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Abstract
Prominence perception has been known to correlate with a com-
plex interplay of the acoustic features of energy, fundamental
frequency, spectral tilt, and duration. The contribution and im-
portance of each of these features in distinguishing between
prominent and non-prominent units in speech is not always
easy to determine, and more so, the prosodic representations
that humans and automatic classifiers learn have been diffi-
cult to interpret. This work focuses on examining the acous-
tic prosodic representations that binary prominence classifica-
tion neural networks and autoencoders learn for prominence.
We investigate the complex features learned at different layers
of the network as well as the 10-dimensional bottleneck fea-
tures (BNFs), for the standard acoustic prosodic correlates of
prominence separately and in combination. We analyze and vi-
sualize the BNFs obtained from the prominence classification
neural networks as well as their network activations. The exper-
iments are conducted on a corpus of Dutch continuous speech
with manually annotated prominence labels. Our results show
that the prosodic representations obtained from the BNFs and
higher-dimensional non-BNFs provide good separation of the
two prominence categories, with, however, different partition-
ing of the BNF space for the distinct features, and the best over-
all separation obtained for F0.
Index Terms: prosody, prominence, neural networks, autoen-
coder, bottleneck features, prominence classification

1. Introduction
Spoken language contains multiple levels of information, rang-
ing from linguistic content to cues about the speaker. Prosody
can be broadly seen as a level of representation that reflects
acoustic-phonetic variation that extends across long temporal
segments in speech and conveys information in addition to the
lexical content. In general, prosody and prosodic phenomena
involve aspects of speech that extend the individual phoneme
and may cover sequences of words and entire phrases (see
[1, 2, 3] for related definitions). Prominence is a prosodic phe-
nomenon that conveys the subjective impression of emphasis
and is defined as the perception of a linguistic unit standing out
from its environment (see [4, 5, 6] for related definitions). Ear-
lier, many studies focused on determining the acoustic corre-
lates of prominence [7, 8, 9], and, more recently, on methods
for its automatic detection [10, 11, 12, 13, 14]. One interest-
ing aspect on the study of prominence that has been enabled by
the success of deep neural networks (DNNs), and that has not
been widely explored, is whether DNNs are capable of learning
prominence-like representations of speech. In particular, under-
standing the learning behavior and internal representations of
prominence by DNNs can potentially provide interesting and
important insights regarding the acoustic prosodic characteriza-
tion of prominence.

Earlier work on prominence has established a number of
different features that seem to hold a role in the acoustic char-
acterization of prominent units in speech. In particular, four
acoustic features have been found to correlate with the inci-
dence of prominent units in speech: energy [9, 15, 7], fun-
damental frequency [8], spectral tilt [16, 17], and duration
[15, 7]. In general, there seems to be a complex interplay of the
four acoustic correlates of prominence where the exact acous-
tic specification of prominence-encoding features cannot be al-
ways easily determined (see, e.g., [7]). This becomes particu-
larly evident when considering that different feature or feature
set specifications may be descriptive of prominence (e.g., [18])
but also when looking into the large inter-annotator differences
in marking prominences [10]. The latter observation makes the
study of the complex feature representations that DNNs learn
over the acoustic prosodic space particularly interesting as they
can potentially point to the aspects of the acoustic space that are
most helpful in identifying prominence categories.

Previous work on exploring how neural networks represent
different aspects of speech has focused primarily on investigat-
ing the learning of phonetic representations [19, 20, 21]. This
typically involves two general approaches: (i) an unsupervised
one, where a neural network autoencoder is used in order to in-
vestigate whether the network is capable of learning phoneme-
like representations without explicit labels [22], (ii) a super-
vised one, where the neural network is trained with phone labels
for the task of phoneme recognition [20, 19]. In both cases, in-
vestigations are focused on analyzing the representational prop-
erties of the complex features learned at different layers of the
network and also at different nodes. In the case of the autoen-
coder the interest also falls in how and whether the reduced
(compressed) representations of the neural network at a bottle-
neck (a layer having a smaller number of hidden units compared
to other hidden layers) can represent the phonetic categories
(e.g., [22]). In general, this type of bottleneck features (BNFs)
have been shown to be effective in learning low-dimensional
representations of high-dimensional inputs [23].

