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1 Monty Hall: Formulation of the problem

Let us start by considering two formulations of the Monty Hall problem (Grin-
stead and Snell, Introduction to Probabilities).

The �rst formulation is:

Suppose you are on a Monty Hall's Let's Make a Deal !You are given
the choice of three doors, behind one door is a car, the others goats.
You pick up a door, say 1, Monty Hall opens another door, say 3,
which has a goat. Monty says to you �Do you want to pick door 2?�
Is it to your advantage to switch your choice of doors? (Grinstead
and Snell, Introduction to Probabilities, Example 4.6, p. 136)

The second formulation is more general:

We say that C is using the �stay� strategy if she picks a door, and,
if o�ered a chance to switch to another door, declines to do so (i.e.,
he stays with his original choice). Similarly, we say that C is using
the �switch� strategy if he picks a door, and, if o�ered a chance to
switch to another door, takes the o�er. Now suppose that C decides
in advance to play the �stay� strategy. Her only action in this case is
to pick a door (and decline an invitation to switch, if one is o�ered).
What is the probability that she wins a car? The same question can
be asked about the �switch� strategy. (Idem, p. 137)

Grinstead and Snell remark that the �rst formulation of the problem �asks for
the conditional probability that C wins if she switches doors, given that she
has chosen door 1 and that Monty Hall has chosen door 3� whereas the second
formulation is about the comparative probabilities of two kinds of strategies for
C, the �switch� strategy and the �stay� strategy. They point out that using the
�stay� strategy, the contestant C will win the car with probability 1/3, since 1/3
of the time the door he picks will have the car behind it. But if C plays the
�switch� strategy, then he will win whenever the door he originally picked does
not have the car behind it, which happens 2/3 of the time. (Idem, p. 13).

Grinstead and Snell give a solution to the �rst problem using conditional
probabilities. van Benthem (2003) gives a solution to the same problem in
terms of product updates and probabilites.
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In Sandu (2015b) a modelling of the Monty Hall problem is given using a
two player win-lose extensive game of imperfect information. The idea comes
from Mann (2010). The emphasis in that paper is on the comparison between
di�erent solutions to the Monty Hall problem: on one side the solutions to the
�rst problem above in terms of conditional probabilities and product updates
in dynamic logic, and the game-theoretical solution to the second problem, on
the other.

The emphasis of the present paper is on the game-theoretical solution to the
second problem. We consider several variants of the second problem and model
them in IF logic endowed with a probabilistic semantics. The modelization is
essentially the same one as in Sandu (2015b) but the overall purpose of the
paper is to o�er a justi�cation for probabilistic IF logic.

2 Monty Hall: A game-theoretical modelization

2.1 Monty Hall as an extensive game of imperfect infor-

mation

The second formulation of the Monty Hall problem mentioned above refers to
strategies. This makes it natural to bring in game-theoretical conceptualiza-
tions. We think of Monty Hall and the Contestant as two players, the latter,
call her C, trying to identify the door with the prize, whereas her opponent, call
him MH, tries to deceive her. The tree which constitutes the extensive form
of the game has maximal histories (plays of the game) of the form (x, y, z, t)
where:

� x represent the door where MH hides the prize

� y is the door chosen by C

� z is the door opened by MH

� t is the second choice of C

The rules of the game dictate that

� z must be distinct from x and y, and

� t must be distinct from z.

Thus the sequence (1, 1, 2, 1) represents the possible play:

MH hides the prize behind door 1; C makes a guess: door 1; MH
opens the empty door 2 ; C guesses again: door 1.

There are 24 plays (maximal histories). The speci�cation of the player function
P which associates with each history other than maximal ones the player whose
turn is to move should be quite obvious.

Some of the histories are indistinguishable (informationally equivalent). This
holds only for those histories where player C is to move:
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C1 Any histories (x) and (x′) are equivalent for player C.

C2 Any histories (x, y, z) and (x′, y′, z′) where y = y′ and z = z′ are
equivalent for player C.

(C1) expresses the fact that C does not know the door where the prize is hidden
when making her �rst guess. And (C2) epresses the fact that she does not know
the door where the prize is hidden, when she makes her second guess.

Each play is winning either for MH or for C. C wins (and MH looses) every
play (x, y, z, t) in which she identi�es the door which hides the prize, i.e. t = x.
MH wins (and C looses) the remaining ones.

This ends up the description of the game. The result is a 2 player, win-lose
�nite extensive game of imperfect information.

2.2 Strategies

A strategy for player C is any function F which gives her a choice for any history
where she is to move. Thus F will give her, for every choice of x by MH, a value
for y, and for every sequence (x, y, z), a value for t. Imperfect information will
impose the following restriction (uniformity) on any strategy F :

� If the histories h and h′ are equivalent, then F (h) = F (h′).

We prefer to decompose any F into two �local� strategies, that is, two functions
f and f ′ such that f yields a value for y and f ′ yields a value for t. Given (C1),
f will be have to be a constant function, that is, a door y. Given (C2), f ′ will
take only y and and z as arguments.

Thus player C's set SC of strategies will consist of pairs (i, hi), where i stands
for a door and hi for a function of two arguments (y, z). A strategy (i, hi) is
winning if C wins every play where she follows it. We focus on two kinds of
strategies for player C.

