Elucidating differential nano-bio interactions of multi-walled and single-walled carbon nanotubes using subcellular proteomics

Joseph D. T. Ndika^{1,*}, Jukka Sund², Harri Alenius^{1,3}, Anne Puustinen⁴

¹Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland ²Systems Immunotoxicology, Finnish Institute of Occupational Health, Helsinki, Finland ³Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden ⁴Department of Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

*Corresponding author: joseph.ndika@helsinki.fi

Systems Immunology Group, Medical Faculty, University of Helsinki Haartmaninkatu 3 (P.O. Box 21) FIN-00014 University of Helsinki, Finland tel. +358 29 4126215

Running title:

Hazard biomarker profiling of CNT variants

ABSTRACT

Understanding the relationship between adverse exposure events and specific material properties will facilitate predictive classification of carbon nanotubes (CNTs) according to their mechanisms of action, and a safe-bydesign approach for the next generation of CNTs. Mass-spectrometry-based proteomics is a reliable tool to uncover the molecular dynamics of hazardous exposures, yet challenges persist with regards to its limited dynamic range when sampling whole organisms, tissues or cell lysates. Here, the simplicity of the sub-cellular proteome was harnessed to unravel distinctive adverse exposure outcomes at the molecular level, between two CNT subtypes. A549, MRC9 and human macrophage cells, were exposed for 24h to non-cytotoxic doses of single-walled or multi-walled CNTs (swCNTs or mwCNTs). Label-free proteomics on enriched cytoplasmic fractions was complemented with analyses of reactive oxygen species (ROS) production and mitochondrial integrity. The extent/number of modulated proteoforms indicated the single-walled variant was more bioactive. Greater enrichment of pathways corresponding to oxido-reductive activity was consistent with greater intracellular ROS induction and mitochondrial dysfunction capacities of swCNTs. Other compromised cellular functions, as revealed by pathway analysis were; ribosome, spliceosome and DNA repair. Highly upregulated proteins (fold change in abundance > 6) such as, APOC3, RBP4 and INS are also highlighted as potential markers of hazardous CNT exposure. We conclude that, changes in cytosolic proteome abundance resulting from nano-bio interactions, elucidate adverse response pathways and their distinctive molecular components. Our results indicate that CNT-protein interactions might have a thus far unappreciated significance for protein trafficking, and this warrants further investigation.

Keywords

Proteomics, cytoplasm, carbon nanotubes, oxido-reductive stress, ribosome, spliceosome.

INTRODUCTION

Carbon nanotubes (CNTs) are a class of engineered nanomaterials (ENMs) that have been used in the last decade to develop applications with tremendous and promising impact in industry and medicine (De Volder et al. 2013; Sharma et al. 2015). They are tubular structures consisting of one (single-walled carbon nanotubes - swCNTs) or more (multi-walled carbon nanotubes - mwCNTs) concentric graphene cylinders. The fiberlike conformation and biodurability of rod-like CNTs are stark parallels to the infamous asbestos fibers, fueling concerns that CNTs may be harmful to the human health. Several studies in rodents reveal common pathophysiological responses following CNT or asbestiform fiber exposures, which include acute-phase inflammation, granuloma formation and development of fibrosis (Muller et al. 2005; Shvedova et al. 2005; Shvedova et al. 2008; Ma-Hock et al. 2009). According to the fiber pathogenicity paradigm, (Donaldson et al. 2013) CNT toxicity is thought to be largely mediated by its morphology and biopersistence, whereas its chemical composition plays a lesser role. This differential bioactivity of chemically similar ENMs was further explained by studies showing that, once a nanomaterial is within a physiological environment, it adsorbs proteins forming a protein corona – the composition of which reflects the nature of that environment (plasma, cell cytoplasm, respiratory tract, etc.), the nanomaterial's physicochemical attributes (size, shape, surface chemistry, etc.) and the duration of exposure (Lundqvist 2013; Monopoli et al. 2012). In other words, this eventual biological identity of a nanomaterial dictates the physiological responses it elicits, including but not limited to; transport, kinetics, accumulation, signaling and ultimately, toxicity (Cedervall et al. 2007; Sund et al. 2011; Byrne et al. 2013). We previously reported differential protein binding and cellular uptake between short mwCNT and short swCNT subtypes (Sund et al. 2011). The objectives of the current study were to investigate the implications of this differential protein interaction between these two CNT subtypes at the systemic level. Because aerosolized CNT levels of up to 331 µg/m³ and 430 µg/m³ have been measured in industry (Siegrist et al. 2014) and in a laboratory setting (Manke et al. 2014) respectively, inhalation is a highly relevant exposure scenario. Here, we used three cell types; human monocyte-derived macrophages – to reflect the first line of defense against foreign materials and human lung fibroblast (MRC9)/lung epithelia (A549) cell lines - to mimic the exposure route (respiratory tract lining) to CNT aerosols. We hypothesized that due to the inevitable interaction of cytoplasmic proteins and CNTs once they are taken up by cells, proteomic characterization of enriched cytoplasmic fractions will provide a simple and effective way to identify materialspecific health hazard biomarkers. Selected canonical pathways that were identified as differentially susceptible to these two CNT subtypes were then validated using standard assays.

MATERIALS AND METHODS

Nanomaterials

(Short) S-Purified single-walled and S-Purified multi-walled CNTs were obtained commercially (SES Research, Houston, TX, USA). Crocidolite asbestos was provided by Pneumoconiosis Research Centre (Johannesburg, South Africa) and Carbon black (Printex 90) was a gift from Evonik Industries AG (Essen, Germany). Characterization and dispersion protocols for these materials have been established in-house and previously described; mwCNT and swCNT (Sund et al. 2011; Catalán et al. 2012), asbestos crocidolite and carbon black (Palomäki et al. 2011). In the current study, size distribution and zeta potential characterization of 1 mg/ml nanomaterial suspensions in cell culture media containing 10% FBS were carried out for CNTs as described previously (Sund et al. 2011).

Cell models and growth conditions

Human lung epithelia – A549, human lung fibroblasts – MRC9 (both cell lines from ATCC, Manassas, VA, USA) and human monocyte-derived macrophages (MDM) were used for exposures. Human MDM were differentiated from peripheral blood mononuclear cells (PBMCs) obtained from healthy blood donors (The Finnish Red Cross Blood Transfusion Service, Helsinki, Finland). The differentiation was performed by isolating peripheral blood mononuclear cells from buffy coats by Ficoll-Paque Plus - gradient low-speed centrifugation as described previously (Sund et al. 2011). The macrophage medium was changed every two days. Maturated macrophages are used for exposure studies on the seventh day. Epithelial cells (A549) and lung fibroblasts (MRC9) were both cultured in DMEM containing 2 mM L-glutamine supplemented with 10 % of heat inactivated FBS and 1% PEST antibiotics. MRC9 culture medium was additionally supplemented with 1% L-Glutamine.

Cell exposure

Prior to *in vitro* exposure, a stock suspension was made in glass tubes containing 1 mg/ml nanomaterials in their respective cell culture media, supplemented with 10% FBS. The stock was sonicated for 20 minutes and diluted to final concentrations of 300, 30 and 3 μ g/ml. Cell monolayers at about 70% confluence were exposed for 24h (37°C, 5% CO2) with 35 μ l (96 wells plate) 400 μ l (12 wells plate) or 1 ml (6 wells plate) of the desired nanomaterial, corresponding to doses of 31.5, 3.15 and 0.315 μ g/cm². This dose range was chosen such that cells retain > 70% viability after exposures. Unexposed cells in adjacent wells were taken along as controls. After exposures, cells were washed three times with warm DPBS and harvested by trypsinization (A549, MRC9) or scraping (Macrophages).

Sample preparation for LC-MS/MS

Cell cytoplasm was enriched by ProteoJETTM Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas, Waltham, MA, USA). Excess nanotubes were washed off from cell monolayers 24h after exposures. Cells were harvested and pelleted with cold PBS. Cell lysis buffer supplemented with 1X protease inhibitor cocktail (HaltTM Protease and Phosphatase Inhibitor Cocktail, EDTA-free, Thermo Fisher Scientific, Waltham, MA, USA) was then added to cell pellets and cytoplasmic protein extracts were isolated as per kit instructions. Protein concentrations were measured with a BioRad DC protein assay kit. Tryptic peptides for label free proteomics were prepared according to standard procedures.

LC-MS/MS proteomic analysis, data acquisition and label free quantitation

Each peptide mixture was analyzed by automated nanoflow capillary LC–MS/MS using a nanoLC 1000 (Proxeon, Thermo Fisher Scientific) coupled to a benchtop quadrupole orbitrap mass spectrometer (QExactiveTM, Thermo Fisher Scientific). Proteome quantitation was performed using a bottom up data dependent acquisition approach on a QExactive platform. Column specifications, reverse phase peptide separation on 3h gradients and MS/MS data acquisition parameters have been described (Cypryk et al. 2016). In total three independent exposures of either swCNT, mwCNT or unexposed (Control) were carried out for each cell type, followed by three LC-MS/MS injections per exposure, generating a total of 81 raw files. Label free quantitation (LFQ) was performed with the MaxQuant software (Cox et al. 2014) followed by differential abundance analysis with Perseus – a computational platform that is incorporated into the MaxQuant shotgun

proteomics pipeline (Tyanova et al. 2016). Maxquant output files containing all identified and quantified protein groups for each cell type are provided as additional files 1, 2 and 3. For analysis of differential abundance between treatment groups, 1-way ANOVA or student t test, were employed when appropriate, followed by benjamini-hochberg false discovery rate adjustment of 5%.

Pathway analyses

General pathway analysis, molecular function enrichment, annotated disease functions and canonical toxicity function enrichment was carried out in IPA (Ingenuity®, Qiagen, Hilden, Germany). Biological pathway comparison analysis was carried out for all DA proteins using the *Funrich* functional enrichment analysis software tool (Pathan et al. 2015).

Western blot validation of label free proteomics

Whole cell lysates from pelleted exposed cells were obtained by urea lysis (8M urea/100mM NaCl/10mM TrisHCl, pH8.0). Samples were normalized to same total protein concentrations with urea lysis and SDS buffers after the protein concentration of each sample was determined using the PierceTM BCA protein assay kit (Thermo Fisher Scientific). 15 μ g of sample per well were loaded in 12 wells pre-cast CriterionTM gels. Anti RBP4 (ab133559 - abcam) and anti SCDBP (ab155394 – abcam) antibodies were used to probe gel blots at dilutions of 1:2000(v/v) in 4% milk, overnight at 4 ^oC, followed by 30 min wash with 1xTBS + 0.1% Tween, and 1h incubation with1:2000 diluted secondary antibodies respectively. For ECL-based detection, blots were probed for 1h at room temperature with HRP-labelled anti-rabbit and anti-goat antibodies at dilutions of 1:2000 (v/v) in 4% milk. Protein band intensities were quantified with *Imagej* (Abràmoff et al. 2004) and expressed as log2 transformed mean ±SEM.

Adverse outcome assays

Equal cell densities were seeded into parallel 96 well plates prior to nanomaterial exposures, to have a sufficient number of wells for triplicate analyses of three independent adverse exposure outcomes. Dosedependent changes in cell viability, reactive oxygen species (ROS) production and decrease in mitochondrial membrane potential were all measured 24h post exposure using commercially available 96 well format assays. Cell viability was determined using a CellTiter-Glo Luminescent Cell Viability Assay (Promega). Mitochondrial membrane potential was measured according to procedures described in the Mito IDTM membrane potential kit (Enzo Life Sciences). Cellular ROS production was determined using a fluorescencebased 2',7' -dichlorofluorescin diacetate (DCFDA) assay (abcam, Cambridge, UK). All assay procedures were carried out as described in assay protocol, and the only slight modification was the maximum excitation and emission spectra (490 nm and 535 nm respectively) used to measure fluoregenic dichlorofluorescin. For acellular ROS production, 20 µg/ml nanomaterial suspensions were prepared in PBS. 0.03 mM DCFDA was deacetylated for 30 min at room temperature by addition of 0.01M NaOH. Deacetylated DCFDA was then added to 50 μ l of nanomaterials in 96 well viewplatesTM at a final concentration of 0.015 mM. After incubation for 3h at 37⁰, nanomaterial-depleted supernatant was obtained by centrifugation at 4000 rpm for 10 mins. 50 µl supernatants were transferred to fresh plates containing 100 µl PBS and dichlorofluorescin formation was measured as described above.

Availability of data and materials

The MaxQuant analysis pipeline output (identified and quantified protein groups) for each cell type (.txt files), and mass spectrometry raw files are available from the corresponding author on reasonable request.

RESULTS

Physicochemical characteristics of CNTs

The two CNT subtypes evaluated in this study have been previously extensively characterized (chemical composition, size distribution and surface charge) in similar dispersion and exposure media. Herein, we recharacterized the size distribution and surface charge in cell culture media supplemented with 10% FBS. MwCNTs had a size of 432 nm and swCNTs were found to be in the size range of 259 (33.5%) to 1393 (57%) nm. The surface charge for both CNT subtypes were similar (± 0.3 mV). CNT primary size, size in dispersion, chemical composition and surface charge are outlined in Supplementary Table S1.

Effect of CNTs on cell viability

A dose-dependent decrease in cell viability was measured for all 3 cell types after 24 hours of exposure to CNTs. Exposure to similar mass concentrations of asbestos crocidolite were carried out in parallel to serve as cytotoxicity control. More than 70% viability was observed for all cell types at nanomaterial concentrations of up to $31.5 \,\mu\text{g/cm}^2$ (Figure S1).

Evaluation of spatial and temporal proteome modulation

Proteomic characterization of enriched cytoplasmic fractions was carried out in cells exposed to 31.5 µg/cm² CNT. A total of 5353 unique protein groups were identified in all 3 cell types corresponding to 4252 protein groups in the A549 cell line, 2850 in the MRC9 cell line and 3864 in monocyte-derived macrophages. Based on Ingenuity[®]'s knowledgebase, 57% of all identified proteins were classified to originate from the cytoplasm. Of the remaining proteins, 5% were assigned to the extracellular space, 19% to the nucleus, 12% to the plasma membrane and 7% to other cellular compartments. Multiple sample testing at a maximum FDR of 5%, reveals the abundance of 275, 561 and 552 proteins in A549, MRC9 and macrophages, respectively, were altered by exposure to both CNTs. Principal component analysis and K-means clustering grouped all biological replicates according to the different cell and exposure types (Figure 1A and 1B). Fold change in protein abundances between exposed and unexposed cells were derived using a student's t-test (S0 of 0.5 and FDR of 0.05). Significant differentially abundant proteins identified in the mwCNT/Control and swCNT/Control, had a change in abundance ranging from 1.5- to 20-fold (Table S2). A Venn diagram distribution of these differentially abundant (DA) proteins is depicted in Figure 1C. Only 2 (APOC3, PTMS) and 3 (APOC3, NME1, IGF2) proteins are DA across all cell types in the mwCNT/Control and swCNT/Control contrasts respectively (Figure 1C). Highly upregulated proteins (> 6-fold) in response to mwCNT or swCNT exposure, for each cell type, are summarized in Table 2. Taken together, the extent of fold change in protein abundance and/or the number of differentially abundant proteins was greatest in swCNT-exposed cells (Figure 2). About 67% of all DA proteins were unique to swCNT-exposed cells and 19% to mwCNT-exposed cells. Notwithstanding, although only 14% of all DA proteins were found to be common between the mwCNT and swCNT exposures, this corresponds to 43% of the DA proteins in mwCNTs exposures, and is an indication that the adverse response to these two CNT subtypes is mediated by overlapping mechanisms.

Oxido-reductive activity, structural constituent of ribosome, and RNA binding are the main molecular dysfunctions linked to bio-CNT interactions.

