We do
not require grandparental phase, i.e. inheritance vectors, as we can detect
recombinations in parental phase. However, LM3 accepts phased data as
input but does not support mixing of phased and unphased data (unless all
unphased).

By genotype likelihoods we mean probability P (d|g) = probability
of the data d given the genotype g. Such likelihood can be obtained from
sequencing or SNP-assay based data. From the genotype likelihoods of
a offspring and its parents, we can infer four values, p00, p01, p10, p11,
giving the probabilities for informative haplotypes 00,01,10 and 11, where
the first digit is the paternal and the second digit is the maternal haplotype.
Examples of genotype combinations and the corresponding haplotypes are
given in Table 1.

2.1 Clustering markers into chromosomes

LM3 separates chromosomes (or linkage groups) by evaluating two-point
LOD scores (Morton, 1955) between markers. The novelty of LM3 is
that all computations are carried using genotype likelihoods, instead of
genotypes. In the next subsection, the LOD score computation is explained
and the marker clustering modules are sketched briefly.

2.1.1 Computing LOD scores
Let the haplotype probabilities for two markers be p∗ and q∗, and the
recombination rates be θ1 and θ2 for male and female, respectively.

The probability that paternal haplotypes are identical between these
two markers is a = (p00 + p01)(q00 + q01)+ (p11 + p10)(q11 + q10),
and similarly b = (p00+p10)(q00+q10)+(p11+p01)(q11+q01) for
maternal haplotypes. If these two markers are in identical phase, the LOD
score contribution (log(P (G|θ = [θ1, θ2])/P (G|θ = 0.5)), whereG is
the genotype data and θ is the recombination rate) is

log
( ((1− θ1)a+ θ1(1− a)) · ((1− θ2)b+ θ2(1− b))

1/4

)
. (1)

A key observation here is that this equation works well with θ = 0, thus
it can be used to find identical markers or for species without recombination
in one sex. The parameters θ1 and θ2 are user defined in LM3. To handle
phase unknown data, all 4 possible phases are tested and the one giving
highest LOD score is used.

2.1.2 Separating identical markers
SeprateChromosomes2 module in LM3 evaluates LOD scores for all pairs
of markers and joins markers to form linkage groups. This is practical for
smaller datasets, but not for whole genome datasets due to its quadratic time
dependency on the number of markers. However, the SeparateIdenticals
module is much faster as it collapses identical markers and can divide
data into k (given by the user) independent parts. Dividing data into k
parts yields a speedup of k (but can miss rare markers). Moreover, as

the parts are independent, their computations can be executed in parallel
on multiple cores. Finally the collapsed identical markers for all parts are
joined together. The marker separating modules have been earlier used and
briefly explained in Van Belleghem et al. (2017). Note that the separation
of identical markers can be run very efficiently by running it separately for
each contig or, say in 1Mb windows. The found identical markers can be
collapsed and used as "binned" markers to reduce the computational burden
of linkage mapping, but we have found this process to be challenging in
practise. Moreover, LM3 can be used to collapse identical marker, e.g. by
using the physical locations of the markers, whilst the preferred way is to
treat markers individually.

2.2 Ordering markers

LM3 orders markers by maximising the likelihood of the data. Next the
used model and algorithms are sketched.

2.2.1 Haplotype model
The phased haplotypes are modelled with a hidden Markov model,
illustrated in Figure 2 (b). The model has only two parameters θs and is for
both sexes s = 1, 2, where θs defines the recombination probability and
the is is the probability of recurrent recombination (interference). These
parameters are given by the user, thus there is no computational overhead
on learning these parameters (unlike in Lep-MAP2 model, Figure 2
(a)). The haplotype likelihoods (see section 2.1.1) define the emission
probabilities naturally. The likelihood of data is computed by Viterbi type
algorithm, i.e. the likelihood is defined by the two paths (maternal and
paternal) through the haplotype model that give highest probability for
the data. The likelihood can be evaluated in O(mn) time, where n is the
number of markers and m is the number of individuals. In the same time
the marker positions (in centiMorgans) are obtained by keeping track of
the two paths, each recombination corresponds taking path up (↗) in the
model.