� The �rst kind, denoted bySStayC , groups together all the �stay� strategies,
where C choose a door, and then stick to her initial guess no matter what
MH does:

SStayC = {(i, hi) : i = 1, 2, 3},
where

hi(y, z) = i

Each strategy (i, hi) is followed in the play

(x, i, z, hi(i, z))

for any x and z. There are three �stay� strategies:

h1(1, 2) = 1 h1(1, 3) = 1
h2(2, 3) = 2 h2(2, 1) = 2
h3(3, 2) = 3 h3(3, 1) = 3

It should be obvious that each �stay� strategy is winning all the plays where C's
initial guess is correct (i.e., i = x) and losing the remaining ones.
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� The second kind, denoted by SSwitchC groups together all the �switch�
strategies, where C choose a door, and then, after MH opens a door,
switch doors:

SSwitchC = {(1, f1), (2, f2), (3, f3)}

where
f1(1, 2) = 3 f1(1, 3) = 2
f2(2, 3) = 1 f2(2, 1) = 3
f3(3, 2) = 1 f3(3, 1) = 2

Given that there are only three doors, each of the three strategies wins all the
plays in which the initial choice is incorrect, i 6= x, and loses the remaining ones.
For illustration, suppose C follows the strategy (2, f2). Suppose MH chooses
(hides the prize behind) door 1. C's �rst choice (guess) is door 2. By the rules
of the game, MH's next choice can be only door 3. C's �nal choice is f2(2, 3) = 1.
C wins.

MH's strategies consist also of pairs (j, g): the �rst corresponds to a value
for x; the function g associates to each argument (x, y) a value for z.

The only strategy available to MH (given the rules of the game) is: �hide the
prize behind a door, and after C chooses a door, open any other door�. Here
are all the strategy pairs she can follow:

(1, g1) : g1(1, 1) = 2 g1(1, 2) = 3 g1(1, 3) = 2

(1, g
′

1) : g
′

1(1, 1) = 3 g
′

1(1, 2) = 3 g
′

1(1, 3) = 2
(2, g2) : g2(2, 1) = 3 g2(2, 2) = 1 g2(2, 3) = 1

(2, g
′

2) : g
′

2(2, 1) = 3 g
′

2(2, 2) = 3 g
′

2(2, 3) = 1
(3, g3) : g3(3, 1) = 2 g3(3, 2) = 1 g3(3, 3) = 1

(3, g
′

3) : g
′

3(3, 1) = 2 g
′

3(3, 2) = 1 g
′

3(3, 3) = 2

Each of the strategy pair (j, gj) is followed in every play of the form

(j, y, gj(j, y), t)

for any y and t. It is winning whenever j 6= t and losing otherwise. None of
these strategies is winning all the plays in which it is followed.

Let us get more dynamics into the game. Let SMH denote the set of strate-
gies of MH and SC the set of strategies of player C. Whenever MH follows one
of his strategies in SMH , andC follows one of her strategies in SC , a play of the
extensive game is generated which is a win for either one of the players. For
instance, when MH follows (3, g3) and C follows (1, h1), the result is the play
(3, 1, 2, 1) which is a win for MH.

The following table registers the payo�s of the players for all the strategy
pairs the players might play:
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(1, g1) (1, g
′

1) (2, g2) (2, g
′

2) (3, g3) (3, g
′

3)
(1, h1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)
(2, h2) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (0, 1)
(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0)
(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)
(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)
(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

We shall call the game described by the matrix the Monty Hall game. It is a
�nite, two players, win-lose strategic game

ΓMH = (SC , SMH , uC , uMH)

where uMH and uC are the payo�s of the two players as shown in the matrix.
We can now try to �solve� the game. A natural solution concept to be applied

is that of equilibrium. But there is none in the Monty Hall game and we must
conclude that the game is indeterminate.

3 Variants of the Monty Hall game

We could consider a variant of the Monty Hall game in which the use of the
�switch� strategy is built into the winning conditions of the game. The extensive
game will be exactly as above, except that the plays (x, y, z, t) won by C are
exactly those for which x = t and t 6= y. That is, compared to the previous
game, C wins less plays and MH wins more in the present variant of the Monty
Hall game. The sets SC , SMH of strategies of the two players are exactly the
same as in the previous game. However, it is not di�cult to see that the �switch�
strategies win the same plays as before, whereas the �stay� strategies never win:

(1, g1) (1, g
′

1) (2, g2) (2, g
′

2) (3, g3) (3, g
′

3)
(1, h1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(2, h2) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(1, f1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0)
(2, f2) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)
(3, f3) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1)

Like the previous game, this game, let us call it the �rst variant of the MH
game, is also indeterminate.

Finally, we could consider a second variant of the Monty Hall game in which
the use of the �stay� strategy is built into the winning conditions of the game.
The extensive game will be exactly as in the two earlier games, except that
the plays (x, y, z, t) won by C are such that x = t and t = y. The strategies
of the two players are exactly the same as in the previous games. However, in
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this case the �switch� strategies never win whereas the �stay� strategies win the
same plays as in the Monty Hall game:

(1, g1) (1, g
′

1) (2, g2) (2, g
′

2) (3, g3) (3, g
′

3)
(1, h1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)
(2, h2) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (0, 1)
(3, h3) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0)
(1, f1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(2, f2) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(3, f3) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

This game is indeterminate too.