In the mwCNT/Control contrast, DA proteins mapped to 50 (A549), 20 (Macrophages) and 223 (MRC9) genes and in the swCNT/Control contrast to 112 (A549), 442 (Macrophages) and 196 (MRC9) genes. Bearing in mind the apparent cell-type specificity of the molecular responses to these two CNT subtypes (Figure 1C), a comparative analysis of functionally enriched pathways was carried out on merged DA proteins from all three cell types. This approach averages out those responses that are due to specialized cell type functions, leading to a more generalizable snapshot of the cellular functions that are affected by adverse of bio-CNT interactions. DA proteins from the exposure/control contrasts in all 3 cell types mapped to a total of 942 non-redundant genes, corresponding to 273 genes in mwCNT/Control and 669 genes in swCNT/Control, of which 116 genes were common between both sets (Figure 2A). The most enriched molecular activities together with the affected pathways are summarized in Figure 3. Key molecular activities represented by DA proteins were similar for both mwCNT and swCNT exposures, and these corresponded to ribosome structural constituents, oxidoreductase activity and RNA binding (Figure 3A). These enriched molecular functions were most associated with pathways corresponding to protein synthesis and cell morphology in mwCNT exposures, with free radical scavenging and cellular assembly/organization in swCNT exposures and with cell death/survival and post-transcriptional modifications in both exposures (Figure 3B). Based on the direction of fold change in protein abundance, the top-most predicted disease endpoints were associated with increased cell proliferation and decreased DNA repair ability. Inflammation (LXR/RXR and FXR/RXR), cell proliferation and fibrosis, were most significantly enriched as top disease and toxicological functions in DA proteins from the swCNT exposures (Figure 3). Mitochondrial dysfunction was the most enriched toxicity related outcome for both of these CNTs. The p-value for enrichment of DA proteins corresponding to mitochondrial dysfunction was most significant in the swCNT exposures. To shed more light on the distinctive bioactivities between these CNT subtypes we performed a comparison analysis of the top common biological pathways represented by all DA proteins and then separately for downregulated and upregulated proteins (Figure 4). For these comparison analyses, two criteria were employed; the percentage of DA proteins from the input dataset (mwCNT/Control or swCNT/Control) that mapped to a specific pathway was used to infer the relative importance of that pathway amongst all the pathways triggered by the same input genes and the number of DA proteins was used to infer the relative potency with which a specific pathway was affected by each of the two CNT subtypes. The top shared pathways that were differentially represented by all DA proteins from the mwCNT and swCNT exposures were; diabetes pathways, translational regulation, mRNA processing pathways and respiratory electron transport. Amongst these four, the most similar pathway between the two exposures was the respiratory electron transport system of the mitochondria, which was affected by about 15% of DA proteins from both exposures. However, this corresponded to around 40 DA proteins in the mwCNT exposures and 106 DA proteins in the swCNT exposures (Figure 4A). The greatest differential representation among the top pathways was observed for ribosome-associated pathways (translation elongation, formation of free 40s subunits, etc.) and spliceosomeassociated pathways (mRNA splicing, mRNA transcript formation and maturation, pre-mRNA processing). The ribosome was predominantly modulated by mwCNTs (31% mwCNT vs. 3% swCNT), and the spliceosome by swCNTs (11% swCNT vs. 3% mwCNT) – Figure 4A. Further stratification of all DA proteins into downregulated and upregulated proteins for each exposure type reveal that the bulk of proteins representing the spliceosome were downregulated following CNT exposure (Figure 4B), while the reverse held true for biological pathways relating to ribosomal function (Figure 4C). Interestingly, although the ratio of DA proteins corresponding to the respiratory electron transport system was comparable for both exposures, none of the DA proteins from this pathway were downregulated in mwCNT/Control, as opposed to the swCNT/Control exposure wherein biological pathways indicative of mitochondrial dysfunction were biased towards downregulated proteins (Figures 4B-C and Figure S2). Other notable differentially activated pathways were; downregulation of proteins involved in induction of cell death (NF-kB, FAS and Caspase signaling), upregulation of lipid metabolism and integrin cell surface interactions.

Immunoblot validation of quantitative proteomics

To highlight the reliability of label-free proteomics quantitation, two in-house antibodies against RBP4 (retinol binding protein 4) and SDCBP (syntenin-1), were used to re-assess protein abundance levels via western blot following new rounds of exposure to 3 different doses of mwCNT and swCNT. Figure 5 depicts a side-by-side view of LC-MS/MS quantitation (0 and 31.5 μ g/cm²) and western blot validation (0, 0.315, 3.15 and 31.5 μ g/cm²). For both proteins, the direction of change in abundance following CNT exposure was similar for LC-MS/MS and western blot quantitation. Representative protein blots are also shown.

In vitro analysis of distinctive oxidoreductive potencies

Based on the aforementioned comparison criteria (Figure 4), we deduced that respiratory electron transport dysfunction was the most significant pathway common to adverse exposure of both CNT subtypes, with the

single-walled variant appearing to be more potent. To validate this, we investigated ROS production capacities of both materials in vitro and in vivo, as well as their abilities to decrease mitochondrial membrane potential. Intracellular reactive oxygen species (ROS) was measured 24h post exposure to mwCNT and swCNT with asbestos crocidolite exposures as positive control. ROS production was dose-dependent in all 3 cell types (Figure 6). At all tested doses (0.315, 3.15 and 31.5 µg/cm²) CNT-induced ROS production was greater than that in cells exposed to similar mass concentrations of asbestos (Figure 6A-C). Intracellular ROS production was similar for both CNT subtypes at 0.315 µg/cm², but 2- to 3-fold higher in cells exposed to 3.15 and 31.5 µg/cm² swCNTs. At a CNT dose of 31.5µg/cm², induction of intracellular ROS production over 24h was decreased by treatment of A549 cells with routinely used antioxidants; N-acetylcysteine, Pyrrolidene dithiocarbamate and Diphenyleneiodonium (Figure 6D). At the concentrations tested, these antioxidants were more effective at inhibiting ROS production in the mwCNT exposures and N-acetylcysteine was the most effective antioxidant. Only N-acetylcysteine significantly inhibited ROS production in the swCNT exposure. To answer whether material chemistry or unknown contaminants could explain these differences in intracellular ROS production, cell-free ROS generation at nanomaterial concentrations of 20 µg/ml was examined for each material. Carbon black – a nano-sized particle composed entirely of carbon was included as a chemical composition analogue of CNTs. Cell-free ROS production was comparable for both mwCNTs and swCNTs and only around 1.5 times less than that produced from carbon black. Surprisingly, acellular ROS production by asbestos crocidolite was about 10 times less when compared to these CNTs (Figure 6E). 24h after exposure to each material, a decrease in mitochondrial membrane potential (JMMP) was observed at all tested doses. JMMP was most prominent in Macrophages and MRC9. SwCNTs were found to be the most potent inducers of JMMP. A dose-dependent JMMP in all 3 cell types was only observed for the swCNT exposures (Figure 7).

DISCUSSION

Although in vitro assays remain highly relevant as initial screens to predict ENM risk and prioritize the degree of testing for in vivo studies, (Godwin et al. 2015) it is not straightforward to derive organism-level health impact assessment from in vitro models. We exposed multiple cell types with relevance to inhaled CNTs, and, by combining their unique proteomic responses, we obtained a more generalizable view of the systemic effects of adverse CNT exposure, than if investigating only one cell type. At $1-5 \mu m$ in length, these nanotubes fit the current description of "short" nanotubes, defined to be less than $10 - 15 \,\mu\text{m}$ in length.(Bernstein 2007) In concordance with earlier studies, these short(er) CNTs are mildly cytotoxic, requiring very high concentrations to decrease cell viability by more than 50% (Palomäki et al. 2010; Catalán et al. 2012). A greater than 50% reduction in cell viability was seen only in macrophages exposed to 315 µg/cm² swCNTs (Figure S1). A 10fold lower dose (31.5 μ g/cm²), at which greater than 70% viable was retained in all exposures was used to elucidate systemic differences in adverse CNT response pathways between mwCNTs and swCNTs. For consistency, the same dispersion protocols with previously published studies comparing the same materials were used (Sund et al. 2011; Catalán et al. 2012). We analyzed the cytoplasm for two main reasons; firstly, subcellular proteome characterization has the appeal of its decreased sample complexity which results in improved depth of characterization as opposed to the entire cellular proteome. Secondly, once within a cellular environment, CNTs are exposed to the cytoplasm and encompassing macromolecular complexes, wherein protein synthesis, modification and trafficking take place. Whilst global protein abundance profiles might reflect a pathophysiological state, they are incomprehensive from a mechanistic point of view as other facets of protein regulation like changes in spatial distribution are largely missed. To take advantage of this we used a gentle cytoplasmic fraction enrichment method, which leaves other cellular organelles intact.

Previous studies have reported that CNTs have an extremely high affinity for cell lysate cytoskeletal proteins (Sund et al. 2011; Cai et al. 2013). Because cytoskeletal proteins are highly relevant for intracellular and vesicular trafficking (Rogers & Gelfand 2000; McGinnis et al. 2002; Caviston & Holzbaur 2006), this supports our findings that specialized macromolecular complexes that require multiprotein assembly and targeting, like the ribosome and spliceosome, were affected by CNT exposure. Competitive binding of cytoskeletal proteins to CNTs could be one of the ways that they affect the spatial distribution and function of these multiprotein complexes. There have thus far, been no reports about CNTs inducing ribosome and spliceosome dysfunction. Nonetheless, several studies have contradicted the long-standing notion that ribosomal proteins serve 'housekeeping' functions, as they have been found to be deregulated in several cancers (Naora & Naora 1999; Kreunin et al. 2007; Khimani et al. 2005; Xue & Barna 2012; Sulima et al. 2014). Alternative mRNA splicing, mediated by a complex of highly conserved proteins, termed the spliceosome, is a recognized gene regulatory mechanism with important implications for tumor onset and progression, (van Alphen et al. 2009) as well as in controlling the magnitude and duration of innate immune responses (Carpenter et al. 2014). The spliceosome was also identified as an enriched pathway in a toxicogenomics study investigating cytotoxicity induced by DNA damage in zebrafish cell lines (Li et al. 2016). Depending on their physicochemical attributes and degree of dispersion, CNTs can penetrate cells via diffusion, endocytosis or phagocytosis (Raffa et al. 2009). Both CNT subtypes are short but differ in size, surface area, diameter/length ratios, protein binding affinities and hence most likely, cellular uptake efficiencies (Table S1). It is plausible that in addition to its higher aspect ratio, the smaller swCNT fractions (33% with a size of 259nm) could have been more efficiently taken up by cells, conferring a greater potential to cause physical injury. Preferential modulation of the ribosome and spliceosome by mwCNTs and swCNTs respectively, could represent an extension of the differential potency between these CNT subtypes, wherein, deregulated splicing occurs downstream of altered ribosomal functioning. However, a dose-response proteomic assessment will be required to confirm this. Increased intracellular production of reactive oxygen species (ROS) that can be counteracted by pretreatment

with antioxidants has established oxidative stress as a hallmark of CNT-induced toxicity (Shvedova et al. 2012). We identified oxidative stress as a central common mechanism, governing adverse exposure to

mwCNTs and swCNTs (Figure 4A). Structurally intact mitochondria have a well-known role in balancing general oxidative status via their involvement in ROS metabolism. As such a net increase in ROS triggers a cycle whereby accumulating ROS further damages mitochondria causing more free radical production, and loss of the cells antioxidant capacity (Andreyev et al. 2005). Pathway analysis highlight that the outcome of CNT-induced ROS production was tightly linked to mitochondrial dysfunction and radical production by the mitochondrial respiratory electron transport chain, involving complex I – IV in mwCNT-exposed cells and complex I – V in swCNT-exposed cells (Figure S2). The greater potency of intracellular ROS induction by swCNTs is in line with observations that antioxidant treatment was more adept at decreasing ROS production in mwCNT-exposed cells than cells exposed to swCNTs (Figure 6D), and on a systemic level, proteins representative of mitochondrial dysfunction were most enriched in swCNT-exposed cells (Figures 3 and 4). Consistently EGFR1, TNF alpha and NF-kB signaling, often associated with altered ROS homeostasis, inflammasome signaling and fibrosis, within the context of adverse CNT exposures (Vietti et al. 2016) were also enriched by DA proteins.

Particle chemical composition indicate that both CNTs primarily consist of C (> 99%). This chemical composition similarity, is mirrored by their intrinsic oxidative potential (Figure 6E), which is more comparable to cell-free ROS levels generated by carbon black (100% C content) as opposed to that produced by asbestos crocidolite [NaFe₃²⁺Fe₂ ³⁺Si₈O₂₂(OH)₂]. Iron ions localized to the surface of asbestos are responsible for cell-free ROS production (Liu et al. 2013) however there isn't any consensus in the scientific literature with regards to abiotic ROS production by CNTs and it remains unclear if and how nano forms of carbon generate cell-free ROS. Regardless, nanoparticles have been observed to exhibit distinctly different properties from their bulk counterparts (Oberdörster et al. 2007). In agreement with our cell-free ROS data, metal ion independent radical production has also been observed for multi-walled CNTs and carbon black (Muller et al. 2008; Nymark et al. 2014). Absence of intrinsic ROS-producing capacity by CNTs has been documented in several studies (Shvedova et al. 2012) meaning that our cell-free ROS data must be interpreted with caution.

As there is no nanomaterial "exposure disease" per se, current surveillance and epidemiological studies are in most cases not specific to individual types of ENMs. Hazard markers are thus required for assessment of adverse exposure to specific materials. Only 1 protein was affected by both CNT subtypes in all 3 cell types - APOC3 (Apolipoprotein C-III). APOC3 was consistently upregulated (5- to 15-fold) in response to both mwCNT and swCNT in all 3 cell types. APOC3 and associated lipoproteins have been identified as key components of the protein corona of silica nanoparticles (Tenzer et al. 2013; Ritz et al. 2015). In this dataset, in addition to APOC3, the apolipoproteins; APOA2, APOB, APOC2, APOD and APOH were upregulated in response to CNT exposure (Table 1 and Table S2). Elevated APOC3 is associated with hyperlipidemia and an increased risk of developing cardiovascular disease (Norata et al. 2015). Since upregulated APOC3 levels are also associated with metabolic syndrome and type 2 diabetes mellitus, it is worthy to mention that APOC3 was most abundantly upregulated (14-fold) in macrophages exposed to swCNT, and incidentally, the most upregulated protein in this study was INS – upregulated more than 20-fold in macrophages exposed to swCNT. Hypersecretion of insulin occurs in response to insulin resistance (metabolic syndrome) as well in response to ER stress (reviewed in Salvadó et al. 2016). In total, 92 and 23 proteins involved in insulin synthesis and processing were DA in the mwCNT/Control and swCNT/Control exposures respectively (Figure 4A). One of these proteins - retinol binding protein 4 (RBP4), is amongst the proteins that we have validated by western blotting in this study. NME1 and SMAP1 are the only proteins that are differentially regulated in response to swCNT in all 3 cell lines. NME1 - Nucleoside Diphosphate Kinase 1, was found to be 3- to 11-fold downregulated in response to swCNT exposure. NME1 is responsible for synthesis of nucleoside triphosphates other than ATP, and is a well-described metastasis suppressor gene (McCorkle et al. 2014). SMAP1 – stromal membrane associated protein 1, is a GTPase activating protein whose overexpression has been shown to regulate clathrin-dependent endocytosis in Hela cells (Tanabe et al. 2005). SMAP1 is about 3fold downregulated in A549 and MRC9 cells but then 8-fold upregulated in primary macrophages. PTMS (parathymosin) was the only protein that was upregulated (3- to 9-fold) uniquely in response to mwCNT exposure in all three cell types. In a study examining the global effects of toxic metals on gene expression, *PTMS* transcripts were found to be 2-fold upregulated (Andrew et al. 2008). Another protein worth mentioning is HIG1 hypoxia inducible domain family, member 1A (HIGD1A). HIGD1A, required for morphological and functional integrity of the mitochondria (Hayashi et al. 2012; An et al. 2013), was 4-fold downregulated in response to mwCNT exposure in A549 cells and 5-fold upregulated in response to swCNT in primary macrophages and MRC9 cells.

CONCLUSION

In the current study, evaluation of adverse exposure events at the cellular and molecular level shed more light on the health hazard of carbon nanotubes. We identified systemic similarities and differences in the pathotoxicological responses of two well-characterized CNT subtypes. In addition, some of the highly upregulated proteins could be developed into exposure-specific hazard markers. Recognized toxicants like asbestos crocidolite (Panduri et al. 2003; Huang et al. 2012; Nymark et al. 2015) and long needle-like mwCNTs (Wang et al. 2012; Nymark et al. 2015) have been shown to cause mitochondrial dysfunction by inducing a decrease in mitochondrial membrane potential (JMMP). It is interesting to observe that these shorter CNTs that we found to be mildly cytotoxic, decreased the MMP to levels that were comparable with asbestos crocidolite. Although high aspect ratio seems to be the closest correlate to CNT-induced cytotoxicity, their biodurability demands that the hazard potential of low aspect ratio CNTs should not be ignored. Here-in we show how CNT-induced ROS production is closely associated with mitochondrial dysfunction, and the molecular components thereof. As a second highlight of this study, we propose two additional paradigms (ribosome and spliceosome functionality) through which adverse exposure to CNTs can be additionally explored. Just like the mitochondrion, the ribosome and spliceosome are central macromolecular complexes with high relevance for overall cellular homeostasis and proliferation state. Taken together, our data reveal that short rod-like CNTs still represent a health hazard, and for rod-like CNTs of similar length, the singlewalled variant may represent a higher toxicity propensity, the potential of which could be manipulated by increasing the number of graphene layers. From a technical point of view, we have also shown that analysis of cytoplasmic proteome abundance provides sufficient mechanistic insight to distinguish similar CNT subtypes with the added benefit of being easier to characterize than whole cell lysates.

