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Jan von Plato

FROM GENTZEN TO JASKOWSKI AND BACK:

ALGORITHMIC TRANSLATION OF DERIVATIONS

BETWEEN THE TWO MAIN SYSTEMS OF NATURAL

DEDUCTION

Abstract

The way from linearly written derivations in natural deduction, introduced by

Jaskowski and often used in textbooks, is a straightforward root-first translation.

The other direction, instead, is tricky, because of the partially ordered assumption

formulas in a tree that can get closed by the end of a derivation. An algorithm is

defined that operates alternatively from the leaves and root of a derivation and

solves the problem.
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1. Linear proofs

Proofs are conventionally given as texts, i.e., linear successions of sentences.

Each step of deduction can refer to one or several preceding sentences as

a justification. With the advent of proof systems in the 1930s, a tree form

was taken into use in which the premisses of a deductive step stand on an

inference line immediately above the conclusion and need not be singled

out separately. In such proof trees, the deductive dependences of formulas

are uniquely displayed through the top formulas of a subtree determined

by a given formula in the tree. I shall define a translation algorithm for

the conversion of tree proofs into linear proofs. This algorithm may look

somewhat complicated in an abstract formulation, but when put to use, it is

easily memorized and there is no difficulty in its application. The algorithm
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is illustrated through solutions of problems rather than theorems, marked

by the traditional QEF, quod erat faciendum.

I shall use a system of linear natural deduction with a handsome bracket

notation for the handling of temporary hypotheses, as found in the Swedish

compendium of Dag Prawitz, ABC i Symbolisk Logik. The system derives

from previous similar systems of Irving Copi and Frederic Fitch that may

go back to the work of Jaskowski (1934). The derivation below is self-

explanatory of the rule system. Each line is either an assumption, a hy-

pothesis to be closed, or a formula derived from previous ones, with the

rule and line or lines of the premisses written next to the formula. The

order in rule ⊃E is that the major premiss comes first.

Example derivation in linear natural deduction: A ⊃ B ⊢ ¬(A&¬B)

1. A ⊃ B assumption

—– 2. A&¬B hypothesis: goal ⊥

3. A 2,&E
4. ¬B 2,&E
5. B 1, 3,⊃E
6. ⊥ 4, 5,⊃E

————————–
7. ¬(A&¬B) 2–6,⊃I

The linear variety of natural deduction allows the construction of deriva-

tions in steps, one after the other, which feature makes it the accessible

way to introduce the topic as exemplified by von Plato (2013). On the

other hand, a formulation of rules for disjunction and existence elimination

in a pure form requires modifications of the bracket notation that appear

somewhat ad hoc. Moreover, there is the grave defect that what depends

on what is not counted: Each formula apparently depends on the open

assumptions above it. This situation is corrected in Gentzen’s original sys-

tem of natural deduction in which derivations are arranged in a tree form,

with the following properties:

1. Each formula occurrence is either an initial formula (an as-

sumption or temporary hypothesis) or the conclusion of exactly

one logical rule.

2. Each formula occurrence is either the conclusion of the whole

derivation or the premiss of exactly one logical rule.
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3. Each formula occurrence in a derivation defines a subderiva-

tion the open assumptions of which are those initial formulas

of the subtree that have not been closed by the formula occur-

rence.

The subderivations can be composed in new ways as in proofs of normal-

ization that don’t work in the linear variety; the latter does not have the

properties that are needed for the composition of derivations. Tree deriva-

tions were in practice a novelty with Gentzen and their widespread use

in logic derives from his doctoral thesis (1934–35). He took the idea over

from the work of Paul Hertz of the 1920s. The way from linear to tree

derivations is easily established:

Table 1. Translation of linear derivations to tree form

1. Write down the endformula and a line above it.
2. Write next to the line the rule that was used in concluding

the endformula. If it was ⊃I, write after the rule the number

of the line on which the hypothesis closed by the rule occurred.
3. Write above the line, from left to right, the formula or formu-

las that correspond to the numbers that justified the application

of the rule. If it was ⊃I, write the consequent of the implication.
4. Repeat the above until you come along each branch of the

derivation tree to an assumption. If it is temporary, i.e., a

hypothesis, write the number of its line above it.

Problem 1. To apply the translation algorithm to the linear derivation

that establishes A ⊃ B ⊢ ¬(A&¬B).