The parameters is model the recombination interference in a simple
way; on each individual the first recombination decreases likelihood by
θs, while the following by θsis. Setting is = 1 does not add any penalty
for recurrent recombinations, but no recurrent recombinations supported
by only a single marker will be allowed due to the topology of the model.
Setting is = 0 does not allow any recurrent recombinations. Achiasmatic
meiosis can be facilitated by setting θs = 0 for s = 1 or s = 2.

2.2.2 Phasing
The phase of the data can be given by the user, but in the phase-unknown
case, the phase is estimated using the haplotype model (Figure 2 (b))
every time the data likelihood (given the order) is evaluated. This is done
as follows. The likelihood of a random (or previously found) phasing is
first evaluated. Then it is evaluated whether changing phases for a single
marker or for all markers right of this marker improves the likelihood.
If the change improves likelihood, the phasing is changed accordingly.
The phase changes and updates for all markers (from right to left) can
be computed in O(mn) time and often 1-2 runs of this phasing step are
sufficient to find and verify (locally) optimal phasing. Moreover, typically
the phasing does not change after the first phasing steps.

2.2.3 Marker ordering algorithm
The divide-and-conquer algorithm for ordering markers is sketched in
Algorithm 1 and graphically illustrated in Figure 3. It is iterated a user
defined times, starting from a random marker order or from a order given
by the user, and after each iteration, the order is polished by POLISH and
by local changes in each window of five adjacent markers.
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0 0 0 0 0 0

1 1 1 1 1 1

(a)
0 0 0 0 0

1 1 1 1 1
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1 1 1 1 1 1
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Non-interference
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Fig. 2: The Lep-MAP2 model (a) and the LM3 model (b) for phased
haplotypes over six markers (stacked states). The zeros and ones in the
states correspond to haplotypes and a transition between states of different
haplotypes models recombination. For clarity, only two interference (↘)
and two recombination transitions (↗) are illustrated in the LM3 model.

Algorithm 1 Marker Ordering

procedure ORDER(markers M = m1,m2, . . . ,mk)
if k ≤ 2 return M
Divide markers M into two equal size parts M1 and M2

M1 := ORDER(M1)
M2 := ORDER(M2)
R1 := POLISH(MERGE(M1, M2)))
R2 := POLISH(MERGE(M1, REVERSE(M2)))
if likelihood(R1) >likelihood(R2) then

return R1

else
return R2

procedure REVERSE(markers M = m1,m2, . . . ,mk)
return mk,mk−1, . . . ,m1

procedure MERGE(two lists of markers M1 = m11, . . . ,m1|M1|
and M2 = m21, . . . ,m2|M2|)
S(0, 0) = 0 . S(i, j) is the max score of the merging of

m21, . . . ,m2j and M1 by adding m2j before or just after m1i

for j = 1 to |M2| do
S(0, j) = S(0, j − 1)+SCORE(M1, 0,m2j)

for i = 1 to |M1| do
S(i, j) = max{S(i − 1, j), S(i, j − 1)+

SCORE(M1, i,m2j)}
Trace-back the path obtaining score S(|M1|, |M2|) and add

markers of M2 between markers of M1 correspondingly to obtain
marker order R.

return R

procedure SCORE(markers M = m1,m2, . . . ,mk , integer i and
marker n)

return log
( likelihood(m1,m2, . . . ,mi, n,mi+1, . . . ,mk)

likelihood(m1,m2, . . . ,mk)

)

procedure POLISH(markers M = m1,m2, . . . ,mk)
for i = 0 to k do
Ri := ∅

for j = 1 to k do
i := argmaxi{SCORE(M, i,mj) : 0 ≤ i ≤ k}
Ri := Ri ∪ {mj}

return markers in order R0, R1, . . . , Rk

Ordered recursively Ordered recursively

Two orders merged  and polished 

Fig. 3: Graphical illustration of Algorithm 1. Markers are divided into two
parts which are recursively ordered following the merging (and polishing)
of the two parts together.