ACKNOWLEDGEMENTS

Funding for this work was provided by the Institute of Occupational Health, Helsinki, Finland

DECLARATION OF INTEREST STATEMENT

The authors report no conflicts of interest

REFERENCES

- Abràmoff, M.D., Magalhães, P.J. & Ram, S.J., 2004. Image processing with imageJ. *Biophotonics International*, 11(7), pp.36–41.
- van Alphen, R.J. et al., 2009. The spliceosome as target for anticancer treatment. *Br J Cancer*, 100(2), pp.228–232.
- An, H.-J. et al., 2013. Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria. *Proceedings of the National Academy of Sciences of the United States of America*, 110(32), pp.13014–9.
- Andrew, A.S. et al., 2008. Genomic and Proteomic Profiling of Responses to Toxic Metals in Human Lung Cells. *Environmental Health Perspectives*, (6), pp.825–838.
- Andreyev, a Y., Kushnareva, Y.E. & Starkov, a a, 2005. Mitochondrial metabolism of reactive oxygen species. *Biochemistry*. *Biokhimiia*, 70(2), pp.200–214.
- Bernstein, D.M., 2007. Synthetic Vitreous Fibers: A Review Toxicology, Epidemiology and Regulations. *Critical Reviews in Toxicology*, 37(10), pp.839–886.
- Byrne, H.J. et al., 2013. The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. *BioNanoMaterials*, 14(3–4), pp.195–216.
- Cai, X. et al., 2013. Characterization of carbon nanotube protein corona by using quantitative proteomics. *Nanomedicine : nanotechnology, biology, and medicine*, 9(5), pp.583–593.
- Carpenter, S. et al., 2014. Post-transcriptional regulation of gene expression in innate immunity. *Nature reviews. Immunology*, 14(6), pp.361–76.
- Catalán, J. et al., 2012. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. *Nanotoxicology*, 6(September 2011), pp.825–36.
- Caviston, J.P. & Holzbaur, E.L.F., 2006. Microtubule motors at the intersection of trafficking and transport. *Trends in Cell Biology*, 16(10), pp.530–537.
- Cedervall, T. et al., 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. *Proceedings of the National Academy of Sciences of the United States of America*, 104(7), pp.2050–2055.
- Cox, J. et al., 2014. MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction.
- Cypryk, W. et al., 2016. Proteomic and bioinformatic characterization of extracellular vesicles released from human macrophages upon influenza A virus infection. *Journal of Proteome Research*, p.acs.jproteome.6b00596.
- Donaldson, K. et al., 2013. Pulmonary toxicity of carbon nanotubes and asbestos similarities and differences. *Advanced drug delivery reviews*, 65(15), pp.2078–86.
- Godwin, H. et al., 2015. Nanomaterial Categorization for Assessing Risk Potential To Facilitate Regulatory Decision-Making. *ACS Nano*, 9(4), pp.3409–3417.
- Hayashi, H. et al., 2012. HIG1, a novel regulator of mitochondrial γ -secretase, maintains normal mitochondrial function. *The FASEB Journal*.
- Huang, S.X.L. et al., 2012. Mitochondria-Derived Reactive Intermediate Species Mediate Asbestos Induced Genotoxicity and Oxidative Stress – Responsive Signaling Pathways. *Environ Health Perspect*, 120(6), pp.840–847.
- Khimani, A.H. et al., 2005. Housekeeping genes in cancer: Normalization of array data. *BioTechniques*, 38(5), pp.739–745.
- Kreunin, P. et al., 2007. Differential expression of ribosomal proteins in a human metastasis model identified by coupling 2-D liquid chromatography and mass spectrometry. *Cancer Genomics and Proteomics*, 4(5), pp.329–339.
- Li, Z. et al., 2016. RNA sequencing provides insights into the toxicogenomic response of ZF4 cells to methyl

methanesulfonate. Journal of Applied Toxicology, 36(1), pp.94–104.

- Liu, G., Cheresh, P. & Kamp, D.W., 2013. Molecular basis of asbestos-induced lung disease. *Annual review* of pathology, 8, pp.161–87.
- Lundqvist, M., 2013. Nanoparticles: Tracking protein corona over time. *Nature Publishing Group*, 8(October), pp.1–2.
- Ma-Hock, L. et al., 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. *Toxicological Sciences*, 112(2), pp.468–481.
- Manke, A. et al., 2014. Effect of fiber length on carbon nanotube-induced fibrogenesis. *International journal of molecular sciences*, 15(5), pp.7444–61.
- McCorkle, J.R. et al., 2014. The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. *Cancer Genomics and Proteomics*, 11(4), pp.175–194.
- McGinnis, J.F. et al., 2002. Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells. *Journal of Neuroscience Research*, 67(3), pp.290–297.
- Monopoli, M.P. et al., 2012. Biomolecular coronas provide the biological identity of nanosized materials. *Nature Nanotechnology*, 7(12), pp.779–786.
- Muller, J. et al., 2005. Respiratory toxicity of multi-wall carbon nanotubes. *Toxicology and Applied Pharmacology*, 207(3), pp.221–231.
- Muller, J. et al., 2008. Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects. *Chemical Research in Toxicology*, 21(9), pp.1698–1705.
- Naora, H. & Naora, H., 1999. Involvement of ribosomal proteins in regulating cell growth and apoptosis: Translational modulation or recruitment for extraribosomal activity? *Immunology and Cell Biology*, 77(December 1998), pp.197–205.
- Norata, G.D. et al., 2015. Apolipoprotein C-III: From Pathophysiology to Pharmacology. *Trends in Pharmacological Sciences*, 36(10), pp.675–687.
- Nymark, P. et al., 2015. Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells. *Nanotoxicology*, 5390(September), pp.1–12.
- Nymark, P. et al., 2014. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. *Particle and Fibre Toxicology*, 11(1), pp.1–18.
- Oberdörster, G., Stone, V. & Donaldson, K., 2007. Toxicology of nanoparticles: A historical perspective. *Nanotoxicology*, 1(1), pp.2–25.
- Palomäki, J. et al., 2010. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. *Toxicology*, 267(1–3), pp.125–31.
- Palomäki, J. et al., 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. *ACS Nano*, 5(9), pp.6861–6870.
- Panduri, V. et al., 2003. The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. *American Journal of Respiratory Cell and Molecular Biology*, 28(2), pp.241–248.
- Pathan, M. et al., 2015. FunRich: An open access standalone functional enrichment and interaction network analysis tool. *Proteomics*, 15(15), pp.2597–2601.
- Raffa, V. et al., 2009. Physicochemical properties affecting cellular uptake of carbon nanotubes. *Nanomedicine*, 5(1), pp.89–97.
- Ritz, S. et al., 2015. The Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. *Biomacromolecules*, p.150320125141006.
- Rogers, S.L. & Gelfand, V.I., 2000. Membrane trafficking, organelle transport, and the cytoskeleton. *Current Opinion in Cell Biology*, 12(1), pp.57–62.
- Salvadó, L. et al., 2016. Targeting endoplasmic reticulum stress in insulin resistance. Trends in Endocrinology

& Metabolism, 26(8), pp.438-448.

- Sharma, A. et al., 2015. A Review on Current Carbon Nanomaterials and Other Nanoparticles Technology and Their Applications in., 4(12), pp.1088–1113.
- Shvedova, A.A. et al., 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. *American Journal of Physiology Lung Cellular and Molecular Physiology*, 295(4), pp.L552–L565.
- Shvedova, A.A. et al., 2012. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. *Toxicology and Applied Pharmacology*, 261(2), pp.121–133.
- Shvedova, A.A. et al., 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. *Am J Physiol Lung Cell Mol Physiol*, 289, pp.L698-708.
- Siegrist, K.J. et al., 2014. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. *Particle and Fibre Toxicology*, 11(1), p.6.
- Sulima, S.O. et al., 2014. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. *Proceedings of the National Academy of Sciences of the United States of America*, 111(15), pp.5640–5.
- Sund, J. et al., 2011. Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. *ACS Nano*, 5(6), pp.4300–4309.
- Tanabe, K. et al., 2005. G Protein-coupled Receptor Kinase 2–mediated Phosphorylation of Ezrin Is Required for G Protein- coupled Receptor–dependent Reorganization of the Actin Cytoskeleton. *Molecular biology of the cell*, 16(8), pp.1–13.
- Tenzer, S. et al., 2013. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. *Nature nanotechnology*, 8(10), pp.772–81.
- Tyanova, S. et al., 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Meth*, 13(9):pp.731-40.
- Vietti, G., Lison, D. & van den Brule, S., 2016. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). *Particle and fibre toxicology*, 13(1), p.11.
- Vippola, M. et al., 2009. Preparation of nanoparticle dispersions for in-vitro toxicity testing. *Human & experimental toxicology*, 28(6–7), p.377–385.
- De Volder, M. et al., 2013. Carbon nanotubes: present and future commercial applications. *Science*, 339(February), pp.535–9.
- Wang, X. et al., 2012. Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. *Toxicology in Vitro*, 26(6), pp.799–806.
- Xue, S. & Barna, M., 2012. Specialized ribosomes: a new frontier in gene regulation and organismal biology. *Nature reviews. Molecular cell biology*, 13(6), pp.355–69.

FIGURES

Figure 1: Comparative profile of differentially abundant proteins across the different cell types and exposures using a cluster dendogram (A), principal component analysis (B, upper panel) and heat map (B, lower panel). In (A) *C* represents the controls or unexposed cells, while *mwCNT* and *swCNT* represent cells exposed to multi-walled and single-walled CNTs respectively. Hierarchical clustering of all differentially abundant proteins distinguishes different cell and exposure types (A). For each cell type, a principal component and heatmap analyses of the top-most differentially abundant proteins (1% FDR) reveals that in A549 and Macrophages, mwCNT-exposed cells have a greater proteome profile similarity with unexposed cells, while in MRC9 cells mwCNT exposure was more comparable with the swCNT exposure. In the heatmap mean protein abundance is represented as green (low) to red (high). Venn distribution of differentially abundant proteins (fold change \geq 2) from mwCNT/Control and swCNT/Control contrasts across all 3 cell types are depicted in panel (C).

Figure 2: Number of differentially abundant proteins and degree of change in protein abundance. In total, the differentially abundant proteins from the mwCNT/Control contrast mapped to 273 genes and those in the swCNT/Control contrast to 669 genes. 116 genes were common between the two contrast sets (upper panel). In the lower panel, a plot of the number of DA proteins and the total fold change of DA proteins for each exposure type across all 3 cell types reveal a greater proteome perturbation in swCNT-exposed cells. *represents the sum of fold change in protein abundance, irrespective of direction of fold change.

Extent of proteome modulation

Figure 3: Pathway analysis summary of differentially abundant proteins from all 3 cell types.

Figure 4: Comparative analysis of top overlapping biological pathways. Differential enrichment analysis of shared biological pathways between mwCNT- and -swCNT exposed cells was performed at 3 levels; using combined differentially abundant (DA) proteins from the exposure/control contrasts in all 3 cell types – i.e. 279 DA proteins in mwCNT/Control and 669 DA proteins in swCNT/Control (A), using only those DA proteins that were downregulated (B) and upregulated (C) between the two contrast sets in all 3 cell types. For these analyses, the importance of a mechanism was attributed to the percentage of DA proteins from a specific pathway, within the input dataset (*heatmap on the left), while the potency of that mechanism was attributed to the total number of DA proteins representing the pathway for each contrast (**heatmap on the right). MwCNT, swCNT and C, represent mwCNT-exposed, swCNT-exposed and unexposed cells respectively. The percentage of DA proteins allocated to pathways suggestive of oxidative stress were similarly represented (about 15%) in mwCNT/C and swCNT/C, suggesting that it is an equally important mechanism of toxicity for both CNT subtypes, however, the number of DA proteins indicate that swCNTs are more potent in this regard (A). In the same way, pathways suggestive of ribosomal dysfunction (translation elongation, mRNA translation, peptide chain elongation, insulin synthesis and processing) were revealed as being principal mechanisms of mwCNT-induced toxicity as opposed to mechanisms of spliceosome function (mRNA splicing, processing, maturation). The later were most activated by exposure to swCNTs (A). Stratification into clusters of downregulated or upregulated DA proteins reveal that the mechanisms of toxicity triggered by mwCNT exposure are mostly mediated by upregulated proteins as opposed to swCNT-induced mechanisms of toxicity (B and C). Other common mechanisms between the two exposures were downregulation of proteins involved in caspase cascade in apoptosis (B), upregulation of proteins involved in lipid metabolism (C), both of which are more enriched in swCNT exposures.