Solution.

2

A&¬B
¬B

&E2

A ⊃ B

2

A&¬B
A

&E1

B
⊃E

⊥
⊃E

¬(A&¬B)
⊃I,2

QEF.

The number 2 is found also above the hypothesis A&¬B, to indicate which

hypothesis is closed where in a derivation. That assumption was used twice

in the linear variant, and the formula appears correspondingly with two

occurrences in the tree. The closed assumption is an initial formula. – The
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only thing that reveals the origin of the derivation as a machine-produced

result is the label 2 in place of 1 that would haven been chosen by a living

logician who synthesizes such a derivation.

Note that there is no need to write, next to the rules, where their

premisses come from, because we have by the translation:

In a derivation tree, the premisses of a rule stand directly above

and the conclusion directly below the inference line of the rule.

2. Linearization of tree derivations

The linearization of tree derivations is somewhat tricky because of a con-

dition that has to be respected:

Bracket condition. In a linear derivation, the latest open

assumption has to be closed first.

The condition can be expressed in graphical terms as: The brackets must

not cross each other. They can be nested or consecutive. We shall look at

an example to see what is needed:

⊢ A&B ⊃ ¬¬A&¬¬B

1

¬A

3

A&B
A

&E1

⊥
⊃E

¬¬A
⊃I,1

2

¬B

3

A&B
B

&E2

⊥
⊃E

¬¬B
⊃I,2

¬¬A&¬¬B
&I

A&B ⊃ ¬¬A&¬¬B
⊃I,3

In a linear derivation, the assumption A&B needs to be closed after the

assumptions ¬A and ¬B have been closed. Thus, one has to look at the tree

derivation at times down from the initial formulas at the leaves of the

derivation, at other times up from the endformula.

Table 2. Linearization of tree derivations

1. Number the open assumptions in a tree, from left to right in

the obvious order, with each repetition of an assumption getting

the same number, and let these numbers be 1 to n.
2. Continue the numbering of the formulas from formula 1

down until a two-premiss rule is reached, and repeat this in left

to right order until formula n, with the last formula numbered

being m.
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3. If both branches of a two-premiss rule, always from left to

right, have been numbered, continue from the conclusion until a

two-premiss rule with an unnumbered branch is reached.
4. From the root of the derivation, find a downmost leftmost

rule instance that closes a hypothesis, and number its occur-

rences from the previously reached number on, and number the

formulas down from these as in 2. Topmost unnumbered for-

mulas are now conclusions of two-premiss rules.
5. Continue numbering formulas in the branches, left to right,

until you come to a rule instance with a branch that has an

unnumbered hypothesis. Repeat 3 and 4.

With the formulas numbered, it is clear how a linear derivation with the

bracket notation is produced by writing the formulas in succession and

adding the rules and justifications and brackets.

The full statement of the translation algorithm may look somewhat

forbidding, but the matter is quite clear once it is seen in action:

Problem 2. To translate the tree derivation of A&B ⊃ ¬¬A&¬¬B in

a linear form.

Solution. The numbering produced for our example tree derivation is as

follows, counting that there are no open assumptions, by which clause 4 is

applied first, to be followed by clause 2:

4.
1

¬A
1.

3

A&B
2. A

&E1

5. ⊥
⊃E

6. ¬¬A
⊃I,1

7.
2

¬B
1.

3

A&B
3. B

&E2

8. ⊥
⊃E

9. ¬¬B
⊃I,2

10. ¬¬A&¬¬B
&I

11. A&B ⊃ ¬¬A&¬¬B
⊃I,3

A linear derivation results by the writing of these formulas in the numbered

succession, with the rule symbols, justification numbers, and brackets com-

ing out in a unique way out of the numbered tree derivation:
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—– 1. A&B hypothesis: goal ¬¬A&¬¬B
2. A 1,&E
3. B 1,&E

—4. ¬A hypothesis: goal ⊥

5. ⊥ 4, 2,⊃E
——————
6. ¬¬A 4–5,⊃I

—7. ¬B hypothesis: goal ⊥

8. ⊥ 7, 3,⊃E
——————
9. ¬¬B 7–8,⊃I
10. ¬¬A&¬¬B 6, 9,&I

————————————
11. A&B ⊃ ¬¬A&¬¬B 1–10,⊃I

QEF.