In this work we investigate the acoustic prosodic represen-
tations that neural networks learn when distinguishing between
prominent and non-prominent units in speech. As prosody and
prosodic phenomena reflect variations that extend beyond single
phonetic segments, our aim is to explore large acoustic contexts
over the three prosodic correlates of prominence: energy, F0,
and spectral tilt. The experimental design involves the use of
generic feed-forward DNNs on two tasks: (i) a binary promi-
nence classification task, and (ii) an autoencoder DNN that
compresses the acoustic input to 10-dimensionsal BNFs. In ad-
dition, we run standard supervised classification on our data to
obtain a baseline result of the prominence class separation. Fi-
nally, we also visualize our results in order to get better insights
of the network representations at the different hidden layers and
observe the distinct patterns that are formed. Our experiments
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Figure 1: Overview of the experimental setup.

are conducted on a corpus of continuous Dutch speech with
manual annotations of prominence.

2. Materials and Methods
The material used in this work consists of Dutch continuous
speech taken from Dutch news broadcast recordings. Data are
analyzed using the three acoustic prosodic features of energy,
F0, and spectral tilt. All features are further processed into vec-
tors that are then fed to two distinct neural networks (see also
Fig. 1). These are further described next.

2.1. The Spoken Dutch Corpus

In the current experiments, the Spoken Dutch Corpus (Corpus
Gesproken Nederlands; CGN) was used in order to evaluate the
prominence class differences in the DNNs for Dutch continu-
ous speech [24]. The CGN corpus is a database of contem-
porary standard Dutch containing material spoken by adults in
the Netherlands and Flanders. CGN contains nearly 9 million
words that correspond to approximately 800 hours of speech
data. Two thirds of the CGN material consist of recordings from
the Netherlands and one third from Flanders. The corpus con-
tains various manually generated or verified annotations such
as phonetic transcriptions, word level alignment, and prosodic
annotations (see [25] for a description). For the current study,
the prosodically annotated subset of the Dutch news broadcast
(component k) section of the corpus was utilized that consists
of 134 news broadcasts spoken by 10 different speakers (9 male
and 1 female) and contains a total of 7438 words (44.3 minutes
of speech data; 42.6% of the words marked as prominent with
the average per speaker ratio of prominent words being 0.43
with σ=0.03). Each sentence of the prosodically annotated sub-
set of component k was hand-labeled by two trained annotators
(see [26] for a description).

For the classification experiments, a 10-fold cross-
validation procedure was used where, at each fold, one speaker
was left for testing and the remaining 9 were used for training
the classification network —no same speaker occuring at the
same time in the training and test sets.

2.2. Prosodic Features

2.2.1. Feature extraction

Energy, F0, and spectral tilt were used as the primary features
in the experiments. Word durations were extracted from the
corpus annotations but were not added explicitly into the data
(word durations are used for the computation of the feature de-
scriptors over words). Speech signals were first downsampled
to 8 kHz and all features were computed using a 25-ms window
5-ms frame shift. F0 contours were computed using the YAAPT
pitch tracking algorithm [27], spectral tilt was computed from
the Mel-frequency cepstral coefficients (MFCCs) and taking the
first (C1) MFCC (see, e.g., [28, 29]), and signal energy based
on Eq. (1) (where x denotes the signal, t the current sample, τ
the frame shift, and w the frame length; see, e.g., [10]).

EN(n) =

τ=w
2
−1∑

τ=−w
2

|x(t+ τ)|2 (1)

2.2.2. Normalization

All computed acoustic features were normalized in order to ac-
count for inter- and intra-talker variation. In particular, F0 was
semitone normalized with respect to the median F0 for each
speaker according to Eq. (2), spectral tilt was z-score normal-
ized per speaker, and energy was logarithmically normalized.

F0′(n) = 12 · log2
( F0(n)

F0median

)
(2)

2.2.3. Statistical descriptors and word-vectors

To obtain prosodic representations over larger contexts, words
were selected as the unit of analysis and five statistical descrip-
tors were computed using the normalized feature values. In par-
ticular, the five descriptors utilized are the: mean, standard
deviation, maximum, minimum, and range (the difference be-
tween the maximum and minimum for a specific feature over
a word). For each word and each feature, one vector was con-
structed containing the five descriptors.