View of all DA proteins: Distance pathways 13/4 13/5 87/1 100 colsivis tam of XPC and the pathways in and Processing 13/1 13/5 87/1 100 colsivis tam of XPC and the pathways in and Processing of Colloplasmin expression 13/1 13/5 87/1 110 contents in Aution of the DO Frome AUS Multisity 13/1 13/5 87/1 111 contents in Aution of the DO Frome AUS Multisity 13/1 13/5 87/1 112 contents in Aution of the DO Frome AUS Multisity in Aution of the DO Frome AUS Multisity in Aution of Aution Of Pathways Aution AUS Aution Of	A - Comparison of top overlap	ping pathways in all DA proteins	*Percentage 0	of DA protein 45	s ^{aa} Number of <mark>0</mark>	DA protein: 12
Diabete Diabete <t< th=""><th></th><th></th><th>mwCNT/C</th><th>swCNT/C</th><th>mwCNT/C</th><th>swCNT/C</th></t<>			mwCNT/C	swCNT/C	mwCNT/C	swCNT/C
Vent of 1D proteins: Insulin Synchrosing 92 So exclusive to wCVCControl 15 92 To exclusive to wCVCControl 17 92 To exclusive to wCVCControl 17 92 To exclusive to wCVCControl 13 13 To exclusive to wCVCControl 13 14 To exclusive to wCVCControl 14 16 To exclusive to wCVCControl 14 14 To exclusive to wCVCControl 14 14 To exclusive to wCVCControl 14 14 Processing of Carged Intron Containing Pre-mRXA 13 14 Respiratory electron transport 1 14 14 Respiratory electron transport 1 14 16 Respiratory electron transport 1 10 10 Processing of Carged Intron Containing Pre-mRXA 13 10 10 Respiratory electron transport 1 10 10 Processing of Carged Carged Intron Containi		Diabetes pathways	36	6	100	44
50 exclusive to w-CV/Common Formation of pool of free 405 submatis 87 52 costance to w-CV/Common 11 Terr. Te	Venn of all DA proteins:	Insulin Synthesis and Processing	33	3	92	23
5 - Columb is body Set on CVPCounted 12 common is body set 1 - 1-TR-moduled translational storaging of Cernophasmin expression 13 13 87 21 common is body set GTP bydrohyse and jorning of the 60S ribosonal abunit 13 13 87 21 common is body set GTP bydrohyse and jorning of the 60S ribosonal abunit 13 13 87 21 common is body set GTP bydrohyse and jorning of the 60S ribosonal abunit 13 13 87 21 common is body set GTP bydrohyse and jorning of the 60S ribosonal abunit 13 14 15 21 common is body set GTP bydrohyse and jorning of the 50x intension Complex. 14 15 400 11 contra set (TCA) cycle and respiratory electron transport. 14 15 400 12 common is body set GTP synthesis by devining transport. 14 15 400 12 common in body set GTP synthesis by devining transport. 13 15 60 72 13 contraint GTP synthesis by devining transport. 14 15 400 14 contraint GTP synthesis by devining transport. 15 60 72 0 14 contraint abund attransport. 1 1 15 60 72 0 15 contraint abund attransport. 1 1 15<	60 exclusive to mwCNT/Control	Formation of a pool of free 40S subunits	31	3	87	18
21 common in hulds area 12 common in hulds area L13-secondiated translational allocating expression 13 13 15 87 12 common in hulds area 13 15 87 87 87 12 common in hulds area 13 15 87 87 14 control in the design in the first in	576 exclusive to swCNT/Control	3' -UTR-mediated translational regulation	31	3	87	18
GTP bytholysis and joining of the 60S rhosomal aubunit 31 31 33 35 GTP bytholysis and joining of the 60S rhosomal aubunit 33 33 35 Eukaryotic Translation Initiation 33 33 35 Periotic chinis choogation 330 32 855 Nenserse Medited Deay Independent of the Exon Junction Complex 131 430 430 Interactivitie ANA transcription and Replication 330 32 485 The vitrix aid (TCA) cycle and replicative (extorn transport 14 150 400 Respiratory dectors transport 14 150 400 Processing of Capped Inton-Containing Pre-mRNA 3 30 7 Respiratory dectors transport 33 40 7 Transport of Matter Transcript to Cytoplasm 1 400 Attransport of Matter Transcript to Cytoplasm 0 0 22 Attransport of Matter Transcript to Cytoplasm 0 0 22 0 Attransport of Matter Transcript to Cytoplasm 0 0 22 0 0 0 2 0 0 0 2 0 <	21 common in both sets	L13a-mediated translational silencing of Ceruloplasmin expression	31	3	87	18
Regulation of bota-coll device/peneral 31 33 38 Names of Advance Transaction Inditation 33 32 85 Influenza Viral RNA Transcription and Resilectrion 33 33 14 150 Influenza Viral RNA Transcription and Resilectrion 14 151 400 ATP synthesis by demointancia coupfing, and heat production by uncoupfing proteins 14 150 400 ATP synthesis by demointancia coupfing, and heat production by uncoupfing proteins 14 150 400 Permation and Maturition of mDNA Transcript 3 14 150 400 Permation and Maturition of mDNA Transcript 3 3 14 12 1		GTP hydrolysis and joining of the 60S ribosomal subunit	31	3	87	18
Edwarpsite 1:ransintion 30 31 32 85 Projec chain clogation 30 22 85 Nonserve Medited Decay index Replication 30 24 85 The citic and (TCA) cycle and Replication 30 24 85 Properties (build comparison of mcRNA Transcriptin and Net production by uncoupling proteins 14 101 90 Processing of Capped Inton-Containing Pro-mRNA 3 10 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 91 92 91 91 92 91 92 91		Regulation of beta-cell development	31	3	87	18
Peptide chain elongation 30 21 85 Influenza Vini RNA Transcription and Replication 30 30 85 Influenza Vini RNA Transcription and Replication 114 115 40 ATP synthesis by chemionnotic cogling, and heat production by uncoupling proteins 114 115 40 ATP synthesis by chemionnotic cogling, and heat production by uncoupling proteins 114 115 40 Permettion and Maturition of mRNA Transcript 3 31 9 7 2		Eukaryotic Translation Initiation	31	3	87	18
Nonsense Mediated Decay Independent of the Exon Juncient Complex 30 2 88 Infractory Viet MAX Transcription and Replication 14 451 400 ATP synthesis by deministration of RRNA Transcription 3 10 9 Formation and Mutaritotion of RRNA Transcription 3 10 9 Prosessing of Capred Intron-Containing Pre-mRNA 3 10 9 mRNA Solicing 3 4 7 1 Intrasport of Maure Tinnscripti to Cytoplasm 3 4 7 1 Standard Decay Intron-Containing Pre-mRNA 3 4 7 1 7 Intrasport of Maure Tinnscripti to Cytoplasm 3 4 7 1 7 Standard Decay Proteins Decision of one-coling RNA 3 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1		Peptide chain elongation	30	2	85	16
Influency Vial RNA Transcription and Replication303088Incritica add (TCA) ycycla and respiratory electron transport141540ATP synthesis by chemionnoic coupling, and heat preduction by uncoupling proteins141540RNA Spitcing31097Processing of Capped Intron-Coutaining Pre-mRNA3407Metabolism of non-coding RNA3407Metabolism of non-coding RNA3407Metabolism of non-coding RNA3407Intrastrop of Matter Transcript Cytoplasm0220Decomposition of top overTapping pathwars in downregulated DA proteins0220Non of downregulated DA proteins0220010 common in bood ses1212120011 column of active and (TCA) ycycle and respiratory electron transport022012 column in bood ses121213141413 column in bood ses161614141413516161615161718181816161616161616161616161616161616161616<		Nonsense Mediated Decay Independent of the Exon Junction Complex	30	2	85	16
The ciric acid (TCA) cycle and respiratory electron transport141540Respiratory circum transport13101010Processing of Capred Intron-Containing Pre-mRNA3107Processing of Capred Intron-Containing Pre-mRNA3107mRNA Spitcing307Metabolism of non-coding RNA347Intrasport of Manze Transcript307Processing of Capred Intron-Containing Pre-mRNA347Intrasport of Manze Transcript (Cytoplasm)347Standard Carlos Ca		Influenza Viral RNA Transcription and Replication	30	3	85	18
 ATT synthsis by deminstration and Maturation of mRNA Transcript Formation and Maturation of mRNA Transcript Formation and Maturation of mRNA Transcript Southard Systems Processing of Capped Intran-Containing Pre-mRNA Metabolism of non-coding RNA Metabolism of non-coding RNA<		The citric acid (TCA) cycle and respiratory electron transport	14	15	40	106
Respinatory electron transport 14 14 13 40 Formation and Mutarition of NRA Transcript 3 10 7 MRNA Splicing 3 8 7 Metabolism of non-coding RNA 3 4 7 eRNP Assembly 3 4 7 Transport of Mutarito Transcript Mutari Mutarito Transcript Mutarito Transcript M		ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins	14	15	40	102
Formation and Mataration of mRNA Transcript311Processing of Cappel Intron-Containing Pre-mRNA310mRNA Spilling34Metabolism of non-coding RNA34intNP Assembly34Transport of Mature Transcript to Cytoplasm022Be-Comparison of top overlapping pathways in domracgulated DA proteins022Metabolism of according and heat production transport022The citric acid (TCA) cycle and respiratory electron transport02210 columba is by chemionnotic coupling and heat production by uncoupling proteins02211 columba is by chemionnotic coupling and heat production by uncoupling proteins02212 columba is by chemionnotic coupling and heat production by uncoupling proteins02213 columba is by chemionnotic coupling and heat production by uncoupling proteins02214 columba is by chemionnotic coupling and heat production by uncoupling proteins02215 columba is by chemionnotic coupling and heat production by uncoupling proteins02216 columba is by chemionnotic coupling and heat production by uncoupling proteins02213 columba is by chemionnotic coupling and heat production function0214 columba is an analysis02015 columba is and Processing133116 columba in frame frame frame133117 columba is and Processing161118 columba is and Processing161 <td< td=""><td></td><td>Respiratory electron transport</td><td>14</td><td>13</td><td>40</td><td>92</td></td<>		Respiratory electron transport	14	13	40	92
Processing of Capped Intro-Containing Pre-mRNA 3 0 7 Menabolism of non-coding RNA 3 4 7 anRNP Assembly 3 4 7 Transport of Muttatic Transcript in the Termination Region 3 4 7 B - Comparison of top overlapping pathways in downregulated DA proteins 0 22 0 B - Comparison of top overlapping pathways in downregulated DA proteins 0 22 0 S1 acclusive to an CNFC owned The citric acid (TCA) cycle and respiratory electron transport 0 20 0 Accurate to an CNFC owned The citric acid (TCA) cycle and respiratory electron transport 0 20 0 Accurate to an CNFC owned The citric acid (TCA) cycle and respiratory electron transport 0 20 0 Accurate to an CNFC owned The citric acid (TCA) cycle and respiratory electron transport 0 20 0 Accurate to an CNFC owned The citric acid (TCA) cycle and respiratory electron transport 0 0 0 Accurate to an CNFC owned mRNA hosesing 6 16 14 14 Accurate to an CNFC owned mRNA hosesing 6 7		Formation and Maturation of mRNA Transcript	3	11	9	74
Implementation 3 8 7 Metabolism of non-coding RNA 3 4 7 Implementation 1 4 7 Implementation 1 4 7 B Comparison of top overlapping pathways in downregulated DA proteins 9 28 0 Implementation 1 4 7 Implementation 1 1 1 1 Implementation 1 1 1 1 1 Implementation 1 4 1 1 1 Implementation 1 1 1 1 1 Imp		Processing of Capped Intron-Containing Pre-mRNA	3	10	7	72
Main Norman Comparison of top overlapping pathways in downregulated DA proteins 3 4 7 B - Comparison of top overlapping pathways in downregulated DA proteins 9 22 9 meXNTC wXXIC 0 222 0 Venn of downregulated DA proteins 0 20 0 0 22 0 31 acclaise to meXNTC wXXIC meXXIC 0 222 0 0 22 0 0 22 0 0 22 0 0 22 0 0 22 0 0 20 0 0 22 0 0 22 0 0 22 0 0 22 0 0 22 0		mRNA Splicing	3	8	7	58
mRNP Assembly 3 4 7 I ransport of Mature Transcript to Cytoplasm 1 4 2 B - Comparison of top overlapping pathways in downregulated DA proteins 9 28 0 Wen of downregulated DA proteins 0 22 0 31 acclusive to <i>wnCVTControl</i> Respiratory electron transport 0 22 0 42 occlusive to <i>wnCVTControl</i> mRNP Assembly 6 16 4 47 occumion in <i>both see</i> Processing Occuped Intron-Containing Pre-mRNA 6 16 40 common in <i>both see</i> Processing Occuped Intro-Containing Pre-mRNA 6 16 40 common in <i>both see</i> 1 3 3 9 41 occuming of non-coding RNA 9 6 7 42 acclusive to <i>wnCVTControl</i> 13 3 9 43 mRNP Assembly 9 6 7 44 occumion in <i>both see</i> Formation and Maturation of mRNA Transcript 9 6 43 mRNP Assembly 9 6 1 4 44 occuming 13 3 9 2 45 of Phytics 14 13 3 1 2 46 of Phytics 16 14 12 2 47 of Lastron <		Metabolism of non-coding RNA	3	4	7	25
Transport of Mature Transcript to Cytoplasm 1 4 2 B - Comparison of top overlapping pathways in downregulated DA proteins 0 28 0 Wenn of downregulated DA proteins: The citric acid (TCA) cycle and respiratory electron transport 0 22 0 31 acdiasive io mrCAT/Control 42 0 0 22 0 40 common in both sets 0 22 0 0 20 40 common in both sets 0 22 0 0 0 0 40 common in both sets 0 22 0 0 0 0 0 40 common in both sets 0 13 4 14 0 0 0 0 0 0 40 common in both sets 0 14 0 <td< td=""><td></td><td>snRNP Assembly</td><td>3</td><td>4</td><td>7</td><td>25</td></td<>		snRNP Assembly	3	4	7	25
B - Comparison of top overlapping pathways in downregulated DA proteins 0 28 0 Wenn of downregulated DA proteins: The citric acid (TCA) cycle and respiratory electron transport 0 222 0 31 exclusive to mrCNTControl ATP synthesis by chemiosnotic coupling, and heat production by uncoupling proteins: 0 222 0 31 exclusive to mrCNTControl Respiratory electron transport 0 222 0 0 420 columon in both sets Processing of Capped Inton-Containing Pre-mRNA 6 16 4 Processing of Capped Inton-Containing Pre-mRNA 6 16 4 Processing of Capped Inton-Containing Pre-mRNA 6 16 4 Processing exclusion of non-coding RNA 9 6 7 IntroN Spicing 13 5 9 7 MattaDison of non-coding RNA 13 5 9 1 The alpha/NF-KB 13 5 9 6 2 Cappase cascade in apoptosis 0 0 0 2 0 Cappase cascade in apoptosis 0 0 0 2 0 10 sections rotici		Transport of Mature Transcript to Cytoplasm	1	4	2	25
B - Comparison of top overlapping pathways in downregulated DA proteins 0 25 0 Wenn of downregulated DA proteins: The citric acid (TCA) cycle and respiratory electron transport 0 222 0 31 acclusive to mrCAT/Control 422 0 0 220 0 422 occlusive to SOC/TCControl 422 0 0 220 0 40 common in hoth sets 0 220 0		Transport of Matalio Transoript to Cytoplashi		2	-	40
Venn of downregulated DA proteinsIme citric acid (TCA) cycle and respiratory electron transport00221ATP synthesis by chemicsmotic coupling, and heat production by uncoupling proteins00031 acclusive to mCATCourtedRespiratory electron transport00040 common in bash ses00101091 contains0010101091 contains01010101091 contains01010101091 contains01010101091 contains01010101091 contains01010101091 contains1010101010 <td>B - Comparison of top overlapp</td> <td>ing pathways in downregulated DA proteins</td> <td>0</td> <td>25</td> <td>0</td> <td>100</td>	B - Comparison of top overlapp	ing pathways in downregulated DA proteins	0	25	0	100
The citric acid (TCA) cycle and respiratory electron transport022031 acclusive to mrCAT/ControlRespiratory electron transport0240421 occlusive to sorCAT/ControlRNA Processing61644432 occlusive to sorCAT/ControlmRNA Processing6164490 common in both setsProcessing6164491 contained and Maturation of mRNA Transcript6164492 contained and Maturation of mRNA Transcript6164493 contained and Maturation of mRNA Transcript96794 mRNA Splicing1339695 contained and Maturation of mRNA Transcript133995 contained and maturation of maturation of maturation of contained and protosis141414105 contained and maturation frequencial for interphase microtubule organizationÅTIÅ from the centrosome61114105 contained and frequencial for interphase microtubule organizationÅTIÅ from the centrosome61212105 contained and frequencial for interphase microtubule organizationÅTIÅ from the centrosome61212 <td< td=""><td></td><td></td><td>mwCNT/C</td><td>swCNT/C</td><td>mwCNT/C</td><td>swCNT/C</td></td<>			mwCNT/C	swCNT/C	mwCNT/C	swCNT/C
Venn of downregulated DA proteins: ATP synthesis by chamiosmotic coupling, and heat production by uncoupling proteins 0 0 0 31 exclusive to mrCNTControl Respiratory electron transport 0 0 0 0 32 exclusive to mrCNTControl Respiratory electron transport 0 0 0 0 32 exclusive to mrCNTControl Respiratory electron transport 0 0 0 0 40 common in both sets Processing of Capped Intron-Containing Pre-mRNA 0 0 0 0 40 common in both sets FGFR1 6 0 0 0 0 0 mRNA Splicing Anot-coding RNA 13 3 9 0 <td></td> <td>The citric acid (TCA) cycle and respiratory electron transport</td> <td>0</td> <td>22</td> <td>0</td> <td>102</td>		The citric acid (TCA) cycle and respiratory electron transport	0	22	0	102
31 exclusive to mrCVTCentrol Respiratory electron transport. 0 0 0 423 exclusive to swCVTCentrol mRNA Processing. 6 16 4 90 common in <i>heth sets</i> Processing. 6 16 4 91 exclusive to swCVTCentrol 9 6 7 91 exclusive to swCVTCentrol 7 7 7 7 91 exclusive to swCVTCentrol 7 7 7 7 7 91 exclusive to swCVTCentrol 7 7 7 7 7 91 exclusive to swCVTCentrol 7 7 7 7 7 91 exclusive to swCVTCentrol 7 7 <td< td=""><td>Venn of downregulated DA proteins:</td><td>ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins</td><td>0</td><td>22</td><td>0</td><td>100</td></td<>	Venn of downregulated DA proteins:	ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins	0	22	0	100
423 exclusive to swCNT/Control 6 6 6 6 40 common in both sees Processing of Capped Intron-Containing Pre-mRNA 6 6 6 6 40 common in both sees Formation and Maturation of mRNA Transcript 6 6 6 6 40 common in both sees 6 0.01 6 0.01 6 7 41 Attabalism of non-coding RNA 9 6 7 6 7 5 and NNP Assembly 9 6 7 6 7 5 and NNP Assembly 9 6 7 6 7 5 and NNP Assembly 9 6 7 6 7 5 and NNP Assembly 9 6 7 6 7 5 and NNP Assembly 9 6 7 8 7 8 7 5 and NNP Assembly 13 3 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 exclusive to mwCNT/Control	Respiratory electron transport	0	20	0	90
40 common in both sets Processing of Capped Intron-Containing Pre-mRNA 6 16 4 Formation and Maturation of nRNA Transcript 6 13 4 mRNA Splicing 6 13 4 Metabolism of non-coding RNA 9 66 7 saRNP Assembly 9 66 7 FGFR1 13 3 9 TNF alpha/NF-kB 13 3 9 saRNP Assembly 9 66 31 Caspase cascade in apoptosis 6 3 4 Loss of proteins required for interphase microtubule organizationÄ⊓Ä from the centrosome 6 11 Transport of Matura Transcript the Cytoplasm 3 6 2 Cleavage of Growing Transpring in the Termination Region 3 5 2 flavin biosynthesis IV (mammalian) 3 1 2 9 Ven of upregulated DA proteins: Isalin Synthesis and Processing 44 12 93 180 exclusive to an CVT/Control Fadaryotic Translation Flongation 38 5 81 190 exclusive to an CVT/Control Fusult Synthesis and Processing	423 exclusive to swCNT/Control	mRNA Processing	6	16	4	74