2.3 Analysing and improving marker ordering runtime

During the execution of ORDER, the procedures MERGE and POLISH
both evaluate SCORE O(n2) times. Assuming the phases of markers M
are known (on unphased data, the phase is determined as described in
section 2.2.2), the SCORE can be calculated in O(m) time after O(mn)

preprocessing by typical forward-backward type dynamic programming
algorithm. This procedure yields total runtime of O(mn2) and O(mn)

memory requirement.
This algorithm is very fast, and on our experiments we have been

able to run about 20,000 markers on 100 individuals in about 1 hour
on a single Desktop computer CPU. However, the algorithm’s quadratic
time complexity will restrict the maximum feasible number of markers.
To overcome this, we reduce the number of possible positions (i) in
the MERGE and POLISH based on how different the SCORE can be
for adjacent positions. As there are only m individuals, it is plausible
that O(m) marker positions suffices. Moreover, as typically n >> m,
this yields significant speedup, and at best gives a total runtime of
O(m2n logn). By reducing the possible positions to those of having
absolute difference in the SCORE probabilities≤ 0.01, we notice at least
up to 5x speedups. This difference limit can be controlled by the parameter
identicalLimit in LM3.

Finally, the MERGE and POLISH are implemented to utilise multiple
cores in parallel. In our experiments, we obtain 3-10x speedup on using
4-32 cores (data not shown).
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2.4 Scaling to more markers

The computation burden of OrderMarkers2 (of LM3) scales easily to
100,000s of markers per chromosome. However, the number of differently
segregating markers in a chromosome is limited by the number of
individuals in a cross (assuming map lengths are ≤ 100cM). The marker
ordering becomes ill-posed when the number of markers is much higher
than the number of individuals as the clustering of identical markers
becomes most important factor in the likelihood of the order. Especially
in the whole genome sequencing data, there can easily be 1000 times
more markers than individuals. One solution would be to use artificially
small recombination parameters but choosing the suitable parameters can
be tricky.

Instead, we have implemented natural data scaling procedure,
controlled by parameter s, to LM3 to cope with this problem. In effect,
this scales the genotype (log)likelihoods so that data likelihood would
correspond to fraction s of the total markers. This can be seen as a
continuous version of subsampling markers. However, this procedure (as
well as subsampling) can miss the first recombinations at the map ends.
To fix this, the recombination parameters are scaled as well on the map
ends. The scale parameter is given to OrderMarkers2 as "scale=NUM1
NUM2", where NUM1 is the scale parameter (e.g. 0.001 if there are
1000 time more markers than individuals) and recombinations between
NUM2/NUM1 first and last markers are scaled with fraction changing
linearly from NUM1/NUM2 (first and last possible recombination) to 1
(no scaling).

2.5 Simulated data

To evaluate the performance of LM3 and some other software, data was
simulated using custom scripts with varying rates and types of errors and
missing genotypes. Phased bi-allelic double haploid (DH) data with 10,000
markers, 100 individuals and an average map length of 100 cM were
simulated as follows.

The first 10 datasets (10k) were simulated by random errors with
error rate of 1% without missing genotypes and recurrent recombinations
were simulated with lower rate (recombination r + 1 occurred with
probability of 1/10 of recombination r). The remaining 20 datasets were
done similarly but with genotype likelihoods simulated according to five
(10k-5x) or 10 (10k-10x) fold sequencing coverage for having homozygote
and heterozygote genotypes as the two alleles and with read error rate of
1%. The first data was given to LM3 in its likelihood (called posterior)
format where likelihoods gave the simulation error rate (flat 1%) and for
MSTmap the possible erroneous genotypes were given as such. For the
other datasets, the most likely genotypes were given to MSTmap if the
error rate calculated from the likelihoods was lower than 1% or 5%, thus
sometimes containing missing genotypes. All simulated data and scripts
to generate them are provided with LM3.

For the new comparisons, we decided to concentrate only on
performance of MSTmap and LM3, and for completeness, we run Lep-
MAP2 on a subset of datasets as well. The linkage mapping results on
these datasets and on the three programs are given in Table 2.