I have found only one earlier attempt at finding the correct translation

from tree derivations to linear derivations, that of Curry’s 1965 “Remarks

on inferential deduction.” He did not pay attention to the intricacies in

the order of closing assumptions, and his attempt can be failed by a coun-

terexample.

Tree derivations, man-made or those produced through a system of

proof search, often grow too broad to be printable or displayable on a

screen. The translation algorithm here defined could perhaps be used for

the linear display of such proofs. By the correspondence of natural de-

duction and sequent calculus, the linearization can be adapted even to the

latter.

The translation can be extended to classical natural deduction with the

standard rule of indirect proof. That gives a complete system, whereas we

have to see how disjunction and existence can be handled in intuitionistic

logic:

3. Adding disjunction and existence

Disjunction and existence elimination are somewhat awkward to formulate

in the linear form of natural deduction. In Prawitz’ manual, one derives

A ⊃ C and B ⊃ C separately, then draws the conclusion C from the major

premiss A ∨ B, and analogously for existence: One proves ∀y(A(y) ⊃ C)

and then makes the conclusion C from the existential formula ∃xA(x).
In both cases, other logical operations than the one of the major premiss
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come into play. With existence elimination, the usual informal practice

in a linear proof text is, whenever an existential formula ∃xA(x) is put

into use, to write after the formula occurrence an instance A(y) with an

eigenvariable. This practice can be accommodated into the linear format:

the subderivation from A(y) to C will begin with a line under which the

hypothesis A(y) is written, as in the example:

1. ∃xA(x) assumption
———————————

2. A(y) hyp for ∃E, 1
3. A(y) ∨B(y) 2,∨I
4. ∃x(A(x) ∨ (B(x)) 3, ∃I

———————————
5. ∃x(A(x) ∨ (B(x)) 1, 2–4, ∃E

The hypothesis mentions the line of the major premiss. When the bracket

is completed to close the hypothesis, the line of the major premiss is again

indicated. The eigenvariable condition is immediate.

When a linear derivation with existence elimination is translated into a

tree derivation, the inference line above the existence elimination will have

first the major premiss, then the subderivation of the minor premiss from

inside the bracket.

Disjunction presents a problem with its two minor premisses. A two-

column subderivation notation as in the following example is handiest:

1. A ∨B assumption
—————————————————————

2. A hyp ∨E, 1 4. B hyp ∨E, 1
3. B ∨A 2,∨I 5. B ∨A 4,∨I

—————————————————————
6. B ∨A 1, 2–3, 4–5, ∨E

With nested disjunction eliminations, there will be still a corresponding

multiplication of doubling of columns so that derivations can grow too

broad to be printable.

In the translation to tree form, the major premiss is written at left

above the inference line of the disjunction elimination, then the derivation

of the first minor premiss followed by the second.

4. Linearization of sequent derivations

Sequent calculi that support root-first proof systems are useful devices, but

the resulting sequent derivations soon grow too broad to be displayable on

a screen. The correspondence of natural deduction and sequent calculus
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can be used for the translation of such sequent derivations. The most

straightforward correspondence is the isomorphic translation between cut-

free sequent derivations and normal natural derivations that use general

elimination rules, a correspondence defined in von Plato (2001). The gen-

eral rules are:

Table 3. General E-rules for &,⊃, ∀.

A&B

1

A,
1

B....
C

C
&E,1

A ⊃ B A

1

B....
C

C
⊃E,1

∀xA

1

A(t/x)
....
C

C
∀E,1

These rules can be written in a linear notation exactly as rule ∃E. A

schematic writing for rule &E is:

n. A&B
...

————————————
m. A hyp &E, n
m+ 1. B hyp &E, n

...

k. C
————————————

k + 1. C n,m–k,&E

Rule ⊃E is written similarly as:

n. A ⊃ B
...

m. A
...

————————————
k. B hyp ⊃E, n

...

l. C
————————————

l + 1. C n,m, k–l,⊃E
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The rule for ∀E is just like ∃E except that there is no variable condition:

n. ∀xA(x)

...
————————————

m. A(t) hyp ∀E, n
...

k. C
————————————

k + 1. C n,m–k,&E

Cut-free derivation in an intuitionistic sequent calculus such as G3i can be

displayed as a linear derivation through the translation to natural deduction

followed by linearization with these rules.
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