Formation and Maturation of nRNA Transcript 6 16 4 mRNA Splicing 6 13 4 Metabolism of non-coding RNA 9 6 7 saRNP Assembly 9 6 7 EGFR1 13 3 9 TNF alpha/NF-kB 13 3 9 saRNP Assembly 6 1 4 Caspase cascade in apoptosis 6 1 4 Caspase cascade in apoptosis 3 6 2 Cleavage of Growing Transcript to Cytoplasm 3 6 2 Transport of Mature Transcript to Cytoplasm 3 6 2 Itavin biosynthesis IV (manumalian) 3 1 2 Venn of upregulated DA proteins 0 0 0 0 Diabeters nathways Insulin Synthesis and Processing 44 12 93 189 exclusive to awc/NT/Control Esclusorial Translation Elongation 38 5 81 190 exclusive to awc/NT/Control Esclusorial translational silencing of Cruoplasmin expression 38 5 81 191 exclusive to	40 common in both sets	Processing of Capped Intron-Containing Pre-mRNA	6	16	4	72
mRNA Splicing 6 13 4 Mctabolism of non-coding RNA 9 6 7 snRNP Assembly 9 6 7 FGFR1 13 5 9 TNF alpha/NF-kB 13 3 9 snRNP Assembly 9 6 7 Caspase cascade in apoptosis 6 3 4 Loss of proteins required for interphase microtubule organizationÅTIÅ from the centrosome 6 1 4 Transport of Mature Transcript to Cytoplasm 3 6 2 2 Reven of upregulated DA proteins 0 4 12 9 Sto exclusive to wsc/NT/C swCNT/C mwCNT/C mwCNT/C mwCNT/C Sto exclusive to wsc/NT/Control Eukaryotic Translation Elongation 38 4 81 180 exclusive to wsc/NT/Control Eukaryotic Translational signaline scression 38 5 81 181 exclusive to wsc/NT/Control 13 3 3 32 5 190 exclusive to wsc/NT/Control 10 10 85 81 81 191 exclusive to wsc/NT/Control		Formation and Maturation of mRNA Transcript	6	16	4	72
Metabolism of non-coding RNA967smRNP Assembly967FGFR11359TNF alpha/NF-kB1339smRNP Assembly967Caspuse cascade in apoptosis967Loss of proteins required for interphase microtubule organizationÄTIÅ from the centrosome61Transport of Mature Transcript to Cytoplasm362Cleavage of Growing Transcript in the Termination Region352Iavin biosynthesis IV (mammalian)312Vena of upregulated DA proteins04412Mise activity to swCNT/C mortion18686Bis activity to swCNT/C mortion18681190 exclusive to swCNT/Control1106018191 exclusive to swCNT/Control1101286191 exclusive to swCNT/Control1131012191 exclusive to swCNT/Control11013146191 exclusive to swCNT/Control110131315191 exclusive to swCNT/Control110131518191 exclusive to swCNT/Control110131518191 exclusive to swCNT/Control11011161818191 exclusive to swCNT/Control1101118518191 exclusive to swCNT/Control115333218		mRNA Splicing	6	13	4	58
snRNP Assembly967FGFR11359TNF alpha/NF-kB1339snRNP Assembly963cappase cascade in apoptosis634Loss of proteins required for interphase microtubule organization\Dilf\U00e4 from the centrosome61Transport of Mature Transcript to Cytoplasm362Cleavage of Growing Transcript in the Termination Region352Ilavin biosynthesis IV (mammalian)312Venn of upregulated DA proteins:Insulin Synthesis and Processing441293190 exclusive to swCNT/ControlFedaration of a pool of free 40S subunits38481188 exclusive to swCNT/ControlFormation of a pool of free 40S subunits38581GI P hydrolysis and joining of the 60S ribosonal subunit38581Regulation of beta-cell development75581The critic axid (TCA) cycle and respinatory electron transport265Regulation of beta-cell development753332Syndecan-2-mediated signaling events2653Syndecan-2-mediated signaling events265Integrin cell surface interactions265Beta3 integrin cell surface interactions265Respiratory electron transport8638		Metabolism of non-coding RNA	9	6	7	25
EGFR1 13 5 9 TNF alpha/NF-kB 13 3 9 snRNP Assembly 9 6 7 Caspase cascade in apoptosis 6 3 4 Loss of proteins required for interphase microtubule organization X□Å from the centrosome 6 1 Transport of Mature Transcript to Cytoplasm 3 6 2 Cleavage of Growing Transcript in the Termination Region 3 5 2 Ilavin biosynthesis IV (mammalian) 3 1 2 Venn of upregulated DA proteins: Diabetes pathways in upregulated DA proteins. 0 45 93 180 exclusive to mscNT/C translation Elongation 138 4 81 86 180 exclusive to mscNT/Control Eukaryotic Translation Elongation 38 5 81 180 exclusive to mscNT/Control Eukaryotic Translational silencing of Ceruloplasmin expression 38 5 81 181 exclusive to mscNT/Control Eukaryotic Translational silencing of Ceruloplasmin expression 38 5 81 182 exclusive to mscNT/Control Eukaryotic Translational silencing of Ceruloplasmin expression 38 5 81 </td <td></td> <td>snRNP Assembly</td> <td>9</td> <td>6</td> <td>7</td> <td>25</td>		snRNP Assembly	9	6	7	25
TNF alpha/NF-kB 13 3 9 snRNP Assembly 9 6 7 Caspase cuscade in apoptosis 6 3 4 Loss of proteins required for interphase microtubule organizationÂTIÂ from the centrosome 6 1 Transport of Mature Transcript to Cytoplasm 3 6 2 Cleavage of Growing Transcript in the Termination Region 3 5 2 flavin biosynthesis IV (mammalian) 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 9 mwCNT/C swCNT/C wwCNT/C 0 44 12 Jibbetes pathways 130 3 44 12 Issuin Synthesis and Processing 41 6 86 Fukaryotic Translation Elongation 38 5 81 180 ecolusive to swCNT/Control Fukaryotic Translation al regulation 38 5 81 61 common in both sets 1.13-mediated translational regulation 38 5 81 37 -17P hydrolysis and joining of the 60S ribosomal subunit 38 5 81 61 comm		EGFR1	13	5	9	23
snRNP Assembly 9 6 7 Caspase cascade in apoptosis 6 3 Loss of proteins required for interphase microtubule organizationÅ⊓Å from the centrosome 6 1 Transport of Mature Transcript to Cytoplasm 3 6 2 Cleavage of Growing Transcript in the Termination Region 3 5 2 flavin biosynthesis IV (mammalian) 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 mwCNT/C swCNT/C swCNT/C swCNT/C mwCNT/C 10 exclusive to swCNT/Control Insulin Synthesis and Processing 41 6 86 10 exclusive to swCNT/Control Formation of a pool of free 40S subunits 38 5 81 18 exclusive to swCNT/Control Formation of a pool of free 40S subunits 38 5 81 61 common in both sets 113e-mediated translational silencing of Ceruloplasmin expression 38 5 81 GTP hydrolysis and poining of the 60S ribosomal subunit 38 5 81 81 Regulation of beta-cell development 38 5 81 81		TNF alpha/NF-kB	13	3	9	14
Caspase cascade in apoptosis 6 3 4 Loss of proteins required for interphase microtubule organization Å∏Å from the centrosome 6 1 4 Transport of Mature Transcript to Cytoplasm 3 6 1 2 Cleavage of Growing Transcript in the Termination Region 3 5 2 flavin biosynthesis IV (mammalian) 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 NucCNT/C swCNT/C mwCNT/C swCNT/C mwCNT/C 10 exclusive to <i>nwcCNT/Control</i> Eukaryotic Translation Elongation 38 4 81 188 exclusive to <i>swCNT/Control</i> Formation of a pool of free 40S subunits 38 5 81 181 exclusive to <i>swCNT/Control</i> I.13a-mediated translational regulation 38 5 81 182 exclusive to <i>swCOT/Control</i> Eukaryotic Canslational regulation 38 5 81 183 exclusive to <i>swCOT/Control</i> Formation of a pool of free 40S subunits 38 5 81 184 exclusive to <i>swCOT/Control</i> Eukaryotic Translational regulation 38 5 81		snRNP Assembly	9	6	7	25
Loss of proteins required for interphase microtubule organizationÅTÅ from the centrosome 6 1 Loss of proteins required for interphase microtubule organizationÅTÅ from the centrosome 3 6 Cleavage of Growing Transcript in the Termination Region 3 5 flavin biosynthesis IV (mammalian) 3 1 C- Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 Diabetes pathways 0 45 0		Caspase cascade in apoptosis	6	3	4	12
Transport of Mature Transcript to Cytoplasm 3 6 2 Cleavage of Growing Transcript in the Termination Region 3 5 2 Itavin biosynthesis IV (mammafian) 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 mwCNT/C swCNT/C swCNT/C swCNT/C swCNT/C 10 Diabetes pathways 44 12 93 86 81 150 exclusive to swCNT/Control Eukaryotic Translation Elongation 38 5 81 188 exclusive to swCNT/Control Formation of a pool of free 40S subunits 38 5 81 61 common in both sets 1.13a-mediated translational silencing of Ceruloplasmin expression 38 5 81 GTP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 81 Regulation of beta-cell development 38 5 81 32 Proteoglycan syndecan-mediated signaling events 2 7 5 The cittic acid (TCA) cycle and respiratory electron transport 18 6 38 Respintary relectron intrametions 2 6 <td></td> <td>Loss of proteins required for interphase microtubule organization $\tilde{\lambda} \parallel \hat{\lambda}$ from the centrosome</td> <td>6</td> <td>1</td> <td>4</td> <td>2</td>		Loss of proteins required for interphase microtubule organization $\tilde{\lambda} \parallel \hat{\lambda}$ from the centrosome	6	1	4	2
Cleavage of Growing Transcript in the Termination Region 3 5 2 Itervage of Growing Transcript in the Termination Region 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 Wenn of upregulated DA proteins: 0 44 12 Diabetes pathways 44 12 93 150 exclusive to unwCNT/C swCNT/C 90 86 81 188 exclusive to unwCNT/Control Formation flenopol free 40S subunits 38 5 61 common in both sets 113a-mediated translational silencing of Ceruloplasmin expression 38 5 3'-UTR-mediated translational regulation 38 5 81 GIP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 Regulation of beta-cell development 38 5 81 Proteoglycan syndecan-mediated signaling events 2 7 5 Syndecan-2-mediated signaling events 2 7 5 Beta3 integrin cell surface interactions 2 6 3 Respiratory electron transport 18 6 3 3		Transport of Mature Transcript to Cytoplasm	3	6	2	25
C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 Maxin biosynthesis IV (manualian) 3 1 2 C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 mwCNT/C swCNT/C mwCNT/C swCNT/C mwCNT/C swCNT/C Diabetes pathways 44 12 86 150 exclusive to mwCNT/Control Eukaryotic Translation Elongation 38 4 188 exclusive to swCNT/Control IL3a-mediated translational regulation 38 5 61 common in both sets 3'-UTR-mediated translational regulation 38 5 GTP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 Regulation of beta-cell development 38 5 81 Proteoglycan syndecan-mediated signaling events 15 33 32 Syndecan-2-mediated signaling events 2 7 5 The citric acid (TCA) cycle and respiratory electron transport 18 6 38 Beta3 integrin cell surface interactions 2 6 3 3 3 3 3 3 3 3 <t< td=""><td></td><td>Cleavage of Growing Transcript in the Termination Region</td><td>3</td><td>5</td><td>2</td><td>23</td></t<>		Cleavage of Growing Transcript in the Termination Region	3	5	2	23
C - Comparison of top overlapping pathways in upregulated DA proteins. 0 45 0 Numerical control Diabetes pathways 44 12 93 Insulin Synthesis and Processing 44 12 86 150 exclusive to uweCNTControl Eukaryotic Translation Elongation 38 4 81 188 exclusive to swCNT/Control 13a-mediated translational regulation 38 5 81 187 exclusive to swCNT/Control 37		flavin biosynthesis IV (mammalian)	3	1	2	2
C - Comparison of top overlapping pathways in upregulated DA proteins 0 45 0 mwCNT/C swCNT/C swCNT/C swCNT/C swCNT/C swCNT/C Diabetes pathways 44 12 93 44 12 Store exclusive to <i>wwCNT/Control</i> Eukaryotic Translation Elongation 38 44 81 188 exclusive to <i>swCNT/Control</i> Function of a pool of free 40S subunits 38 5 81 184 exclusive to <i>swCNT/Control</i> ILiaa-mediated translational regulation 38 5 81 61 common in <i>both sets</i> 3' -UTR-mediated translational regulation 38 5 81 Syndecan-2-mediated translational regulation 38 5 81 Proteoglycan syndecan-mediated signaling events 15 33 32 Syndecan-2-mediated signaling events 2 7 5 The citric acid (TCA) cycle and respiratory electron transport 18 6 38 Beta3 integrin cell surface interactions 2 6 3 Respiratory electron transport 18 6 38 38 Hatifice inteleractintecons 2 6	_					
Diabetes pathways 44 12 Diabetes pathways 44 12 150 exclusive to <i>uwCNTCentral</i> Eukaryotic Translation Elongation 38 4 188 exclusive to <i>uwCNTCentral</i> Fukaryotic Translation Elongation 38 4 186 exclusive to <i>uwCNTCentral</i> Pormation of a pool of free 40S subunits 38 5 186 exclusive to <i>uwCNTCentral</i> Pormation of a pool of free 40S subunits 38 5 187 exclusive to <i>uwCNTCentral</i> ILiaa-mediated translational regulation 38 5 61 common in <i>both sets</i> I.13a-mediated translational regulation 38 5 3* UTR-mediated translational regulation 38 5 81 GTP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 Regulation of beta-cell development 38 5 81 Protocoglycan syndecan-mediated signaling events 15 33 32 Syndecan-2-mediated interactions 2 6 38 Beta3 integrin cell surface interactions 2 6 3 Integrin cell surface interactions 2 6 3 Respiratory electron tra	<u>C - Comparison of top overlap</u>	<u>ping pathways in upregulated DA proteins</u>	0	45	0	100
Venn of upregulated DA proteins: Insulin Synthesis and Processing 41 6 150 exclusive to uweCNT/Control Eukaryotic Translation Elongation 38 4 188 exclusive to uweCNT/Control Funkaryotic Translation Elongation 38 4 188 exclusive to uweCNT/Control Insulin Synthesis and Processing 38 5 188 exclusive to uweCNT/Control Insulin Synthesis and Processing 38 5 184 exclusive to swCNT/Control Isamediated translational regulation 38 5 61 common in both sets L13a-mediated translational regulation 38 5 81 37 -UTR-mediated translational regulation 38 5 81 GIP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 Regulation of beta-cell development 38 5 81 Proteoglycan syndecan-mediated signaling events 15 33 32 Syndecan-2-mediated interactions 2 7 5 The citric acid (TCA) cycle and respiratory electron transport 18 6 38 Beta3 integrin cell surface interactions 2 6 3 Respiratory electron tran		Diabetes pathways	mwCN1/C 44	swCNT/C	mwCNT/C 93	swCNT/C 30
150 exclusive to unseCNTControl Enkaryoiic Translation Elongation 38 4 188 exclusive to unseCNT/Control Formation of a pool of free 40S subunits 38 5 188 exclusive to swCNT/Control Formation of a pool of free 40S subunits 38 5 61 common in both sets L13a-mediated translational silencing of Ceruloplasmin expression 38 5 31 L13a-mediated translational regulation 38 5 81 32 -UTR-mediated translational regulation 38 5 81 33 -UTR-mediated translational regulation 38 5 81 34 Regulation of beta-cell development 38 5 81 35 Syndecan-2-mediated signaling events 2 7 5 36 Detailing events 2 7 5 37 The citric acid (TCA) cycle and respiratory electron transport 18 6 38 38 Expiratory electron transport 18 6 38 38	Venn of upregulated DA proteins:	Insulin Synthesis and Processing	41	6	86	14
188 exclusive to swCNT/Control Ionumon in both sets	150 exclusive to mwCNT/Control	Eukaryotic Translation Elongation	38	4	81	9
61 common in both sets L13a-mediated translational silencing of Ceruloplasmin expression 38 5 81 3' -UTR-mediated translational regulation 38 5 81 GTP hydrolysis and joining of the 60S ribosomal subunit 38 5 81 Regulation of beta-cell development 38 5 81 Protoglycens syndecan-mediated signaling events 15 33 32 Syndecan-2-mediated signaling events 2 7 5 The citric acid (TCA) cycle and respiratory electron transport 18 6 38 Beta3 integrin cell surface interactions 2 6 3 Respiratory electron transport 18 6 38 ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins 18 6 38	188 exclusive to swCNT/Control	Formation of a pool of free 40S subunits	38	5	81	11
3' -UTR-mediated translational regulation 38 5 GTP hydrolysis and joining of the 60S ribosomal subunit 38 5 Regulation of beta-cell development 38 5 Proteoglycan syndecan-mediated signaling events 15 33 Syndecan-2-modiated signaling events 2 7 The citric acid (TCA) cycle and respiratory electron transport 18 6 Beta3 integrin cell surface interactions 2 6 Integrin cell surface interactions 2 6 Respiratory electron transport 18 6 ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins 18 6	61 common in both sets	L13a-mediated translational silencing of Ceruloplasmin expression	38	5	81	11
GTP hydrolysis and joining of the 60S ribosonal subunit385Regulation of beta-cell development385Proteoglycan syndecan-mediated signaling events1533Syndecan-2-mediated signaling events27The citric acid (TCA) cycle and respiratory electron transport186Beta3 integrin cell surface interactions26Integrin cell surface interactions26Respiratory electron transport186ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins186		3' -LITR-mediated translational regulation	38	5	81	11
Ort influery in this pointing or the control bootsOrtOrtRegulation of beta-cell development385Proteoglycan syndecan-mediated signaling events1533Syndecan-2-mediated signaling events27The citric acid (TCA) cycle and respiratory electron transport186Beta3 integrin cell surface interactions26Integrin cell surface interactions26Respiratory electron transport186ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins186		GTP hydrolysis and joining of the 60S ribosomal subunit	38	5	81	11
Protocolycen wide of control0001Protocolycen syndecan-mediated signaling events1533Syndecan-2-mediated signaling events27The citric acid (TCA) cycle and respiratory electron transport186Beta3 integrin cell surface interactions26Integrin cell surface interactions26Respiratory electron transport186Respiratory electron transport186ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins186		Regulation of beta-cell development	30	5	81	11
Integrating vention113232Syndecan-2-mediated signating events275The citric acid (TCA) cycle and respiratory electron transport18638Beta3 integrin cell surface interactions265Integrin cell surface interactions263Respiratory electron transport18638ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins18638		Proteoplycan syndecan-mediated signaling events	15	27	32	87
The citric acid (TCA) cycle and respiratory electron transport186Beta3 integrin cell surface interactions26Integrin cell surface interactions26Respiratory electron transport186ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins186		Sundasan 2 mediated signaling events	15		5	19
Ine curic action (TCA) cycle and respiratory electron transport18638Beta3 integrin cell surface interactions265Integrin cell surface interactions263Respiratory electron transport18638ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins18638		The site and (TCA) multiplication and manifesters all the transmitter	10	1	20	10
Integrin cell surface interactions265Intogrin cell surface interactions263Respiratory electron transport18638ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins18638		The child acid (TCA) cycle and respiratory electron transport	18	0	38	10
Integrin cell surface interactions263Respiratory electron transport18638ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins18638		Beta5 integrin cell surface interactions	2	6	5	16
Respiratory electron transport18638ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins18638		Integrin cell surface interactions	2	6	3	16
ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins 18 6 38		Respiratory electron transport	18	6	38	14
		ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins	18	6	38	14
Lipoprotein metabolism 2 6 5		Lipoprotein metabolism	2	6	5	14