After the word-level computation of the statistical descrip-
tors, and in order to represent larger acoustic contexts in the
data, for each word, the preceding and forthcoming five word
vectors were included in each center word (see also also Fig. 1).
This resulted to 55-dimensional vectors for each word in the
data. Note also that in the case of feature combinations, the
resulting vector dimensions were 110 and 165 when two and
three features were combined respectively —for simplicity of
presentation we refer to the basic setup using one feature and
55-dimensional vectors.

2.3. Prominence classification neural network

For the prominence classification task we built a standard feed-
forward neural network with densely connected layers (see also
Fig. 1). The network input was 55-dimensional word vectors
and the output a 1-dimensional binary prominence class label.
Inputs to the network were z-scored normalized across all data
to ensure proper scaling. The network was configured using rec-
tified linear unit activation functions for the hidden layers, a sig-
moid output layer, 100 epochs, minibatch size of 50, and a con-
figuration layout of dimensions d = [256,256,10,256,256] for
the hidden layers. The model was trained using Adam optimizer
with a learning rate of 0.001 and with binary cross-entropy as
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Table 1: Prominence classification performance for all acoustic
features and their combinations for the CGN component-k data.
Values in bold indicate the best feature and feature combination
performance.

ACC PRC RCL F
EN 77.12 77.23 77.12 77.10
F0 77.53 77.73 77.73 77.43
ST 75.50 75.56 75.50 75.53
EN+F0 81.73 81.81 81.73 81.70
EN+ST 77.91 78.11 77.91 77.80
F0+ST 81.30 81.48 81.30 81.24
EN+F0+ST 82.50 82.64 82.51 82.49

the cost function.

2.4. Autoencoder

For the autoencoder, similarly as in the classification network, a
standard feed-forward neural network with densely connected
layers was used. The network input and output was 55-
dimensional word vectors. Inputs to the network were z-scored
normalized across all data. The network was configured using
rectified linear unit activation functions for the hidden layers,
100 epochs, minibatch size of 50, and a configuration layout
of dimensions d = [256,256,10,256,256] for the hidden layers.
The model was trained using Adam optimizer with a learning
rate of 0.001 and with binary mean squared error (MSE) as the
cost function.

2.5. Visualization

To visualize the complex feature representations at the different
hidden layers we needed to reduce the high-dimensional data to
two-dimensional representations. For this purpose, we utilized
standard principal component analysis (PCA) over the hidden
network activations.

2.6. Evaluation

To evaluate the baseline classification performance in our data
we compared the manual binary prominence markings from the
corpus annotations with the word-level hypotheses provided by
the classifier. As an additional reference, in some of the re-
ported experiments, we also used the gender and speaker labels
from the corpus annotations. To measure performance, we used
the model evaluation metrics of precision (PRC), recall (RCL),
their harmonic mean (F-value), as well as accuracy (ACC).

3. Results
We first present the results of the supervised classification ex-
periments for prominence and then the experiments on the
acoustic prosodic representations of the two neural networks.

3.1. Supervised classification

The prominence classification neural network (see section 2.3)
was evaluated for the features of energy, F0, spectral tilt, and
their combinations in a 10-fold cross-validation setup. The re-
sults are presented in Table 1. The best individual feature per-
formance in our data was reached for F0 with an accuracy of
77.53% and the best feature combination for energy, F0, and

Table 2: kNN performance of the representations across the hid-
den layers for the classification network and the autoencoder.
Results are presented with reference to prominence, gender, and
speaker labels.

256 256 10 256 256
Classif. Net. 80.49 83.68 88.35 88.61 88.61
AE 70.77 67.52 64.57 65.6 67.10
Classif. Net. 40.01 36.88 28.72 28.19 26.55
AE 40.34 38.52 35.72 35.36 35.91
Classif. Net. 93.44 91.69 89.69 89.68 89.34
AE 97.66 97.47 97.80 96.90 96.95

256 256 10 256 256
Classif. Net. 78.73 82.92 87.46 87.60 87.47
AE 66.44 63.27 62.32 61.80 61.41
Classif. Net. 33.69 30.59 25.79 25.87 25.18
AE 22.97 21.52 20.67 19.75 20.15
Classif. Net. 90.75 89.67 89.36 89.32 89.42
AE 89.73 89.53 88.95 89.63 89.54

256 256 10 256 256
Classif. Net. 79.45 84.63 88.38 88.39 88.39
AE 66.15 61.45 58.85 59.71 59.71
Classif. Net. 36.31 33.83 26.37 26.71 25.53
AE 29.33 27.04 26.78 25.67 26.15
Classif. Net. 90.46 89.86 89.72 89.40 89.58
AE 90.40 90.37 90.44 90.04 89.86
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spectral tilt with 82.5%. Overall, all features seem to contribute
in the classification of prominence, with a combination of all
features giving the best performance in the task.