4 Logics with imperfect information: Independence-
friendly logic (IF logic)

Hintikka and Sandu (1989) introduce Independence-Friendly logic (IF logic) in
order to express more patterns of dependencies (and independencies) of quan-
ti�ers than those allowed by ordinary �rst-order logic. The syntax of IF logic
contains quantifers of the form (∃x/W ), and (∀x/W ) where W is a �nite set of
variables. The intended interpretation of e.g. (∃x/W ) is that the choice of a
value for x is independent of the choices of the values for the variables in W .
When W = ∅ we recover the standard quanti�ers. Alternatively, in terms of
the idea of dependence: the choice of a value for x depends on all the values of
the variables in whose scope (∃x/W ) is, except for those in W .

IF logic is useful for modeling certain puzzles or phenomena of imperfect
information. Here is a well known example (Matching Pennies).

Two players, Abelard (the universal player) and Eloise (the existential player)
play the following game: Abelard hides one euro in his left or right hand with-
out Eloise seeing it. Eloise has to guess it. If she guesses correctly, she wins;
otherwise Abelard wins.

We can model this game in terms of the IF sentence ϕMP : ∀x(∃y/ {x})x = y
and the model set M = {L,R} . They determine a semantical game G(M, ϕMP )
which is played like this: Abelard chooses a ∈ {L,R} to be the value of the
variable x. Eloise chooses b ∈ {L,R} to be the value of y without �seeing� the
choice of Abelard. Eloise wins the play (a, b) if the assignment x = a, y = b
satis�es the quanti�er free formula x = y, that is, if a is the same as b. Otherwise
Abelard wins the play.

What is important is not to win a particular play but to have a winning
strategy for the whole game. A strategy for a player is a sequence of functions,
one for each of his or her move de�ned on all the possible �known� or �seen�
earlier moves. In our semantical game, a strategy for Abelard reduces to an
individual of the universe and so does a strategy for Eloise. The set S∀ of
strategies for Abelard is thus the same as the set S∃ of strategies for Eloise
which is M. Truth and falsity of ϕMP in M are de�ned as expected:
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� M |=+ ϕMP i� there is a winning strategy for Eloise in G(M, ϕMP ) i�
there is b ∈ {L,R} such that for all a ∈ {L,R} : a = b

� M |=− ϕMP i� there is a winning strategy for Abelard in G(M, s, ϕMP )
i� there is a ∈ {L,R} such that for all b ∈ {L,R} : a 6= b

As we see, we have indeterminacy: M 2+ ϕMP and M 2− ϕ.
Notice that were the informal game to have been one of perfect information,

that is, were Eloise to see in which hand Abelard hides the coin, we would
have modelled it by the semantical game G(M, ϕ) where ϕ is the ordinary FOL
sentence ∀x∃yx = y. In that case S∀ would be, as before, identical to M but S∃
would consist of four functions (i.e. (a, a), (b, b), (a, b), (b, a)). Given that Eloise
has more strategies than in the earlier game, G(M, ϕ) is determined with (a, b)
a winning strategy for Eloise. In other words, M |=+ ϕ.

If negation occurs in positions other than in front of atomic formulas, then
the rules of the semantical game would be changed. In such cases, each occur-
rence of the negation sign ¬ would prompt a swap of the roles of the two players:
The moves made �normally� by Eloise would be now made by Abelard, and vice

versa. Also the rules for winning and losing would be reversed. One can easily
show that the following properties hold for every IF sentence ϕ and model M:

� M |=+ ¬ϕ if and only if M |=− ϕ

� M |=− ¬ϕ if and only if M |=+ ϕ.

There is a counterpart of the game-theoretical semantics sketched above which
underlies better strategic, game-theoretical phenomena. It is the Skolem seman-
tics. Let us sketch it brie�y by way of an example.

With every IF formula ϕ in negation normal form in a given vocabulary L we
associate its Skolem form Sk(ϕ), which is a �rst-order formula in an extended
vocabulary. Essentially each existentially quanti�ed subformula (∃x/W )ψ intro-
duces a new Skolem term f(y1, ..., yn) where y1, ..., yn are all the free variables
of (∃x/W )ψ minus the variables in W . The new function symbol f is intended
to codify the �local� strategy of Eloise and the value of the term f(y1, ..., yn) is
the individual which is the value of the variable x when y1, ..., yn have received
appropriate values earlier in the game. Again we prefer to illustrate with an
example. Let ϕ be the IF sentence

∃x∀y(∃z/ {y})∀wR(x, y, z, w).

Its Skolem form Sk(ϕ) is

∀y∀wR(c, y, f(x), w)

where c is a new 0-place function symbol (constant) and f is a new unary
function symbol. The truth of the sentence ϕ on a given model M in the Skolem
semantics is de�ned as
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� M �+
Sk ϕ if and only if there exist an individual c and a function g in the

universe of M to be the interpretations of the new symbols in Sk(ϕ) such
that

M, c, g � Sk(ϕ).

The functions a and g are called Skolem functions. We should realize at
this point that the Skolem functions are the counterpart of the strategies
of Eloise in the semantical game G(M, ϕ).

Note also that, for an arbitrary IF sentence ϕ in negation normal form, its
Skolem form Sk(ϕ) and any arbitrary modelM determine the set S∃ of strategies
of Eloise in the semantical game G(M, ϕ): it is the set of all sequences of Skolem
functions which may be the possible interpretations in M of the new function
symbols of Sk(ϕ).