Г

DA = differentially abundant mwCNT = multi-walled carbon nanotubes swCNT = single-waled carbon nanotubes C = Control/Unexposed * relative significance of mechanism ** potency with which mechanism is activated

Figure 5: **LC-MS/MS quantitation versus western blot analysis**. Western blot analysis was performed following triplicate 24h exposure to 0.315, 3.15 and 31.5 μ g/cm² mwCNT and swCNT. Antibodies to RBP4 (retinol binding protein 4) and SDCBP (syntenin-1) were used to validate LC-MS/MS quantification. C denotes unexposed control cell and mwCNT/swCNT denote cells exposed to multi-walled/single-walled carbon nanotubes. 15 μ g of whole cell lysate were loaded for all samples, and each sample was loaded twice, in adjacent lanes. The leftmost panel in the figure depicts log2-transformed protein abundance intensity, derived from LC-MS/MS proteomics. The rightmost panel depicts a representative blot of its expression levels as determined by western blot and the middle panel shows log2-transformed intensity-based quantitation (mean ±SEM) of western blot data. For intensity-based representation of undetected bands, an area of the blot with no detectable protein bands was selected.

Figure 6: Nanotube-induced ROS production. Intracellular ROS was determined in all cell types 24 hours after exposure to mwCNT, swCNT and Asbestos Crocidolite (**A**, **B**, **C**). All 3 nanomaterials induced a dose-dependent increase in reactive oxygen species with swCNT being the most potent. Even at mass concentrations that were 10-fold higher, ROS production in cells exposed to asbestos crocidolite (315 μ g/cm²) was still significantly lower than that in cells exposed to both CNT subtypes (31.5 μ g/cm²). Cells were treated with acknowledged antioxidants – N-acetylcysteine (NAC), Pyrrolidene dithiocarbamatec (PDTC) and Diphenyleneiodonium (DPI), 1h before and during the 24h exposures (**D**). All 3 antioxidants significantly decreased (P < 0.005) ROS produced by exposure to mwCNT, but only NAC was able to decrease ROS induction in swCNT exposures. Acellular production of ROS was determined after 5h incubation in NaOH-deacetylated DFCH-DA, at nanomaterial concentrations of 20 μ g/ml (**E**). ROS generation is quantified as the fluorescence intensity of DCF oxidized from non-fluorescent DCFH, at excitation emission/spectra of 485nm/535nm. Error bars are standard error of the mean from 4 replicates. NMs without DCFH represents the mean ROS measured from either mwCNT, swCNT or asbestos crocidolite in the absence of DCFH.

Figure 7: **Decrease in mitochondrial membrane potential (MMP)** 24h post exposure to multi-walled CNTs (mwCNT), single-walled CNTs (swCNT) and asbestos crocidolite across three cell types. Fluorescence intensities for each exposure was subtracted from that in unexposed cells. Columns represent mean and SEM of fluorescence intensity from at least 3 replicates. As positive control cells were exposed for 1h to 100 μ M Carbonyl Cyanide 3-ChloroPhenylhydrazone. Exposure to all three all materials, resulted in a significant decrease (P value < 0.05) in MMP at all the tested doses, meanwhile this decrease was dose dependent in at least 1 cell type in only swCNT and Asbestos exposed cells (P value < 0.005). In the mwCNT-exposed cells, MM depolarization observed at the lowest dose wasn't exacerbated by higher doses of mwCNTs.