The parameters for LM3 were default, except scale=0.01 2 (100x more
markers than individuals) and numMergeIterations=1 (faster runtime) and
for 10k data θ1 = 0.01 (recombination1), i1 = 0.01 (interference1)
(making genotype likelihoods and recombination parameters equal). Note
that these parameters are not the same used in the data simulation,
e.g. recombination rate in the simulation was 1/10000 whereas default
recombination parameter θ1 (and θ2) is 0.001 in LM3. Lep-MAP2
parameters were default except for minError=0.01 and phasedData=1.
For MSTmap, we tried different parameter combinations. Parameter
"detect_bad_data yes" was used as it did shorten the maps considerably.

2.6 Real data

We also constructed de novo linkage map for Heliconius erato from
Illumina whole genome sequencing data of 93 offspring and their parents.
The used sequencing data can be downloaded from SRA database with
accession number SRP081917. This data was used in the genome assembly
of H. erato (Van Belleghem et al., 2017) and during the assembly process
LM3 (marker separation) was developed. The parents were sequenced
with 30-40x coverage and offspring with 7-12x coverage. We mapped
raw reads to H. erato genome using BWA mem (Li, 2013) and using
LM3 pipeline (pileupParser.awk, pileup2posterior.awk) we constructed the
genotype likelihoods (posteriors) from the output of SAMtools mpileup (Li
et al., 2009). Only SNP variants were called. The used reference sequence
can be obtained from Lepbase (Challis et al., 2016). Only the ParentCall2
module was run on the likelihoods to obtain the final data (the Filtering2
module was not used nor needed).

First SeparateIdenticals was run on the data with LOD score limit 26.5
on the paternally informative markers only. Only markers occurring at
least 4 times were kept and artificial data with about 24000 markers was
generated based on the segregation patterns of these markers. Then all real
markers were added to these artificial markers using JoinSingles2Identicals
module and LOD score limit 25. The artificial marker data was run
on SeparateChromosomes2 to find 21 chromosomes and mapping from
identical markers to chromosomes. Then the chromosome assignment with
2.98 million markers was created using simple scripting from the output
files of LM3.

Then OrderMarkers2 was run given the chromosome assignment with
parameters i1 = θ1 = 10−6 and numMergeIterations=1, scale=0.002 3
and minError=0.01. The runtime for each chromosome was under 8 hours
using at most 5 threads and required 20Gb of memory. The maps were
almost exactly correct, however, the map end did have a handful of orphan
markers that were removed as erroneous markers. The maps are visualised
in Figure 4 and in the Supplement. We also tried MSTmap on this data,
results of this experiment are described in the Supplement.

3 Results
The results on simulated data in Table 2 show that LM3 obtains better map
accuracy (rank correlation up to 0.08 higher) than MSTMap. Also on poor
quality data and large number of markers, LM3 can be up to 20x faster.
Moreover, LM3 has only linear memory requirement unlike MSTmap
whose memory requirement increases quadratically on the number of
markers, making it unpractical on, roughly over 200k markers. LM3 also
calculates the marker positions accurately being able to cluster identical
markers together, whereas marker positions outputted by MSTmap can
be several orders of magnitude inflated, making it unsuitable for contig
orientation (see the Supplement for a real example). The results also show
that LM3 outperforms Lep-MAP2 on each aspect, it is more accurate,
constructs correct map lengths more accurately and is up to 2000x faster.

The LM3 performance is equally good on the real data. Only a single
iteration on Algorithm 1 was sufficient on each chromosome to find the
correct order and the only manual step involved removing some markers
from the map ends (the erroneous markers are clearly visible from the Lep-
MAP graph of Figure 4 and are very likely errors as these do not occur at
the scaffold ends).