The strategies of Abelard in G(M, ϕ) have also a natural counterpart as
Kreisel counterexamples. Again, the details have been given elsewhere (Mann,
Sandu and Sevenster, 2011.)

With every IF formula ϕ in negation normal form in a given vocabulary L
we associate its Kreisel form Kr(ϕ), which is also a �rst-order formula in an
extended vocabulary. This procedure is the dual of the procedure of Skolem-
ization. Essentially each universally quanti�ed subformula (∀x/W )ψ introduces
a new Kreisel term h(y1, ..., ym) where y1, ..., ym are all the free variables of
(∀x/W )ψ minus the variables in W . In our example the Kreisel form of ϕ is

∀x∀z¬R(x, h1(x), z, h2(x, f(x), z))

The falsity of ϕ on a given model M in the Skolem semantics is de�ned as:

� M �−Sk ϕ if and only if there exist function g1 and g2 in M to be the
interpretations of the new function symbols in Kr(ϕ) such that

M, g1, g2 � Kr(ϕ)

We call g1 and g2 Kreisel counterexamples.

Mann, Sandu and Sevenster (2011) gives a detailed introduction to game-theoretical
semantics, Skolem semantics and the compositional semantics and shows their
equivalence.

5 Some basic results on IF pre�xes

In this section we describe some of the results in Sevenster (2014) which help
us to evaluate the expressive power of IF quanti�er pre�xes.

An IF pre�x is a series (Q1x1/U1)...(Qnxn/Un) of quanti�ers, where Qi is
either ∃ or ∀, ui a variable and Ui is a �nite set of variables disjoint from ui.
We require that all quanti�ed variables xi in an IF pre�x be distinct.

A pre�x (Q1x1/U1)...(Qnxn/Un) is sentential if Ui ⊆ {u1, ..., ui−1} for every
1 ≤ i ≤ n. An IF formula Πϕ is a sentence if the pre�x Π is sentential and all
variables appearing in ϕ are contained in the set of variables quanti�ed in Π.
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Let ϕ and ψ be two IF sentences. We say that ϕ and ψ are (truth) equivalent,
if for every suitable structure M we have,

M |=+ ϕ iff M |=+ ψ.

Let Π and Φ be IF pre�xes. Then, Π and Φ are equivalent if Πϕ and Φϕ are
equivalent for every quanti�er-free formula ϕ.

The IF formalism introduces a di�erence between syntactical scope and se-
mantical scope (dependence). Let Qx/X and Qy/Y be two quanti�ers in an
IF formula such that Qx/X is in the (syntactical) scope of Qy/Y . We say that
Qx/X depends on Qy/Y if y /∈ X. Notice that if X = ∅, then Qx depends
on Qy/Y . Two patterns of dependence turn out to be important for expressive
power:

� An IF pre�x Π is a Henkin pre�x if it contains four quanti�ers

(∀x/X), (∀y/Y ), (∃u/U), (∃v/V )

such that (∃u/U) depends on x and not on y; and (∃v/V ) depends on y
and not on x and u. Notice that the �rst condition requires (∃u/U) to
be in the syntactical scope of (∀x/X) and the second condition requires
(∃v/V ) to be in the syntactical scope of (∀y/Y ). For example

∀x∀y(∃u/{y})(∃v/{x, u})

is a Henkin pre�x and so is

∀x∃u∀y(∃v/{x, u}).

� An IF pre�x Π is a signaling pre�x if it contains three quanti�ers

(∀u/U), (∃v/V ), (∃w/W )

syntactically ordered as above such that(∃v/V ) depends on u and(∃w/W )
depends on v but not on u. For example

∀u∃v(∃w/ {u})

is a signaling pre�x.

Sevenster (2014) considers three operations on pre�xes that preserve truth
equivalence.

The �rst operation is quanti�er swapping. Every two pre�xes

Π(Qu/U)(Qv/V ∪ u)Π′
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and
Π(Qv/V − u)(Qu/U ∪ v)Π′

of IF quanti�ers are equivalent.
The second operation is emptying the slash set from an universal quanti�er.

Every two pre�xes
(∀v/V )Π and ∀vΠ

of IF quanti�ers are equivalent.
The third operation consists of emptying an existentially quanti�ed slash set.

Every two sentential pre�xes
Π(Qv/V )Π′

and
ΠQvΠ′

of IF quanti�ers are equivalent whenever V contains variables that are quanti�ed
only by existential quanti�ers in Π.

A pre�x Π of IF quanti�ers is called primary if it is neither Henkin nor
signaling.

Lemma (Sevenster 2014) Let Π be a IF pre�x and let Π0 be the IF pre�x
that is the result of swapping two quanti�ers in (as in the �rst operation
above ); or emptying the slash set of a universal quanti�er in Π (as in the
second operation above); or emptying the slash set of a quanti�er in Π that
contains only existentially quanti�ed variables (as in the third operation
above). Then, Π0 is primary, whenever Π is.

Lemma (Sevenster 2014) Every primary, sentential IF pre�x Π(∃v/V )Π′ in
which Π is an FOL pre�x, is equivalent to a primary, sentential IF pre�x
ΣΠ′ in which Σ is an FOL pre�x.

Using these two Lemmas, Sevenster (2014) shows:

Theorem Every pre�x which is neither signaling nor Henkin is (truth) equiv-
alent to an ordinary FOL pre�x.