3.2. Prominence classification representations

The prosodic representations that binary prominence classifica-
tion networks learn were investigated for all features and their
combinations (see Table 2; only three individual acoustic fea-
tures are presented here due to space limitations). To quantify
the differences in the hidden layers network activations for the
distinct features and their combinations, we used the k-nearest
neighbor (kNN) algorithm. kNN was given the layer activations
as input (separately for each layer) with three different sets of
labels as reference: the prominence class, gender, and speaker
label. The inclusion of the additional labels was aimed at gain-
ing a better understanding of the different aspects of speech that
the hidden layers might be representing. kNN was run on ran-
domly selected test activations (10-fold setup) combined with
equal number of randomly selected training activations.

The results for the classifier indicate, as expected, that the
hidden layers are becoming increasingly better at discriminat-
ing between the two prominence classes (see Table 2). Interest-
ingly, the classifier already from the first hidden layer seems to
be capable of performing a good discrimination of the gender
of the speakers and less so, of the speakers’ label. This discrim-
inatory capacity for both the gender and speaker is decreasing
with the successive hidden layers towards the network output.
In general, the prosodic representations for prominence seem
to be relatively robust across the hidden layers for all features
examined.

3.3. Autoencoder representations

In contrast to the prosodic representations of the prominence
classification network, the autoencoder representations create a
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Figure 2: Visualization of the autoencoder bottleneck code for F0, energy, and spectral tilt. Top panel: plots of the two principal
components that best describe prominence where yellow denotes the prominent and green the non-prominent classes. Bottom panel:
plots of the first and second principal components describing speakers.

different overall picture —for the autoencoder, the same type of
analysis was performed using kNN and the results are presented
in Table 2. In this case, there are clear differences between the
distinct features in how well they can discriminate between the
prominence classes. In particular, the feature with the best over-
all prosodic representation for prominence is F0, whereas the
different feature combinations do not seem to improve over F0.
Interestingly, the autoencoder seems to be able to discriminate
well the prominence classes while performing the best sepa-
ration for the gender and the worst for speakers’ labels. It is
noteworthy that although the speakers’ performance is low for
the autoencoder, it is higher than the best performance on the
same labels the classification network reached. These patterns
are preserved in the network and are observed also in the bot-
tleneck layer of the network. Fig. 2 presents an overview of the
main findings for the 10-dimensional BNFs of the autoencoder.

4. Discussion and Conclusions
The results presented in this work provide insights on the
prosodic representations that neural networks learn when evalu-
ating prominence. In particular, it was shown that prosodic rep-
resentations obtained from the BNFs and higher-dimensional
non-BNFs provide good separation of the two prominence cat-
egories for both the binary prominence classification task and
the autoencoder. It seems that the autoencoder is capable of
representing and preserving the separation of the prominence
categories across the layers, but more so, it can also discrim-

inate between other acoustic aspects in the signal such as the
gender and speaker information.

Despite normalization of the acoustic features, principal
component analysis of the autoencoder bottleneck features (see
Fig. 2) suggests that much of the variation observed in the
acoustic features is due to speaker specific idiosyncrasies. Ob-
serving the speaker performance results in Table 2, it appears
that the classification network learns to normalize this variance
in early layers, while the top layers concentrate on the actual
task of prominence classification.

Furthermore, the results from the binary prominence clas-
sification provided additional evidence of the importance of the
three acoustic correlates of prominence for Dutch. These results
are also close to those of an earlier study on the same data [13].

In this exploratory study we investigated the role of three
acoustic features over words within a fixed temporal (word)
context. In future work, we aim to extend the experiments with
larger datasets and also include additional features, such as the
Mel-frequency cepstral coefficients (MFCCs) and duration. In
addition, it would be of interest to investigate the importance
of using different underlying linguistic units, such as syllables,
and different ways of modeling the temporal context.
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