mwCNT/Control PPJ36A (KIAU707) 9.1 (KIAU77) NUL 7.3 (NUD4) 7.3 (NUD4) 7.3 (NUD4) MRPS33 6.5 (APOC3) 6.1 swCNT/Control FAXC 10.3 BMC 7.8 (G12) 7.7 SWL 7.8 (G12) 7.7 GMC 6.3 6.3 mwCNT/Control FAXC 10.3 Macrophages mwCNT/Control FAXC 10.3 Macrophages mwCNT/Control PMS 8.8 APOC3 11.8 7.6 SMAD2 6.3 7.6 5 SMAD2 6.3 7.6 5 SMAD2 6.3 7.6 5 SMAPI 7.3 4POO 6.3 SwCNT/Control PNS 6.3 3 APOD 6.3 3 3 APOD 6.3 3 3 SwCNT/Control PNS 9.3 3 APOD 8.8 4PO 3	A549	Contrast	Gene symbol	Fold change
Macrobiology RMAIIO7 75 SVL NUD74 73 NUD74 73 NUD74 73 MUD74 73 MUD74 73 MUD74 73 MUD74 73 MUD74 73 MUD74 66 APOC3 61 MRC9 FMX Macrophages mwCNT/Control APOC3 11.8 SwCNT/Control APOC3 APOA2 8.8 CD99 7.6 SwCNT/Control NN NN 0.1 SwCNT/Control NN NN 0.1 SwCNT/Control NN NN 0.1 SwCNT/Control NN MAPC3 13.1 APOD 63 MAPC1 9.3 PGLMP2 9.2 SkepNm86 13.1 APOD 88 APOD 8.8		mwCNT/Control	RPL36A	9.1
MRC9 SWL 7.3 MRP533 6.7 MRP533 6.6 APOC3 6.1 SwCNT/Control FAXC 10.3 BBP4 7.8 SWL SWCNT/Control FAXC 10.3 BBP4 7.8 SWL SWCNT/Control FAXC 10.3 Macrophages mwCNT/Control PAXC 10.3 Macrophages mwCNT/Control 11.8 PTMS SWCNT/Control PTMS 8.8 APOA2 SWCNT/Control NN 0.04 SWCNT/Control MRF 11.4 HI HI APOC3 14.1 APOA2 8.8 CD9 7.6 SMAPI 7.3 SWCNT/Control NN 0.04 SWCNT/Control PSN SWCNT/Control NN 0.04 SWCNT/Control SERPINB6 13.3 APOC3 14.1 HI HI HI HI HPH4 9.3 <td< th=""><th></th><th></th><th>KIAA1107</th><th>7.5</th></td<>			KIAA1107	7.5
MRC9 NOD14 MRPS13 CHMP2B 6.5 6.1 MR2C swCNT/Control FAXC 10.3 RBP4 7.3 SWL swCNT/Control FAXC 10.3 RBP4 7.3 SWL mwCNT/Control FAXC 10.3 RBP4 7.3 SWL mwCNT/Control APOC3 11.8 FMS 10.0 FMS mwCNT/Control PMS 10.0 FMS 6.1 swCNT/Control RBP4 7.3 SWD2 6.1 swCNT/Control FMS 10.0 DPM3 8.8 CD90 6.1 swCNT/Control FNS 2.4 FMD 6.1 1.1 FMR 10.0 DPM3 1.1 FMR swCNT/Control FNS 2.3 FMC3 1.1 FMR 1.4 FMR			SVIL	7.3
MRC9 6.6 APOC3 6.1 RF3C 6.1 swCNT/Control FAXC 10.3 BRP4 7.8 SVL 7.7 JGF2 7.7 OSTC 7.3 SMAD2 6.1 Macrophages mwCNT/Control PTMS PTMS 10.0 DPM3 8.8 APOC3 8.1 OSTC 7.3 SMAD2 8.8 CD99 7.6 SMAPI 7.3 APOD 6.5 SWCNT/Control NS 20.4 SERTINB0 11.1 APOC3 14.1 HP:HPR 10.0 POTLI 9.8 SMAPI 9.3 POTLI 9.8 SMAPI 9.3 POTLI 9.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8			NUDT4	7.3
APOC3 NIF2C 6.1 swCNT/Control FXC RBP4 7.8 SWL RDP4 7.8 SWL RDP4 7.8 SWL RDP4 7.3 SWL RDP4 7.3 SWL RDP4 6.1 Macrophages mwCNT/Control APOC3 PTGSAIL 1.18 Macrophages mwCNT/Control APOC3 PM3 8.8 CD99 7.6 5 MS 6.1 1.13 APOD 6.5 1.13 MWS 6.1 1.14 MB/G 1.3 1.14 MB/G 1.3 1.14 MB/G 1.3 1.4 APOD 6.5 1.14 MB/G 1.3 1.4 MB/G 1.3 1.4 APOD 9.3 2.04 SER/INB/G 1.14 1.14 MB/G 1.3 1.4 APOD 8.8 2.04 SER/INB/G 1.1 1.14 MB/G <th></th> <th></th> <th>MRPS33</th> <th>6.7</th>			MRPS33	6.7
Arros 0.1 swCNT/Control FAXC 10.3 BP4 7.8 SVIL SWL 7.7 IGF2 7.7 OSTC 7.3 SMAD2 6.1 TCEALI 6.1 Macrophages mwCNT/Control PM3 Base APO02 8.8 CO99 7.6 SMAPI APO0 6.1 SMAPI BWCNT/Control INS 20.4 BWCNT/Control INS 20.4 SWCNT/Control INS 20.4 SUMAPI 9.3 PCLINR2 2 <t< th=""><th></th><th></th><th>CHMP2B</th><th>0.0</th></t<>			CHMP2B	0.0
MRC9 Match 0.1 SwCNT/Control FAXC RBP4 7.8 SWL 7.7 IGF2 7.7 IGF2 7.7 SMAD2 6.7 TCEALI 6.1 Macrophages mwCNT/Control APOC3 11.8 PTMS 10.0 DPM3 8.8 CD99 7.6 SMAP1 7.3 SWCNT/Control PMS 6.1 11.4 Macrophages SwCNT/Control SERNM6 15.3 MAPC3 14.1 11.4 11.4 HP:HPR 10.0 POTEI 9.8 SWAP1 7.3 SMAP1 7.3 APOD 6.5 11.4 11.4 HP:HPR 10.0 POTEI 9.8 SMAP1 9.3 POC3 14.1 APSG 13.1 APG 11.4 HP:HPR 10.0 POS 19.2 SUMP7 9.2 SUMP7 9.2 <tr< th=""><th></th><th></th><th>APOCS KIE2C</th><th>0.1</th></tr<>			APOCS KIE2C	0.1
SwCN I/Control PAC RIP4 78 SVIL 77 (177) Macrophages mwCNT/Control APOC3 11.8 PTMS 10.0 Macrophages mwCNT/Control PTMS 10.0 SWL 7.3 10.0 10.0 PTMS 10.0 10.0 10.0 PTMS 10.0 10.0 10.0 PTMS 10.0 10.0 10.0 PTMS 10.0 6.1 10.0 PTMS 6.1 10.0 10.0 SWCNT/Control NS 6.1 11.1 AFGC3 11.1 11.1 11.1 AFGC4 7.0 7.0 7.0 SUMF7 <th></th> <th></th> <th></th> <th>0.1</th>				0.1
Macrophages mwCNT/Control APOC3 FUE 11.8 FUE Macrophages mwCNT/Control APOC3 APOC3 FUE 11.8 FUE SwCNT/Control APOC3 APOD DPM3 APOD FUE 11.8 FUE SwCNT/Control MOT APOD BPM3 APOD SERPTIME 8.8 FUE FUE SwCNT/Control INS SERPTIME APOC3 APOD BPM3 FUE 11.4 FUE FUE FUE FUE FUE FUE FUE FUE FUE FUE		swCN1/Control		10.5
Macrophages mwCNT/Control mwCNT/Control ns Macrophages mwCNT/Control ns nool Name nool nool			SVII	7.0
Macrophages mwCNT/Control APOC3 PTMS PTMS DPMS 11.8 11.8 10.0 DPMS APO23 11.8 11.8 PTMS 10.0 DPMS 8.8 8.8 8.8 APOD SWCNT/Control MS 6.1 SWCNT/Control INS 9.3 SWCNT/Control SERPINB6 15.3 APOC3 11.4 11.4 HP:HPR 10.0 0 POTEJ 9.8 5 SMAP1 9.3 9 PGLNP2 9.2 9 PGLAD 8.8 3 APOD 8.8 3 APOD <th></th> <th></th> <th>IGF2</th> <th>7.7</th>			IGF2	7.7
SMAD2 67 TCEALI 61 Macrophages mwCNT/Control APOC3 11.8 PTMS 10.0 10.0 DPM3 8.8 38.4 APOA2 8.8 38.4 CD99 7.6 58.4 SWAPI 7.3 47.0 APOA2 8.8 6.1 SwCNT/Control INS 20.4 SWCNT/Control INS 20.4 SWCNT/Control INS 20.4 MARG 13.1 APOC3 14.1 APCC3 14.1 14 MP:HPR 10.0 10.0 POTE1 9.8 30.4 SWAPI 9.3 2 POTE1 9.8 30.4 SPN 9.2 2 SPN 8.8 3 <th></th> <th></th> <th>OSTC</th> <th>7.3</th>			OSTC	7.3
Macrophages TCEALI APOC3 PTMS 6.1 Macrophages mwCNT/Control APOC3 PTMS 11.8 10.0 DPM3 8.8 8.8 8.8 2D99 7.6 7.3 APOD 6.1 SMAPI 7.3 APOD 6.1 11.1 MS 6.1 swCNT/Control INS 20.4 11.1 MS 11.1 MS swCNT/Control INS 20.4 11.1 MS 11.1 MS APOD 6.3 13.1 AFM 13.1 AFM 11.4 HP:HR 10.0 POTIME 9.8 13.1 AFM 13.1 AFM 14.1 AFMC1 9.3 14.1 14.1 14.1 14.1 HP:HR 10.0 POTIME 9.8 13.1 14.1 AFMC1 9.2 14.1 14.1 14.1 14.1 HP:HR 10.0 POTIME 9.2 14.1 14.1 AFMC1 9.2 14.1 14.1 14.1 14.1 HP:HR 10.0 POTIME 8.3 14.1 14.1 HP:HR 10.0 REPUB			SMAD2	6.7
Macrophages mwCNT/Control APOC3 PTM3 (00) DPM3 (APOA2 11.8 (00) DPM3 (APOA2 ss 8.8 (APOA2 8.8 (APOA2 8.8 (APOA2 ss 8.8 (APOA2 8.8 (APOA2 8.8 (APOA2 ss 8.8 (APOA2 8.8 (APOA2 8.8 (APOA2 ss 6.1 7.3 (APOC3 7.5 (APOC3 swCNT/Control NS 6.1 swCNT/Control NS 6.1 swCNT/Control NS 13.1 (AFM AFM 11.4 (HP) 9.3 (ABC3 AFM 10.0 (APOC3 9.2 (ABC4 SMAPI 9.2 (ABC4 9.2 (ABC4 SMAPI 9.2 (ABC4 9.2 (ABC4 SMAPI 9.2 (ABC4 9.2 (ABC4 SMAPI 9.2 (ABC4 9.2 (ABC4 APOH 8.8 (APOD 8.8 (APOH SA APOH 8.4 (APOH SCENT/PD8 7.5 (CPI64 7.3 (ABC4 SDCBP 6.4 (ABC4 6.3 (CD47 6.2 (CD47 SCCMP 6.1 10.2 (ABP4 8.0 (ADC3 <			TCEALI	6.1
Macrophages Invervicement PTMS 100 DPMS 88 88 88 APOA2 8.8 60 SMAPI 7.3 APOD 65 MRC9 INS 61 65 SwCNT/Control INS 20.4 65 MRG 13.1 APOC3 14.1 AHSG 13.1 APAPM 11.4 HP:HTR 10.0 PR 88 SMAPI 9.3 9.8 SMAPI 9.3 PGIURP2 9.2 SIAMF7 9.2 SPM 9.8 SMAPI 9.3 PGIURP2 9.2 SIAMF7 9.2 SPM 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8 SIAMF7 9.2 SPM 7.9 APOB 8.4 SERPINBS 8.3 ORMI 7.6 SUPOB 6.1 MRC9 MRC9	Maaranhagas	mwCNT/Control	APOC3	11.8
DPM3 8.8 APO2 8.8 APO2 8.8 CD99 7.6 SMAPI 7.3 APOD 6.5 INS 6.1 NS 6.1 SwCNT/Control NS 20.4 SERPINE6 15.3 APO2 14.1 AHSG 13.1 AFM 11.4 HF:HPR 10.0 POTEJ 9.8 SMAPI 9.3 PGLYRP2 9.2 PICALM 8.8 APOH 8.8	Maciophages	IIIwCIV1/Collutor	PTMS	10.0
APOA2 8.8 CD99 7.6 SMAPI 7.3 APOD 6.5 INS 6.1 swCNT/Control INS 20.4 SERPINB6 15.3 APOC3 14.1 AHSG 13.1 AFM 11.4 HP:HPR 10.0 POTEL 9.8 SMAPI 9.3 PGLIRP2 9.2 SPN 9.2 SPN 9.2 SPN 9.2 SPN 9.2 SPN 9.2 SPN 9.2 PICALM 8.8 APOD 8.8 APOD 8.8 APOH 8.4 APOH 8.4 APOH 8.4 APOH 8.3 ORM1 7.6 ENTPB8 7.5 CEP164 7.3 BBB 7.0 SDCBP 6.4			DPM3	8.8
CD99 7.6 SMAPI 7.3 APOD 6.5 INS 6.1 swCNT/Control INS 20.4 SERINB6 15.3 APOC3 14.1 AHSG 13.1 AFM 11.4 AFM 10.0 POTEJ 9.8 SMAPI 9.3 PGLYRP2 9.2 SLAMF7 9.2 PCALM 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM1 7.6 ENTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NOTCT22 6.3 SLCOA1 6.3 <th></th> <th></th> <th>APOA2</th> <th>8.8</th>			APOA2	8.8
SMAPI 7.3 APOD 6.5 (1) swCNT/Control INS 6.1 swCNT/Control INS 6.1 swCNT/Control INS 6.1 APOC3 14.1 AHSG 13.1 AFM 11.4 HP:HPR 10.0 POTEL 9.8 SMAPI 9.3 CLIVRP2 9.2 SLAMF7 9.2 SLAMF7 9.2 SLAMF7 9.2 SPN 9.2 PICALM 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 APOH 8.4 SERPINB8 8.3 ORM1 7.6 ENTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NDCC12 6.2 GAL 6.2 CD74 6.2 GAL			CD99	7.6
APOD 6.5 INS 6.1 swCNT/Control INS 20.4 SERPINB6 15.3 APOC3 AFM 11.4 AFM AFM 11.4 AFM AFM 11.4 AFM HP-HPR 10.0 POTEJ POTEJ 9.8 SMAPI SMAPI 9.3 PGLYRP2 SIAMF7 9.2 SPN PCALM 8.8 APOD SRPN 9.2 PICALM PICALM 8.8 APOH SERPINB8 8.3 ORN2 ORM1 7.6 ENTPDS ORM2 7.9 AIBG APOA 7.7 ORM1 ORM1 7.6 ENTPDS SUCOT/Control SUCOT 6.3 MMP 6.1 SUCOT SWCNT/Control TGA2 7.1 MBC3 7.1 TMEB 7.1 TMBC3 7.1 TOCCO			SMAP1	7.3
INS 6.1 swCNT/Control INS 20.4 SERINB6 15.3 APOC3 14.1 AHSG 13.1 AFM 11.4 HHS 11.4 HP:HPR 10.0 POTEJ 9.8 SMAPI 9.3 SMAPI 9.3 PGLYRP2 9.2 SLAMF7 9.2 SLAMF7 9.2 SLAMF7 9.2 SLAMF7 9.2 SPN 9.2 SLAMF7 9.2 MPCI 8.8 APOD 8.8 APOD 8.8 APOD 8.3 ORM2 7.9 AIBG 7.9 APOA2 7.7 OCEP164 7.3 HBB 7.0 EXEPINB9			APOD	6.5
swCNT/Control INS 204 SERPINB6 15.3 APOC3 14.1 AHISG 13.1 AHISG 13.1 AFM 11.4 HP;HPR 10.0 POTEJ 9.8 SMAP1 9.3 POLYRP2 9.2 SLAMF7 9.2 SLAMF7 9.2 SPN 9.2 PICALM 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 OKM2 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.7 ORM1 7.6 ENTPD8 7.5 CEPI64 7.3 BB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC941 6.3 SLC941 6.2 AMBP 6.1 SERPINS9 6.1 SERPINS9 6.1			INS	6.1
MRC9 SERPINB6 15.3 APOC3 14.1 AI AFM APG 13.1 AFM 11.4 HP,HPR 10.0 POTEJ 9.8 SMAPI 9.3 PGLYRP2 9.2 SLAMF7 9.2 PICALM 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 APOA 7.6 ENTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NOTCH2 6.3 CD74 6.2 GAL 6.2 AMBP 6.1 SERPINB9 6.1 SERPINB9 6.1 SERPINB1 7.1 SWCNT/Control MRC1 9.4 APOC3 7.5 SERPINB9 6.1 SERPINB2 6.1 SWCNT/Control <		swCNT/Control	INS	20.4
MRC9 APOC3 14.1 AFSG 13.1 AFM 11.4 HP;HPR 10.0 PGURP2 9.2 SMAPI 9.3 PGURP2 9.2 SIAMF7 9.2 SPN 9.2 PICALM 8.8 APOD 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.0 ORM1 7.6 ENTPD8 7.5 CEP164 7.3 BB 7.0 SUC91 6.3 SUC941 6.3 SUC941 6.3 CD74 6.2 GAL 6.2 GAL 6.2 GAL 6.2			SERPINB6	15.3
MRC9 13.1 AFM 11.4 HP;HPR 10.0 POTEJ 9.8 SMAPI 9.3 PGLYRP2 9.2 SLAMF7 9.2 PICALM 8.8 APOD 8.8 APOD 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 APOH 8.4 SERPINB8 8.3 ORM1 7.6 ENTPD8 7.5 CEP164 7.3 BBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.3 SLC9A1 6.3 BRP 6.1 MRC9 MPCI 9.4 MRC9 6.1 7.2 MRC9 MPCI 9.4 APOC3 7.3 7.2 HBA2 7.1 7.2 HBA2 7.1 7.1 SWCNT/Control ITGA2 10.2 RBP4 8.0			APOC3	14.1
MRC9 APM 11.4 HP:HPR 10.0 POTEJ 9.8 SMAPI 9.3 PGLXRP2 9.2 SLAMF7 9.2 SPN 9.2 APOH 8.8 APOD 8.8 APOA2 7.7 ORMI 7.6 CD74 6.2 GAL 6.2 GAL 6.2 GAL 6.2 <th></th> <th></th> <th>AHSG</th> <th>13.1</th>			AHSG	13.1
MRC9 mwCNT/Control MPCI 9.8 MRC9 9.3 9.3 PGLXRP2 9.2 5LMF7 9.2 SPN 9.2 9.2 9.2 PICALM 8.8 APOD 8.8 APOH 8.4 8.3 0.0 APOH 8.4 3.3 0.0 APOH 8.4 3.4 0.0 APOA2 7.7 0.0 0.0 APOA2 7.5 0.0 0.0 CD47 6.2 0.2 0.0 CD74 6.2 0.2 0.2 GAL 6.2 0.2 <th></th> <th></th> <th>AFM</th> <th>11.4</th>			AFM	11.4
MRC9 POLL 9.8 MRC9 SMAP1 9.3 PGLYRP2 9.2 SLAMF7 9.2 PICALM 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 APOA2 7.7 ORMI 7.6 EVTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.3 CD74 6.2 GAL 6.2			HP;HPR	10.0
MRC9			POIEJ	9.8
MRC9 PGLIRP2 9.2 NRC9 SIAMF7 9.2 PICALM 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 AIBG 7.9 APOA2 7.7 ORM1 7.6 ENTPD8 7.3 HBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.3 SLC9A1 6.3 SLC9A1 6.3 SLC9A1 6.2 GAL 6.2 GAL 6.2 GAL 6.2 GAL 6.2 GAL 6.2 GAL 6.2 MBP 6.1 SERPINB9 6.1 SERPINB9 6.1 SWCNT/Control ITGA2 102 RBP4 8.0 APOC3 7.5 TSMARE1 7.1 7.1 ITM2E 7.1 7.1			SMAP1	9.3
MRC9 92 MRC9 92 MRC9 92 MRC9 8.8 MRC9 8.8 MRC9 8.8 MRC9 8.8 MRC9 8.8 MRC9 102 MB2 102			PGLIKP2 SLAME7	9.2
MRC9 mwCNT/Control PICALM 8.8 APOD 8.8 APOD 8.8 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 AIBG 7.9 AIBG 7.9 APOA2 7.7 ORM1 7.6 ENTPD8 7.5 CEPI64 7.3 BBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.3 SLC9A1 6.3 SLC9A1 6.3 MBP 6.1 SDCBP 6.4 NOTCH2 6.2 GAL 6.2 GAL 6.2 CD74 6.2 CD74 6.2 CD74 6.2 SwCNT/Control NPC1 9.4 APOC3 7.3 TSNAREI 7.2 BB2 7.1 SWAREI 7.1 SWAREI SwREI 7.1 SWAREI 7.1 SUCD2 CD280 6.6 CD2 SUCD2 SUCD2 SUB2 7.1 SUB2 7.1 S			SDN	9.2
MRC9 mwCNT/Control 0.0 8.8 MRC9 mwCNT/Control 0.0 8.8 MRC9 mwCNT/Control 0.0 0.0 MRC9 0.1 0.0			PICALM	8.8
MPOH 8.4 APOH 8.4 SERPINB8 8.3 ORM2 7.9 AIBG 7.9 AIBG 7.9 APOA2 7.7 ORMI 7.6 ENTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.3 CD47 6.2 CD47 6.2 CD47 6.2 CD47 6.2 AMBP 6.1 SERPINB9 6.1 SERPINB9 6.1 SERPINB9 6.1 SWCNT/Control NPC1 9.4 APOC3 7.3 TSNARE1 7.2 HBA2 7.1 SwCNT/Control ITGA2 10.2 RBP4 8.0 APOC3 7.5 TSNARE1 7.1 ITM2B 7.1 ITM2B 7.1			APOD	8.8
MRC9 mwCNT/Control NPCI AIBG 7.9 MRC9 mwCNT/Control 0702 7.7 MRC9 mwCNT/Control 070 070 MRC9 mwCNT/Control 11GA2 7.9 MRC9 mwCNT/Control 11GA2 7.7 MRC9 mwCNT/Control 11GA2 7.3 MRC9 mwCNT/Control 11GA2 7.1 TIMB2 7.1 7.1 7.0 MRC9 mwCNT/Control 11GA2 7.1 TIMB2 7.1 7.1 7.1 TIM28 7.1 7.1 7.1			APOH	8.4
MRC9 0RM2 7.9 MRC9 7.9 7.9 MRC9 0RM1 7.6 MRC9 0RM1 7.6 MRC9 0.002 7.7 MRC9 0.002 7.7 MRC9 0.002 0.002 MRC9 mwCNT/Control 0.002 MRC9 0.002 0.02 MRC9 0.02 0.02 MBA 0.03 0.02 <th></th> <th></th> <th>SERPINB8</th> <th>8.3</th>			SERPINB8	8.3
MRC9 AIBG 7.9 MRC9 7.7 0RM1 7.6 MRC9 MWCNT/Control CD74 6.3 MRC9 MWCNT/Control 0ABP 6.1 SWCNT/Control 11GA2 7.1 MRC9 MWCNT/Control 11GA2 7.2 MRC9 MWCNT/Control 11GA2 7.3 MRC9 MWCNT/Control 11GA2 10.2 MRC9 11GA2 7.1 11 MRC9 11GA2 10.2 11 MRC9 11GA2 7.1 11 MRC9 11GA2 10.2 11 MRC9 11GA2 10.2 11 MRC9 11GA2 10.2 11 MBA2 7.1 11 11 11 MBA3 7.5 15 15 15 MBA4			ORM2	7.9
MRC9 7.7 ORMI 7.6 ENTPD8 7.5 CEP164 7.3 HBB 7.0 SDCBP 6.4 NOTCH2 6.3 SLC9A1 6.2 CD47 6.2 CD47 6.2 GAL 6.2 AMBP 6.1 SERPINB9 6.1 SERPINB9 6.1 SWCNT/Control NPC1 9.4 APOC3 7.3 TSNARE1 7.2 HBA2 7.1 SWCNT/Control ITGA2 10.2 RBP4 8.0 APOC3 7.5 TSNARE1 7.1 ITM2B 7.1 ITM2B 7.1 CDCR80 6.6			AIBG	7.9
MRC9 ORM1 7.6 MRC9 ORM1 7.6 MRC9 MWCNT/Control NPCI MRC9 NPCI 9.4 APOC3 7.3 TSNAREI 7.2 HBA2 7.1 TGA2 10.2 RBP4 8.0 APOC3 7.5 TSNAREI 7.1 ITM2B 7.1 TM2B 7.1 TM2B 7.1			APOA2	7.7
MRC9 ENTPD8 7.5 MRC9 ENTPD8 7.3 MRC9 MWCNT/Control SDCBP 6.4 NOTCH2 6.3 6.2 CD47 6.2 6.2 CD74 6.2 6.1 SERPINB9 6.1 5 SERPINB9 6.1 5 MRC9 MWCNT/Control NPC1 9.4 APOC3 7.3 7.3 TSNARE1 7.2 10.2 10.2 RBP4 8.0 APOC3 7.5 APOC3 7.5 7.5 11 TM2B 7.1 11 11 CD280 6.6 0.2 0.2 CD3 7.5 1.5 1.5 CD4 7.0 1.5 1.5 CD5 7.5 1.5 1.5 CD2 7.5 1.5 1.5 CD2 7.1 1.5 1.5 CD2 CD280 6.6 1.5			ORM1	7.6
MRC9 CEP164 7.3 MRC9 6.1 5DCBP 6.4 NOTCH2 6.3 5LC9A1 6.3 CD47 6.2 CD74 6.2 GAL 6.2 GAL 6.2 MBP 6.1 5ERPINB9 6.1 SERPINB9 6.1 5ERPINB9 6.1 SWCNT/Control NPC1 9.4 4POC3 7.3 SwCNT/Control ITGA2 10.2 10.2 RBP4 8.0 4POC3 7.5 TSNARE1 7.1 11 11M2B 7.1 ITM2B 7.1 11 11 11 11 11			ENTPD8	7.5
MRC9 HBB 7.0 MRC9 SDCBP 6.4 MRC9 MWCNT/Control SLC9A1 6.3 MRC9 mwCNT/Control NPC1 9.4 APOC3 7.3 TSNARE1 7.2 SwCNT/Control ITGA2 10.2 10.2 RBP4 8.0 APOC3 7.5 TSNARE1 7.1 11 11M2B 7.1 ITM2B 7.1 11 11 11			CEP164	7.3
MRC9 SDCBP 6.4 MRC9 MWCNT/Control SDCBP 6.3 MRC9 mwCNT/Control NPC1 9.4 APOC3 7.3 7.3 TSNARE1 7.2 HBA2 7.1 SwCNT/Control ITGA2 10.2 RBP4 8.0 APOC3 7.5 TSNARE1 7.1 TIM2B 7.1 ITM2B 7.1 ITM2B 7.1			HBB	7.0
$\begin{tabular}{ c c c c c c c } \hline NOTCH2 & 6.3 \\ SLC9AI & 6.3 \\ CD47 & 6.2 \\ CD74 & 6.2 \\ GAL & 6.2 \\ AMBP & 6.1 \\ SERPINB9 & 6.1 \\ \hline SERPINB9 & 6.1 \\ \hline SERPINB9 & 6.1 \\ \hline APOC3 & 7.3 \\ TSNAREI & 7.2 \\ HBA2 & 7.1 \\ \hline \\ \hline SwCNT/Control & \hline ITGA2 & 10.2 \\ RBP4 & 8.0 \\ APOC3 & 7.5 \\ TSNAREI & 7.1 \\ \hline ITM2B & 7.1 \\ \hline TM2B & 7.1 \\ \hline \\ CCDC80 & 6.6 \\ \hline \\ $			SDCBP	6.4
			NOTCH2	6.3
			SLC9A1	6.3
			<i>CD47</i>	6.2
			CD/4	6.2
			GAL	0.2
MRC9 mwCNT/Control $NPCI$ 9.4 $APOC3$ 7.3 $TSNAREI$ 7.2 $HBA2$ 7.1 SwCNT/Control $ITGA2$ 10.2 $RBP4$ 8.0 $APOC3$ 7.5 $TSNAREI$ 7.1 $ITGA2$ 7.1 $ITGA2$ 7.1 $ITGA2$ 7.5 $TSNAREI$ 7.1 $ITM2B$ 7.1 $CCDC800$ 6.6 $VTWV$ 10				0.1
MIKC9 mwCN1/Control $NFC1$ 9.4 $APOC3$ 7.3 $TSNARE1$ 7.2 $HBA2$ 7.1 $SwCNT/Control$ $ITGA2$ 10.2 $RBP4$ 8.0 $APOC3$ 7.5 $TSNARE1$ 7.1 $ITGA2$ 7.1 $ITGA2$ 7.1 $ITGA2$ 7.5 $TSNARE1$ 7.1 $ITM2B$ 7.1 $CCDC80$ 6.6 $VTWV$ 10	MDC0	ONT/C + 1	NPC1	0.1
$\frac{A10C3}{TSNARE1} = \frac{7.3}{7.2} \\ +BA2 = 7.1 \\ \frac{BP4}{RBP4} = \frac{8.0}{APOC3} = \frac{7.5}{7.5} \\ TSNARE1 = 7.1 \\ -1.1 \\ TM2B = 7.1 \\ CCDC80 = 6.6 \\ CCDC80 = 6.$	мксу	mwCN1/Control	APOC3	73
$\frac{HBA2}{HBA2} = \frac{7.2}{7.1}$ swCNT/Control $\frac{HBA2}{HBA2} = \frac{7.2}{7.1}$ $\frac{HBA2}{ITGA2} = \frac{10.2}{RBP4} = \frac{8.0}{APOC3} = \frac{7.5}{7.5}$ $\frac{HBA2}{TSNARE1} = \frac{7.1}{7.1}$ $\frac{HBA2}{TGA2} = \frac{7.1}{7.1}$ $\frac{HBA2}{TGA2} = \frac{7.1}{7.1}$			TSNARFI	7.2
$\begin{array}{c c} \textbf{SWCNT/Control} & \textbf{IIGA2} & \textbf{10.2} \\ \hline \textbf{IIGA2} & \textbf{RBP4} & \textbf{8.0} \\ \hline \textbf{APOC3} & \textbf{7.5} \\ \hline \textbf{TSNARE1} & \textbf{7.1} \\ \hline \textbf{IITM2B} & \textbf{7.1} \\ \hline \textbf{CCDC80} & \textbf{6.6} \\ \hline \textbf{CCDC80} & \textbf{CCC80} & \textbf{6.6} \\ \hline \textbf{CCDC80} & \textbf{6.6} \\ \hline \textbf{CCDC80} & \textbf{6.6} \\$			HBA2	7.1
SwCIVI/Control RBP4 8.0 <i>RBP4</i> 8.0 <i>APOC3</i> 7.5 <i>TSNARE1</i> 7.1 <i>ITM2B</i> 7.1 <i>CCDC80</i> 6.6		wCNT/Control	ITGA2	10.2
APOC3 7.5 TSNARE1 7.1 ITM2B 7.1 CCDC80 6.6		SWCIN 1/COILITOI	RBP4	8.0
TSNARE1 7.1 ITM2B 7.1 CCDC80 6.6			APOC3	7.5
<i>ITM2B</i> 7.1 <i>CCDC80</i> 6.6			TSNARE1	7.1
<i>CCDC80</i> 6.6			ITM2B	7.1
			CCDC80	6.6
<i>LYRM4</i> 6.3			LYRM4	6.3

ADDITIONAL FILES

Figure S1: **Cell viability** (Cell Titre-GloTM luminescence assay). Cell monolayers; A549 (A), Macrophages (B) and MRC9 (C) were exposed for 24h to mwCNT, swCNT and Asbestos Crocidolite nanofibers. Percentage viability is derived from the ratio of the luminescence signal at each concentration to the average of that measured in unexposed ($0 \mu g/cm^2$) cells. Error bars are standard error of the mean from 3 technical replicates.