The obtained marker density is almost 1/100bp locating the
recombinations precisely in the genome (which could be biologically
interesting). The preliminary linkage maps on this data constructed with
preliminary LM3 were successfully used in Heliconius erato project
(Van Belleghem et al., 2017) to obtain almost chromosome level assembly
(scaffolds) as well as to detected contamination contigs. The map can also
be used to find long structural variants, like inversions, as well as indels
demonstrated in Figure 4.
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τ (accuracy) time (seconds) map length (cM)
dataset MST LM2 LM3 MST LM2 LM3 MST LM2 LM3
10k 0.997 0.984* 1.000 6080 163000* 361 2960 663* 106
10k-10x 0.990 0.996* 1.000 183 605000* 310 793 113* 96.2
10k-5x 0.922 0.883* 0.997 872 293000* 354 9190 881* 98.4

Table 2. Performance comparison of MSTmap (MST), Lep-MAP2 (LM2) and
Lep-MAP3 (LM3) on simulated data of 10,000 markers and 100 individuals.
Reported time is given in seconds on a Desktop computer with Intel Core
Duo processor running at 3.6GHz using a single core. τ is the Kendall rank
correlation (Kendall, 1938) of actual order and the constructed map order using
only one marker among possible multiple markers at each actual map position.
Map lengths are reported by the corresponding program and each value is an
average on 10 independent datasets (* due to the high computing time of Lep-
MAP2, it was run only on the first dataset (of 10)). The datasets were simulated
with a simple model of recombination interference and with random error rate
of 1% (10k) or with more realistic genotypic data obtained from simulated
sequencing data with c fold coverage (10k-cx). See the main text for more info
on the simulations and runs.

Moreover, some genetic regions did have strange markers. These
seemed to be due to large, up to 1Mb, indels on some offspring (which may
be quite common in this species or in this cross). Some maps are illustrated
in Figure 4 and the sequencing coverage for one such problematic region.
However, by easy manual inspection, these can be detected (and corrected
if needed). The correlation of the physical length and the map length for
H. erato chromosomes is given in the Figure 5.

4 Discussion and Conclusion
Lep-MAP3 is the only tool suitable for mapping both, millions of markers
and low-coverage sequencing data. This combination has high potential for
genome assemblies but also for many other analyses. Millions of markers
build strong evidence for, e.g. recombinations or lack of them and for
structural variants. Especially the genome assemblies can be scaffolded
with high confidence given such maps. The use of low-coverage data makes
linkage mapping more practical to a wide range of non-model species, e.g.
species with very long genomes or poor yield of DNA.

As future work, we would like to automate the integration of genome
assemblies and linkage maps, possibly during the assembly process, and
to further improve the speed and accuracy of LM3.

Acknowledgements
We thank John Davey, Leena Salmela, Petri Kemppainen and Virpi Ahola
for useful comments and Owen McMillan, A. Tapia, M. Vargas and C.
Rosales for providing and generating the used data.

Funding
The author has been funded by the European Research Council (grant
339873 to Chris Jiggins) as well as the Academy of Finland (grant 1292737
to Juha Merilä).

Conflict of Interest: none declared.

References
Ahola, V., Lehtonen, R., Somervuo, P., and et al. (2014). The Glanville fritillary

genome retains an ancient karyotype and reveals selective chromosomal fusions in
Lepidoptera. Nature Communications, 5, 4737.

Catchen, J. (2015). Chromonomer. Available online. Accessed: 2016-08-19.

 1

 10

 20

 30

 40
 45
 50
 55
 60

 0  5x106  1x107  1.5x107  2x107  2.5x107

m
ar

ke
r n

um
be

r

physical position

map13.s

(a) Chr 13

 1

 10

 20

 30

 40
 45
 50
 55
 60

 0  5x106  1x107  1.5x107  2x107  2.5x107

m
ar

ke
r n

um
be

r
physical position

map7.corrected
map7.s

(b) Chr 7

The area of a node is
proportional to the
number of identical

markers

10000:                          

1000:                        
100:                      

0 1

2
3 4 5

6
789

10
11

1213
14

15 16
17 18 19

20 21 22 23 24

25 26

27 28

29 30 31 32 33 34

35
36

37
38

39  
404142

4344
45 46 474849

(c) Chr 13

 2

 4

 6

 8

 10

 12

 14

 0  5x106  1x107  1.5x107  2x107  2.5x107

co
ve

ra
ge

physical position

coverage of H1-7

(d) Chr 7

Fig. 4: Linkage maps for H. erato chromosomes 13 and 7, both having
over 200k markers (and these chromosomes were assembled into single
scaffolds). In figures a) and b), maps are made more clear by plotting
the median marker number (rank in the order) for each window of 10kb
containing at least 10 markers. Figure c) (Lep-MAP graph) shows the
segregation patterns outputted by OrderMarkers2, closest patterns are
joined by an edge, the numbers correspond to y-coordinates of a) (the
patterns 0, 48 and 49 have been removed). For chromosome 7, the coverage
for individual H1-7 is plotted in figure d). The peak in coverage at the end
seems to be a duplication and is causing the error in the map (marker
number alters between 43 and 44). The marker number is the the rank
order in which the markers occur in the result. Note: the centiMorgan
distances can be obtained by multiplying the marker number by 100/93
(100/number of individuals).