6 De�ning the Monty Hall games in IF logic

We shall consider three IF sentences,

ϕMH =: ∀x(∃y/{x})∀z(∃t/{x})[x 6= z ∧ y 6= z → t = x]
ϕMH1 =: ∀x(∃y/{x})∀z(∃t/{x})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)]
ϕMH2 =: ∀x(∃y/{x})∀z(∃t/{x})[x 6= z ∧ y 6= z → (t = y ∧ x = t)].

We can think of the Contestant, C, as the existential quanti�er and of MH as
the universal quanti�er. LetM be a model set which consists of three doors. Any
of the three sentences ϕ ∈ {ϕMH , ϕMH1, ϕMH2} and the model M determine
a semantical game G(M, ϕ), as we have seen. In such a game, the two players
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choose individuals from the set M to be the values of the variables x, y, z and t.
A play of any of these games is thus a sequence of four individuals in M. For
instance, the sequence (1, 2, 3, 1) is intended to represent the play:

MH hides the prize behind door 1; C makes a guess: door 2; MH
opens door 3 ; C guesses again: door 1.

The games G(M, ϕMH), G(M, ϕMH1) and G(M, ϕMH2) have the same set of
histories. They di�er only in the winning conditions (payo�s) of the maximal
histories (plays) that are determined in each case by the relevant quanti�er free
subformula. For instance, the play (1, 2, 3, 1) determines the assignment x =
1, y = 2, z = 3 and t = 1 which satis�es the quanti�er free subformula of ϕMH .
We conclude that the play is a win for C. As the assignment determined by any
play of any of the games either satis�es the relevant quanti�er-free subformula or
not, it is obvious that G(M, ϕMH), G(M, ϕMH1) and G(M, ϕMH3) are 2 player,
win-lose extensive game of imperfect information. We shall take them to �de�ne�
in IF logic the three games discussed in an earlier section.

Strictly speaking, the semantical games do not correspond exactly to the
earlier Monty Hall game and its two variants. But they are �equivalent� to
them. To see this, let us consider the Monty Hall game and the semantical
game G(M, ϕMH) that we take to de�ne it. The de�nitory rules of the Monty
Hall game are built into the winning conditions of the semantical game and the
rationality assumptions behind it. Take the rule that z must be distinct from
x and y. In the semantical game, if, for instance, MH chooses to open either
the door x where he hid the price or the door y chosen by C, he will lose right
away. Therefore if MH is a rational player (and we assume he is), he will choose
to open a door z such that z 6= x and z 6= y. Similarly for the other de�nitory
rule which prescribes that t must be distinct than z. In the semantical game
nothing in the rules of the game prevents C from choosing t to be the same as
z. But we already pointed out that it is in MH's interest to choose z distinct
from x. And as C is rational herself, and she knows that MH is rational, it is
not in her interest to choose t to be the same as z. All these considerations have
a precise game-theoretical counterpart: such �irrational� strategies turn out to
be weakly dominated by other strategies of the same player (cf. below.)

The information sets of the two players will be determined by the same
principles (C1) and (C2) that we discussed earlier.

The strategies of the two players in a semantical game are determined by the
Skolem and Kreisel form of the relevant IF sentence and the underlying model
set, as we pointed out earlier. For instance the Skolem form of ϕMH is

∀x∀z[x 6= z ∧ c 6= z → f(y, z) = x]

and its Kreisel form is

∀y∀t[d 6= g(x, y) ∧ y 6= g(x, y) ∧ t 6= d]

Therefore we shall take C's strategies to consist of all pairs (i, fi), such that
i ∈ M and fi : M2 → M . And the strategies of Monty Hall will be also pairs
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(j, gj) such that j ∈ M and gj : M2 → M . These are also the strategies of C
and respectively MH in the two other semantical games.

6.1 The semantical indeterminacy of the Monty Hall sen-

tences

We will show that ϕMH , ϕMH1 and ϕMH2 are semantically indeterminate on
the model set M with three elements. There are at least three ways to do this.

One way would be to reason as follows. We have established thatG(M, ϕMH), G(M, ϕMH1)
and G(M, ϕMH2) de�ne the Monty Hall game and its variants. Given that the
latter are indeterminate in the game theoretical sense, that is, there is no equi-
librium in the games, then it also follows that that the former are indeterminate
in the semantical sense. This argument would require that we further establish
an equivalence between the lack of an equilibrium in the latter games and and
the lack of a winning strategy for either player in the semantical game. Such an
argument for the general case may be found in Barbero and Sandu (2014).

A second way would be to use the de�nitions of truth and falsity in Skolem
semantics to show that ϕMH , ϕMH1 and ϕMH2 are semantically indeterminate
in M. The de�nitions tells us that:

� M �+
Sk ϕMH i� there exist i ∈M and a function fi in M such that

M, i, fi � ∀x∀z[x 6= z ∧ c 6= z → f(y, z) = x]

and

� M �−Sk ϕMH i� there exist j ∈M and a function gj in M such that

M, j, gj � ∀y∀t[d 6= g(x, y) ∧ y 6= g(x, y) ∧ t 6= d]

We could then show that none of the conditions on the right side of the equiv-
alences holds.