Figure S2: Ingenuity®-derived depiction of gene mutations associated with mitochondrial dysfunction.

Downregulated proteins from our proteomics dataset are highlighted in green whilst upregulated proteins are colored red.

Table S1: Primary and dispersion characterized carbon nanotube physicochemical properties

							^a Provided
Material	Catalogue number	Compositio n(%wt.)(1)	^a Primary size	Surface area(2)	Size in dispersion	Zeta potential in dispersion	by vendor (SES
Short purified MWNT (mwCN T) SES Research	900-1260	 95% nanotub es 95% MWNT < 2% amorpho us C < 0.2% ash content 	 Length: 1 2 μm Outer diameter: 10 – 30 nm ^bMinimum length-to-diameter ratio: 33/1 	436 m²/g	96.3%: 432 nm 3.7%: 4.4 μm	-13.35 mV	Research)
Short purified SWNT (swCNT) SES Research	900-1351	 90% nanotub es 50% SWNT <5% amorpho us C <2% ash content 	 Length: 1 - 5 μm Outer diameter: 2 nm ^bMinimum length-to- diameter ratio: 500/1 	60 m ² /g	56.9%: 1.4 μm 33.5%: 259 nm 9.6%: 4.6 μm	-13.02 mV	

^bCalculated as minimum length divided by maximum diameter

- 1. Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A. Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano. 2011;5(6):4300–9.
- 2. Vippola M, Falck GCM, Lindberg HK, Suhonen S, Vanhala E, Norppa H, et al. Preparation of nanoparticle dispersions for in-vitro toxicity testing. Hum Exp Toxicol. 2009 Jun;28(6–7):377—385.

Table S2: List of all significant differentially abundant proteins (Upregulated and Downregulated) for each cell type

A549_mwCNT	A549 SWCNT	MRC9 mwCNT	MRC9 swCNT	Macronhages mwCNT	Macronhages swCNT
C			Come normed		Come normal
	Gene names		Gene names	Gene names	Gene names
		KRIDAP		APOC3	INS
RPL36A	RBP4		I SINARE I	DPM3	APOC3
SVIL	OSIC	ISNARE1	RBP4	APOA2	SERPINB6
THAP5	IGF2	APOC3	KRTDAP	CD99	AHSG
APOC3	SVIL	HBA2	APOC3	INS	PGLYRP2
KIF3C	PICALM	ASPM	ITM2B	APOD	SLAMF7
CHMP2B	DHRS11	PDE4DIP	LYRM4	SMAP1	AFM
RPS29	CAST	RPS29		PGLYRP2	ORM2
PTMS	CLDN2		ASPM	AHSG	HP
RAB3B	APOC3	CD99	BMP1	PPFIBP1	SPN
TCEAL1	DDX19B	NDUFC2	IGFBP2	CMC2	POTEJ
RPL29	TSPO	RPL34	LOX	PRDX4	APOD
GABRA5	SMAD2	NDUFA6	DARS2	H2AFV	SERPINB8
AGRN	RAB3B	CLDN11	ELP2	CPSF2	CEP164
SKA1	MTM1	MRPS7	PSIP1	COL6A5	АРОН
NRG1	TCEAL1	GK	RNF213	RAB11A	SMAP1
SLC52A2	STAMBPL1	DNAJC1	HBA2	HIST1H2BL	AMBP
ABI2	DDX17	SDHD	ARAP1	H3F3A	A1BG
TCIRG1	DHX37	SRC	CCDC80	FLAD1	APOA2
COA3	MRPS33	PTMS	NDUFS2	HIST1H3A	TPM3
SPATS2	SKA1	PSIP1	GTF2A1		DPY19L1
UNC5CL	PMM1	BMP1	IGF2		НВВ
BOP1	SCRN3	FXR1	SRC		PICALM
ZDHHC5	CXorf38	ERLIN1	TGFBI		CHMP5
CYSTM1	STAB1	MCU	IGFBP4		LRRFIP1
CAMK1D	H1FX	COX6B1	MRPS21		CASP3
TNFRSF10B	PTPLB	TMEM179B	WDR82		ORM1
TGFBI	SRGAP1	COX7C	NPC1		NOTCH2
EPS15	OSBPL2	MTX2	IGFBP5		SDCBP
WDR48	RBM26	RBM34	FNDC3B		ENTPD8
MSH3	UNK	PRKRA	NDUFA9		SLC9A1
SGK223	UNC5CL	TBL2	MRPS27		CD74
RPL35A	HP1BP3	STAU1	TBC1D2		П.8
UBE4A	PEG10	SZRD1	CTGF		SER PINB9
UNC119	ADD3	FAM115C	STAB1		TK2
GEMIN2	CRELD1	MRPS21	DCN		SERPING1
SMARCC1	SCD	SERINC1	VNN1		CD47
CCDC151	COMMD6	COX6C	ATP6AP2		PRDX4
	SI C 25 A 4	NDLIER9	NDUFA13		TTR
PM20D2	EPS15	CASP7	TNC		HPY
DDD1D8	TGERI				SED DINIB 1
	CNAI1	DDRD1			
TIGD IA	IVIAPKTIPTL	FKUX4			CCL3

CD320	CYP24A1	NDUFS2	PPAP2B	ITM2B
LEPREL1	CLNS1A	GTF2A1	APOB	SPP1
CRADD	RFK	CLTB	RABEP2	KCMF1
FUBP1	H3F3A	MRPL37	SRP9	GAL
GEMIN6	NRP2	RECK	RPS27L	SNCA
BCL2L1	44089	FNDC3B	MT-CO2	HBA1
AKAP9	C5orf22	TBC1D2	COX7A2	BSG
	CCDC50	MT-CO2	FAM98A	C11orf58
	LRRC8C	TOMM22	DDX17	FAM175B
	PAQR5	PPAP2B	ATAD3A	TRAPPC8
	GPX1	CKAP4	ENDOD1	C16orf54
	NUDT2	PRRC2C	SLC1A4	HN1L
	TRIM4	MT-ND4	CST3	SELPLG
	DHODH	ERLIN2	FN1	WBSCR16
	TSEN54	IGF2BP3	MYADM	TYROBP
	MDP1	TFPI2	CKAP4	ASNS
	NIPA1	MRPL28	ABCD3	SERINC1
	LYRM7	RPL21	COL5A1	RCSD1
	GLRX2	RPS27L	RPS14	TFCP2
	NBN	BROMI	RPS21	P4HA2
	ALG11	TNC	RRBP1	C5AR1
	USP3	IMMT	VDAC3	GSTM3
	NME1	CHCHD3	COL1A2	C20orf27
	NUBPL	PLAUR	RPS20	TMCC3
	GOLM1	LBR	lmna	NDFIP1
	CD320	NDUFV1	IGF2BP1	TNFAIP8
	TRAFD1	TRAM1	MTHFD1L	ETNK1
	GNB1L	RPS21	PTTG1IP	MTMR14
	SMAP1	GNB2L1	HDLBP	SQSTM1
	FKBP14	COX7A2	RPL23A	ARL2
	CHMP7	CHID1	NDUFS5	PSMB7
	FDX1	SSR4	COX4I1	SARNP
	ZFAND1	COX4I1	GNB2L1	TSC22D4
	SPTAN1	KRTCAP2	EIF3F	ZMIZ2
	CTU2	GREM1	IMMT	CENPF
	METTL3	RPL30	NT5E	HEATR5B
	CRK	RPL13A	HADH	ISCU
	MAPRE3	IKBIP	IPO4	ARL6IP5
	UBE2L6	ATAD3A	RETSAT	ARFGAP2
	SLC41A3	PTPN9	SNAPIN	PLAUR
	DHRS3	TECR	YWHAG	LPL
	XYLB	NDUFA13	SMAD3	ASMTL
	CNIH	RPS20	BDH2	EBF2
	POLRMT	YBX1	SH3BP4	BTRC
	GCC1	ATP6AP2	LMF2	GET4
	PNMA3	EIF3J	C16orf62	RANBP3
	SCAMP4	COL4A2	UQCRQ	PFKM
	MDH1	FAU	KIAA1199	HMGA1
	GABARAP	SSR1	PDCL3	NCS1
	STARD9	RPL19	APOL2	MRI1
	CCDC151	MT-ND5	RRM2B	ARFIP2

ARFIP2	RPL11	RHOB	TRAPPC2P1
HIGD2A	RPL14	NCDN	GPC4
	NDUFS3	ACOX1	IL1RN
ARF3	RPL23A	DNPH1	SLC38A2
LSM7	DAD1	HGF	ALDOC
CHMP1B	RPS14	RAB3GAP1	BABAM1
TPM2	TMEM147	TK1	PPFIBP1
TUBAL3	ANXA6	GLIPR1	
RPL29	ABCD3	DTYMK	MARCKS
AKR1C3	FAM98A	SLC4A7	TMEM106B
MYCBP	RECQL	SNF8	CDV3
SLTM	IGF2BP1	DNAJC9	NAF1
RPL28	IKBIP	COG3	IFIT5
PFDN1	PIGT	SMIM11	DHRS4
PCNP	RPL3	SORD	PSIP1
DUS3L	RPS11	PTPN12	HMGCS1
RPL34	IGF2BP2	GET4	CTSK
ARL15	VDAC3	SDSL	MAP1LC3B
	RPL37A	TMED3	TNKS1BP1
	HDLBP	EHBP1L1	EPB41L1
	RPLP2	ELAC2	HLA-DRB1
	UQCR10	LPAR1	FRMD8
	TGFBI	ACOT13	SDCBP
	PTDSS1	RPA2	SLAIN2
	RPS8	NOL3	MAP4
	NCL	NAA25	WASF2
	RPL32	LMNB2	NRBP1
	MTHFD1L	DPP9	CAST
	RPL12	TIMM9	PLEK2
	RPL22	KIF13B	CHMP4B
	SND1	FAM162A	C9orf142
	RPL18	MCCC2	TPD52L2
	RPL28	COL4A3BP	FBXO7
	RPL4	PCBP2	CD276
	TMEM258	TAOK3	MCTS1
	RPL6	MMS19	PXN
	SEC62	RANBP2	ARF5
	RPL31	WDR26	PLEKHO2
	COX5A	DAP	CST3
	NDUFS1	CCS	PPAP2B
	EBF2	ATP6V1C1	HOOK3
	SGCD	HMBS	TWSG1
	NDUFS8	PTPRK	PFDN5
	TMED4	SERPINB7	PLA2G7
	RPL13	CBR3	EFHD2
	HSD17B11	VPS4A	CTSD
	RPL5	SMAP1	RTN1
	RPL15	RNF114	CTSH
	RPL18A	FADD	NECAP2
	RPL24	ARF3	PTPMT1
	SAMM50	COMMD9	SLC35F6

RPS9	AKR1B10	NPL
EIF3L	IAH1	MT-CO2
MGST1	UBE2Q1	NDUFA5
RPS18	ALDH1A1	SQRDL
RPLPO	HDHD1	CYB5R1
LRRC59	CSK	COX7A2
RPL17	SCN5A	ALDH18A1
KDELR3	MOV10	SLC25A13
FUS	LPCAT1	GLG1
NDUFA8	NCAPD2	SLC25A3
RPS3	TUBAL3	COG7
PLAT	ARMC9	NDUFB4
RPL7	FUNDC2	NDUFS2
RPL23	COL6A5	DIRC2
YBX3	PSMG3	SLC11A2
MYADM	AGPAT1	ST3GAL6
GEMIN5	TBCE	SNRPB2
RPS6	SPG20	ABCD3
VDAC2	COASY	NNT
RPS3A	IPO11	VDAC3
RPL27A	RPE	NDUFS8
EEF1G	RPL36AL	LRP1
UFL1	PPP6R3	UQCRC1
RPS4X	CLNS1A	ZFPL1
RPS24	NAV1	SLC25A24
MGST3	BPHL	PHB
EDF1	AKR1C2	PTCD3
UQCRC2	ATP5EP2	NDUFS1
RPS13	HIGD1A	NDUFA4
RPSA	ATP5G1	SLC25A11
TRIP13	ASAP1	SFXN3
MMS19	PRPSAP2	SLC25A20
IPO4	HSP90AB1	NDUFA10
SH3BP4	HAT1	RPS15
OSTF1	PIP4K2B	SLC25A1
CCS		COX6B1
UBE2V2	KCMF1	MRPL12
CLNS1A	KRT18	TMED2
ENY2	PLAT	UQCRC2
HSPBP1	MAP2K1	KHDRBS1
F3	IGBP1	SLC9A6
ATRIP	CAP1	ATP5B
IAH1	ASCC2	SCO1
ATP6V1F	FAM114A2	DHCR24
TXNDC9	PTMS	VDAC1
SLC4A7	SLC39A7	NDUFB10
PTPN12	RPL29	MRC1
SNF8	SPCS1	TIMM17A
SMAP1	S100A6	PET112
TUBB4A	NME1	MRPS34
INPPL1	AKR1C3	ILF3

IGBP1		SLC25A6
AKR1B10		MRPL19
ASAP1		PRNP
CROT		AGK
RHOB		PUF60
WDR26		NDUFA9
PCBP2		MTCH2
HADH		SDHC
TUBAL3		DOLK
TBRG4		UQCR10
KRT18		SMDT1
PDCL3		COX5B
ARF3		IMMT
COL6A5		RHOT1
MXRA7		SAMM50
GLRX5		NDUFA13
PIP4K2B		CTNNBL1
RAB11A		CTSS
PRNP		COX7C
ALDH1A1		LACTB
PLP2		MP68
AKR1C3		UQCR11
AKR1C2		MT-ND2
CDC34		IKBKAP
		SDHB
HSP90AB1		PCBD2
ASCC2		ATP5J
		SNRPD2
		ATP5O
		GRSF1
		TFB2M
		TOMM22
		MRPL50
		GOLGA2
		ILF2
		MICU1
		SRSF11
		HIST1H2AC
		DDX5
		SMIM11
		ADD1
		GALNT2
		NDUFS5
		NDUFA3
		PQLC1
		TBRG4
		MRPS18B
		MRPS9
		MRPS16
		APOO
	ļ	PRPF19

			UQCRB
			RMDN3
			GIMAP1
			SF3A1
			CRELD1
			MRPL3
			PXMP4
			NUCKS1
			TIMMDC1
			MRPS35
			SLC48A1
			NDUFA12
			HNRPLL
			NDUFB1
			MRPS7
			ROMO1
			RDH14
			TMEM199
			SNRPD3
			MRPI 40
			SI C35B1
			MRPS25
			NDUFA8
			AMER
			HIGD2A
			LCC 2044700
			NUID214
			MDH1
			RCVDV
			EMC
			THEMISCA
			IMEMII20A
			5K5F5
			MRPL38
			SF3B2
			I MENIJUA
			WIKPL40
			APLP2
			I LKÖ
			NDUFV2
			NDUFB8
			SF3B14
			ATADI
			RANBP6
			STX16
			SLC43A2
			ATP6V0C
			PET100
			HNRNPA3
			HSF5

			TCERG1
			MAN2B2
			AP1B1
			CEPT1
			C10orf11
			MRPL23
			GALC
			MRPL1
			SCAMP1
			SELT
			MRPL17
			TOR1AIP1
			MBP
			MFN2
			CHCHD3
			MRPL37
			ARMC10
			SF3B1
			SMU1
			MTA2
			PGAM5
			MRPL 4
			SNY20
			SE3B3
			NONO
			WDR5
			WEIG4
			V SIO4
			TDIM29
			PAD50
			CL DTM11
			SUN2
			SUINZ SNIDDA
			NDEDI 1
			DMXI 1
			SI C25 A25
			NDUED 11
			SI C25 A 10
			SLU23A19
			MDDC29
			WIKES28
			SKSF/
			CUX6C
			MKU2
			GLYKI
			NUP153 variant protein
			NK3U2
			GALNI7
			SKSF1

				SLC26A11
				TIMM23B
				CPSF2
				MRPL53
				SLC25A12
				COL6A5
				MRPS26
				ERH
				RAE1
				MRE11A
				SFPO
				CHERP
				SNRPD1
				RPA2
				AG01
				АОАН
				ICMT
				NEAM1
				MRPI 30
				MTEP1
				VIPE3
				MDDI 32
				DRMY
				SNRPE
				TMED4
				NDUES/
				ND0134
				ABHD16A
				SNRPE
				DHX0
				MEE
				HIGD1A
				RMDN2
				TM6SF1
				CTCF
				C100rf54
				HNRNPC
				DNMT1
				FRL
				рнорн
				H2AFV
				NDUFR6
				NDUES7
				C9orf80
				C701107
				RAR11A
				VMD1
	1	1		NDUFA2

		HIST1H2AJ	
		GABARAP	
		HIST1H2BL	
		MCEMP1	
		SRRM2	
		GLIPR1	
		SYNE1	
		HIST1H4A	
		NME1	
		SF3A3	
		LMNB1	
		NUP155	
		SLC39A7	
		SEPN1	
		HSP90AA4P	
		DNAJC11	
		CPSF7	
		ATP5EP2	
		SNX14	
		SFRS3	
		MRPL47	
		CAMP	
		GNPTAB	
		HIST3H2BB	
		DNAJA3	
		MATR3	
		NDUFB5	
		TOMM5	
		RALY	
		NUMA1	
		ADAR	
		S100A6	
		SPOCD1	
		H2AFY	
		SDHD	
		H3F3A	
		HIST2H3A	
		PDSS2	
		HIST1H3A	