“lepmap3” — 2017/8/9 — page 7 — #7

Lep-MAP3 7

 30

 35

 40

 45

 50

 55

 60

 65

 10  12  14  16  18  20  22  24

cM

Mb

0.67x+42.23
fusion chromosomes

Fig. 5: Physical length and map length for all chromosomes for H. erato.
In Lepidoptera, 31 (1n) is the ancestral chromosome number, whereas in
Heliconius, 10 of these ancestral chromosomes have been fused (Ahola
et al., 2014). All the fused chromosomes are among the physically longest
ones.

Challis, R. J., Kumar, S., Dasmahapatra, K. K. K., Jiggins, C. D., and Blaxter, M.
(2016). Lepbase: the lepidopteran genome database. bioRxiv.

Cheema, J. and Dicks, J. (2009). Computational approaches and software tools for
genetic linkage map estimation in plants. Brief. Bioinform., 10(6), 595–608.

Doerge, R. (2002). Mapping and analysis of quantitative trait loci in experimental
populations. Nat. Rev. Genet., 3(1), 43–52.

Fierst, J. (2015). Using linkage maps to correct and scaffold de novo genome
assemblies: methods, challenges, and computational tools. Frontiers in Genetics,
6(220).

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1-2),
81–93.

Laird, N. and Lange, C. (2008). Family-based methods for linkage and association
analysis. In Genetic Dissection of Complex Traits, volume 60 of Advances in
Genetics, pages 219 – 252. Academic Press.

Lander, E. and Green, P. (1987). Construction of multilocus genetic linkage maps in
humans. Proc. Natl. Acad. Sci., 84(8), 2363–2367.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. ArXiv e-prints.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics, 25(16), 2078–2079.

Liu, D., Ma, C., Hong, W., Huang, L., Liu, M., Liu, H., Zeng, H., Deng, D., Xin, H.,
Song, J., Xu, C., Sun, X., Hou, X., Wang, X., and Zheng, H. (2014). Construction

and analysis of high-density linkage map using high-throughput sequencing data.
PLoS ONE, 9(6), 1–9.

Morton, N. (1955). Sequential tests for the detection of linkage. Am. J. Hum. Gen.,
7(3), 277–318.

Paterson, T. and Law, A. (2013). Arkmap: integrating genomic maps across species
and data sources. BMC Bioinformatics, 14(1), 1–10.

Rastas, P., Paulin, L., Hanski, I., Lehtonen, R., and Auvinen, P. (2013). Lep-map:
fast and accurate linkage map construction for large snp datasets. Bioinformatics,
29(24), 3128–3134.

Rastas, P., Calboli, F. C. F., Guo, B., Shikano, T., and Merilä, J. (2016). Construction
of ultra-dense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses
as an example. Genome Biology and Evolution, 8(1).

Simpson, J. T. and Pop, M. (2015). The theory and practice of genome sequence
assembly. Annual Review of Genomics and Human Genetics, 16(1), 153–172.

Van Belleghem, S., Rastas, P., and et al. (2017). Complex modular architecture
around a simple toolkit of wing pattern genes. Nature Ecology & Evolution, 1.

Van Ooijen, J. (2011). Multipoint maximum likelihood mapping in a full-sib family
of an outbreeding species. Genetics Research, 93, 343–349.

Wu, Y., Bhat, P. R., Close, T. J., and Lonardi, S. (2008). Efficient and accurate
construction of genetic linkage maps from the minimum spanning tree of a graph.
PLoS Genet, 4(10), e1000212.