We prefer to apply a simpler, third alternative procedure based on Seven-
ster's result described earlier. We �rst notice that each of the three pre�xes
is neither branching nor signaling. By Sevenster's theorem, each of the three
sentences is truth equivalent with an ordinary FOL sentence. In the case of
ϕMH1

∀x(∃y/{x})∀z(∃t/{x})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)]

we obtain its �rst-order equivalent by the following steps.

� First we swap the �rst two quanti�ers:

∃y(∀x/ {x)})∀z(∃t/{x})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)].

� We then empty the slash set of the universal quanti�er in the resulting
sentence:

∃y∀x∀z(∃t/{x})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)].

12



� Next we swap the two universal quanti�ers:

∃y∀z∀x(∃t/{x})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)]

� We swap the last two quanti�ers:

∃y∀z∃t(∀x/ {t})[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)].

� Finally we empty the slashed set of the universal quanti�er:

∃y∀z∃t∀x[x 6= z ∧ y 6= z → (t 6= y ∧ x = t)].

Let us denote this sentence by ϕ+
MH1. By Sevenster's result, ϕMH1 and ϕ+

MH1

are truth equivalent on all models. In particular, they are truth equivalent on
our model set M with three elements. However it is easy to show that the
�rst-order sentence ϕ+

MH1 is not true in M (i.e. it is false in M). We conclude
that

M 2+ ϕMH1.

On the other side, from the game-theoretical semantics of IF logic, we know
that

M |=− ϕMH1 iff M |=+ ¬ϕMH1.

But ¬ϕMH1 is truth equivalent with the IF sentence which is obtained by
pushing negation infront of the atomic formulas in such a way that every quan-
ti�er and connective is changed into its dual. In our case this sentence, let us
denote it by ϕ∗MH1, is

∃x(∀y/{x})∃z(∀t/ {x})[x 6= z ∧ y 6= z ∧ (x 6= t ∨ t = y)].

Applying Sevenster's transformations, ϕ∗MH1 can be shown to be equivalent to
the �rst-order sentence

∃x∀y∃z∀t[x 6= z ∧ y 6= z ∧ (x 6= t ∨ t = y)].

This sentence is false in M. Thus

M 2+ ϕMH1 and M 2´- ϕMH1 .

A similar argument also shows that

M 2+ ϕMH2 and M 2− ϕMH2

and
M 2+ ϕMH and M 2− ϕMH .

(We are indebted to Barbero for the above argument). We have reached
the conclusion that ϕMH , ϕMH1 and ϕMH2 are neither true nor false on M. Of
course this semantic indeterminacy mirrors the lack of pure strategy equilibria
in the three Monty Hall games discussed earlier.
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The question which interests us now is: Is their a way to distinguish between
ϕMH , ϕMH1 and ϕMH2? Of course the distinction cannot be spelled out in
terms of truth-functional content, that is, by evaluating what the three sentences
�assert� or �exclude�: for, as the above argument showed, what these sentences
assert is false, and what they exclude is also false. Still, there are di�erences
between them. Consider, for instance, ϕMH1 and ϕMH2: the condition (t 6=
y ∧ x = t) makes the �switch� strategy weakly dominant, whereas the condition
(t = y∧x = t) makes the �stay� strategy to be so. Is there a way to incorporate
this di�erence into the semantical values of the two sentences?

The framework which yields the desired result has been worked out for the
�rst time in Sevenster (2006), developed in Sevenster and Sandu (2010), and
Mann, Sandu and Sevenster (2011). The application of this framework to Monty
Hall has been given for the �rst time by Mann (2010), and developed in Sandu
(2015).

7 Mixed strategy equilibria: von Neumann's Min-
imax Theorem

We shall overcome the indetermincy of the three games above by an appeal
to a technique which is well known in classical game theory: von Neumann's
Minimax Theorem.

Let
Γ = (S∃, S∀, u∃, u∀)

be a two player, win-lose, �nite strategic game, where Sp is the set of pure
strategies of player p. A mixed strategy ν for player p is a probability distribu-
tion over Sp, that is, a function ν : Sp → [0, 1] such that

∑
τ∈Si

ν(τ) = 1. ν is
uniform over S′i ⊆ Si if it assigns equal probability to all strategies in S′i and
zero probability to all the strategies in Si − S′i. The support of ν is the set of
strategies to which ν assigns non-zero probability. Obviously we can simulate
a pure strategy σ with a mixed strategy ν such that ν assigns σ probability 1.
Given a mixed strategy µ for player ∃ and a mixed strategy ν for player ∀, the
expected utility for player p is given by:

Up(µ, ν) =
∑
σ∈S∃

∑
τ∈S∀

µ(σ)ν(τ)up(σ, τ).

Let µ be a mixed strategy for player ∃ and ν a mixed strategy for player ∀.
The pair (µ, ν) is an equilibrium if the following two conditions hold:

1. for every mixed strategy µ′, of Eloise, U∃(µ, ν) ≥ U∃(µ′, ν)

2. for every mixed strategy ν′ of Abelard, U∀(µ, ν) ≥ U∀(µ, ν′).

The following two results are well known.

Theorem (von Neuman's Minimax Theorem; von Neumann 1928) Every �nite,
two-person, constant-sum game has an equilibrium in mixed strategies.
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Corollary Let (µ, ν) and (µ′, ν′) be two mixed strategy equlibria in a constant
sum game. Then Up(µ, ν) = Up(µ

′, ν′)

These two results guarantee that we can talk about the value V (Γ) of a strategic

game Γ: it is the expected utility returned to player ∃ by any equilibrium in the
relevant strategic game.

The next results will help us to identify equilibria. Their proof may be found
in Mann, Sandu and Sevenster (2011), chapter 7.

We start with a couple of de�nitions.
Let Γ = (S∃, S∀, u∃, u∀) be a strategic game where Sp is the set of pure

strategies of player p. For σ, σ′ ∈ S∃, we say that σ′ weakly dominates σ if the
following two conditions hold:

(i) For every τ ∈ S∀ : u∃(σ
′, τ) ≥ u∃(σ, τ)

(ii) For some τ ∈ S∀ : u∃(σ
′, τ) > u∃(σ, τ).

A similar notion is de�ned for Abelard.
We say that σ′ is payo� equivalent to σ if for every τ ∈ S∀ : u∃(σ

′, τ) =
u∃(σ, τ).

A similar notion is de�ned for Abelard.
We list three results from the game-theoretical literature. The �rst one en-

ables one to identify equilibria in mixed strategies. It is given here in order to
illustrate how indeterminate IF sentences can be distinguished by their prob-
abilistic semantics. The other two enable us to eliminate weakly dominated
strategies and payo� equivalent ones. They will be applied to the Monty Hall
sentence.

For the �rst result we recall that we can simulate a pure strategy with a
mixed strategy which assigns 1 to that pure strategy and 0 to the rest.

Then for σ ∈ S∃ and ν a mixed strategy for Abelard we have:

Up(σ, ν) =
∑
τ∈S∀

ν(τ)up(σ, τ).

Similarly, for τ ∈ S∀ and µ a mixed strategy for Eloise, we have

Up(µ, τ) =
∑
σ∈S∃

µ(σ)up(σ, τ).

Proposition Let µ∗ be a mixed strategy for Eloise and ν∗ a mixed strategy
for Abelard in a �nite, two player strategic game Γ. The pair (µ∗, ν∗) is
an equilibrium in Γ if and only if the following conditions hold:

1. U∃(µ
∗, ν∗) = U∃(σ, ν

∗) for every σ ∈ S∃ in the support of µ∗

2. U∃(µ
∗, ν∗) = U∀(µ

∗, τ) for every τ ∈ S∀ in the support of ν∗

3. U∃(µ
∗, ν∗) ≥ U∀(σ, ν∗) for every σ ∈ S∃ outside the support of µ∗

4. U∀(µ
∗, ν∗) ≥ U∀(µ∗, τ) for every τ ∈ S∀ outside the support of ν∗.
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Proof. See Osborne 2003, p. 116.

Here is a well known example in the IF literature (see e.g. Sevenster, 2006),
where the above proposition is applied. We compare two strategic IF games,
Γ(M, ϕMP ) and Γ(M, ϕIMP ) where M = {1, 2, 3, 4} , ϕMP is the Matching Pen-
nies sentence ∀x(∃y/ {x})x = y and ϕIMP is the Inverted Matching Pennies
sentence ∀x(∃y/ {x})x 6= y. The �rst game is represented on the left and the
second on the right:

τ1 τ2 τ3 τ4
σ1 (1, 0) (0, 1) (0, 1) (0, 1)
σ2 (0, 1) (1, 0) (0, 1) (0, 1)
σ3 (0, 1) (1, 0) (1, 0) (0, 1)
σ4 (0, 1) (0, 1) (0, 1) (1, 0)

τ1 τ2 τ3 τ4
σ1 (0, 1) (1, 0) (1, 0) (1, 0)
σ2 (1, 0) (0, 1) (1, 0) (1, 0)
σ3 (1, 0) (1, 0) (0, 1) (1, 0)
σ4 (1, 0) (1, 0) (1, 0) (0, 1)

We show that the strategy pair (µ∗, ν∗) where both µ∗ and ν∗ are uniform
strategies with suport M = {1, 2, 3, 4}. First notice that in the �rst game
U∃(µ

∗, ν∗) = 1/4 and thus U∀(µ
∗, ν∗) = 3/4. Notice that clauses (3) and

(4) of the above Proposition are trivially satis�ed. For clause (1), consider σ1
and recall the equation

U∃(σ1, ν
∗) =

∑
τ∈SII

ν∗(τ)uI(σ1, τ)

to get U∃(σ1, ν
∗) = 1/4. A similar computation establishes clause (2). The

argument for the second game is similar.

Proposition Let Γ = (S∃, S∀, u∃, u∀) be a 2 player, �nite, win-lose strategic
game. Then Γ has a mixed strategy equilibrium (µ, ν) such that for each
player p none of the pure strategies in the support of his mixed strateggy
is weakly dominated in Γ. (The proof requires the �niteness of the game).

Proposition Let Γ = (S∃, S∀, u∃, u∀) be a 2 player, �nite, win-lose strategic IF
game. Then Γ has a mixed strategy equilibrium (µ, ν) such that for each
player there are no pure strategies in the support of his mixed strategy
which are payo� equivalent.

We apply these results to the Monty Hall game. The second proposition allows
us to reduce the game to the smaller one:

(1, g1) (2, g2) (3, g3)
(1, h1) (1, 0) (0, 1) (0, 1)
(2, h2) (0, 1) (1, 0) (0, 1)
(3, h3) (0, 1) (0, 1) (1, 0)
(1, f1) (0, 1) (1, 0) (1, 0)
(2, f2) (1, 0) (0, 1) (1, 0)
(3, f3) (1, 0) (1, 0) (0, 1)
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We notice that each �stay� strategy is weakly dominated by some �switch�
strategy. We apply the �rst proposition and reduce the game to:

(1, g1) (2, g2) (3, g3)
(1, f1) (0, 1) (1, 0) (1, 0)
(2, f2) (1, 0) (0, 1) (1, 0)
(3, f3) (1, 0) (1, 0) (0, 1)

Let µ be the uniform probability distribution µ(1, fi) = 1/3 and ν the uniform
probability distribution ν(j, gj) = 1/3. It may be shown that this is an equilib-
rium in the game and that the expected utility of player C for this equilibrium
is 2/3.

We consider the �rst variant of the MH game. By applying the two propo-
sitions above we obtain the game described in the last paragraph. Hence it's
value is the same, 2/3.

As for the last game, after applying the two propositions we reduce it to

(1, g1) (2, g2) (3, g3)
(1, h1) (1, 0) (0, 1) (0, 1)
(2, h2) (0, 1) (1, 0) (0, 1)
(3, h3) (0, 1) (0, 1) (1, 0)

Let µ be the uniform probability distribution µ(1, hi) = 1/3 and ν the uni-
form probability distribution ν(j, gj) = 1/3. It may be shown that this is an
equilibrium in the game and that the expected utility of player C for this equi-
librium is 1/3.

8 Some general remarks

We shall take the probabilistic value of an IF sentence ϕ on a �nite model M to
be the value of the 2 player, win-lose, �nite strategic game which can be obtained
from G(M, ϕ) along the procedure illustrated in the preceding section. It is the
expected utility returned to Eloise by any of the mixed strategy equilibria in this
game. The existence of such an equilibrium is guaranteed by von Neumann's
Minimax theorem. We denote the probabilistic value by P (ϕ,M). Mann, Sandu
and Sevenster (2011) collect the basic results on probabilistic IF logic. They
prove, among other things, the following:

P1 P (ϕ ∨ ψ,M) = max(P (ϕ,M), P (ψ,M)).

P2 P (ϕ ∧ ψ,M) = min(P (ϕ,M), P (ψ,M)).

P3 P (¬ϕ,M) = 1− P (ϕ,M).

P4 P (∃xϕ,M) = max {P (ϕ, b,M) : b ∈M} .

P5 P (∀xϕ,M) = min {P (ϕ, b,M) : b ∈M}.
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In P4 and P5 ∃xϕ and ∀xϕ are sentences and P (ϕ, b,M) is the value of strategic
game Γ(M, s, ϕ) where s is the assignment which assigns b to x.

Let us give an example which illustrates how we compute the probabilistic
value of an IF sentence form the probabilistic values of its subformulas. The
example if from Mann, Sandu and Sevenster 2011, p. 168. Consider the IF
sentence ψ

∃u∀w(u 6= w ∨ ϕMP )

on a �nite model-set M with n elements. Here ϕMP is the Matching Pennies
sentence.

P4 and P5 tell us that

NE(ψ,M) = maxaminb {NE(u 6= w ∨ ϕMP , (u, a), (w, b),M) : a, b ∈M} .

By P1, we know that

NE(u 6= w ∨ ϕMP , (u, a), (w, b),M) =
max(NE(u 6= w, (u, a), (w, b),M), NE(ϕMP , (u, a), (w, b),M)).

We know already that NE(ϕMP , (u, a), (w, b),M) is 1/n. By P1 we get

NE(u 6= w ∨ ϕMP , (u, a), (w, b),M) = max(NE(u 6= w, (u, a), (w, b),M), 1/n).

From (E1) and (E2) we know that NE(u 6= w, (u, a), (w, b),M) is 1 if a 6= b
and 0 otherwise. Thus for a �xed a,minb {NE(u 6= w ∨ ϕMP , (u, a), (w, b),M) : b ∈M}
is reached when w is a and this minimum is 1/n. We conclude that maxaminb
is 1/2.

On the basis of P1-P3 it is straightforward to show that the following hold
for any IF sentence ϕ and �nite model M:

Ax1 P (ϕ,M) ≥ 0

Ax2 P (ϕ,M) + P (¬ϕ,M) = 1

Ax3 P (ϕ,M) + P (ψ,M) ≥ P (ϕ ∨ ψ,M)

Ax4 P (ϕ ∧ ψ,M) = 0→ P (ϕ,M) + P (ψ,M) = P (ϕ ∨ ψ,M).

The axioms are known as Kolmogorov axioms of probabilities.
It has been pointed out that there is another principle which may be con-

sidered natural in the context of logic:

S. (Substitutivity) If ϕ and ψ are truth equivalent, then P (ϕ,M) = P (ψ,M)
for every �nite model M.

The IF sentence ϕMH and the �rst-order sentence ∃y∀z∃t∀x[x 6= z ∧ y 6= z →
x = t] which is equivalent with it provide a counter-example to (S). On any
model M with at least three elements, P (ϕMH ,M) 6= 0, P (ϕMH ,M) 6= 1 but

P (∃y∀z∃t∀x[x 6= z ∧ y 6= z → x = t],M) = 0.

For a more detailed comparison between IF probabilities and other kinds of
probabilistic semantics we refer to Sandu (forthcoming 2015b).
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