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Abstract  

Synthetic lipids and surfactants that do not exist in biological systems have been used for 

the last few decades in both basic and applied science. The most significant applications of 

synthetic lipids and surfactants are drug delivery, gene transfection, reporting molecules, and 

as support for the structural biology of lipids. In this review, we describe the potential of the 

synergistic combination of computational and experimental methodologies to study the 

behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We 

focused on selected cases in which molecular dynamics simulations were used to complement 

experimental studies with an atomistic-level understanding of the structure and properties of 

new compounds. We also describe cases where molecular dynamics simulations were used to 

design new synthetic lipids and surfactants, as well as emerging fields for applications of these 

compounds.  

Key words: synthetic lipids, molecular dynamics simulations, cholesterol, sphingomyelin, 

drug delivery, reporting molecules. 

Highlights: 

 Applications of synthetic lipids in applied and pure sciences are reviewed 

 Drug delivery and gen transfection are large field of synthetic lipids applications 

 Functionalized lipids are used as reporting molecules 

 Synthetic lipids help to understand role of lipids structure  

 MD simulations as a method of synthetic lipids studies and design is discussed 
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Graphical Abstract 

 

1. Introduction 

According to the definition taken from the biochemistry handbook, “Lipids are biological 

molecules insoluble in water and well soluble in organic solvents such as chloroform” [1]. Thus, 

the term “lipids” refers to naturally occurring compounds, such as triglycerides, phospholipids, 

sterols, and others. Thus, lipids are a large and diverse class of molecules. Recent studies of 

lipidomics have revealed the existence of thousands of lipid species. Lipids’ profiles differ 

between organisms, cells types, cellular organelles, and among healthy and pathological cases 

[2]. For instance, exosomes were shown to be enriched in long tails of sphingomyelin (SPM) 

and phosphatidylserine in comparison to the cell from which they were derived [3]. Next, 

adipocytes from obese patients were shown to be enriched in, for example, ethanolamine 

plasmalogens that contain arachidonic acid in comparison to the patients’ non-obese identical 

twins [4]. Taking into account the large number and diversity of lipids, one might ask why the 

addition of synthetic lipids is necessary. Clearly, however, synthetic lipids have countless 

applications in both applied and basic sciences.  

The largest field of synthetic lipids applications is pharmacology. Lipids analogs might be 

directly used as drugs; for instance, lipase inhibitors or analogs of bacterial lipid A might be 

used to stimulate the immunological system. Currently, one of the most important research 

areas in pharmacology is drug delivery. Various lipid assemblies, such as liposomes, micelles, 

bicelles, nanodiscs, etc., are used as carriers for drug molecules. Properties of these carriers 
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have to pass rather high technical requirements such as having an optimal lifetime, a low 

permeability for drugs, the ability to prolong storage, etc. Not surprisingly, numerous designed 

lipids have been synthetized and tested for this purpose (for a recent review, see [5]). Likely, 

the most significant type of synthetic lipids is lipids functionalized with poly-(ethylene glycol) 

(PEG, PEGylated lipids). Molecular dynamics simulations have been extensively used to 

characterize the physicochemical properties of these lipids (e.g., [6]]). 

Non-viral gene transfection, a method that carries significant scientific, medical, and 

technological importance, largely relies on synthetic lipids [7]. Synthetic lipids are used to form 

aggregates with DNA called genosome or, more commonly, lipoplexes. Since nucleic acids 

carry a large negative charge, lipids need to be positively charged. Cationic lipids do not exist 

in nature, so only synthetic lipids can be used for this purpose.  

Basic research is another large field of synthetic lipids applications. Most straightforward 

and commonly used synthetic lipids are lipid-based reporting molecules. Specifically 

deuterated phospholipids are used in NMR studies of lipids to measure the order and dynamics 

of specific acyl tails segments [8]. Spin-labeled lipids are used in EPR measurements to 

describe a bilayer structure and dynamics [9], but also oxygen transport thorough membranes 

[10] and bilayer hydrophobic profiles [11]. Lipids with fluorescent labels are used in fluorescent 

spectroscopy to determine both structural and dynamics parameters and in microscopy to 

visualize various lipids compartments [12]. Finally, clickable lipids (having reactive groups that 

form covalent bonds with their nearest neighbors as a result of external stimuli such as light) 

are used in recognition of the lipid nearest neighbors [13]. Attachment of labels or clickable 

groups is expected to affect the properties of native molecules. Molecular dynamics (MD) 

simulations might be used to evaluate such effects and a large number of studies have provided 

insight into, for example, labels’ effects on the native molecule location, orientation and 

structure providing background for the interpretation of experimental results (e.g., [14]). In the 
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case of spin labels, simulations might be used to calculate the EPR spectrum of the molecule 

providing direct validation of simulation methodologies [15].  

An understanding of the importance of lipids’ structure and the role of their various 

functional groups might be achieved via a comparison of naturally occurring lipids. Existing 

lipid diversity provides a large number of lipid variants allowing for such comparison but in 

some cases synthetic lipids are the only possible analogs. For example, the role of chirality can 

be studied only with synthetic lipids because, in the majority of cases, natural lipids have only 

one stereoisomer (e.g., glycerol moiety in all glycerol-based lipids adopts the R configuration 

of phosphatidylglycerol and sphingolipids always have a D-erythro enantiomeric configuration 

- 2S, 3R). Modifications of lipids’ functional groups might be used for studies of the bulk 

properties of the lipid bilayers or to better understand lipids’ interactions with proteins in 

macromolecular assemblies [16]. Modifications of functional groups in a lipid molecule could 

be seen as corresponding to site-directed mutagenesis, one of major tools in structural biology 

[17]. Synthetic surfactants also have applications in membrane proteins’ extractions, 

biochemical characterization and crystallization. For example, a cholesterol (Chol) analog—

cholesteryl succinate—is commonly used in G-coupled protein receptor studies [18]. Another 

example is linolein, a surfactant used in protein crystallization [19].  

MD simulation is a method that provides information at the atomistic level in a time scale of 

picoseconds to milliseconds (for a more extensive review of MD, see [20]). In recent years, the 

quality of lipid models has greatly improved, due to the development of force-field parameters 

specifically for lipid molecules [21-25]. They have been shown to reproduce experimental data 

with better accuracy [26]. MD simulations seem to be particularly useful methods to study the 

properties of synthetic lipids; they are an inexpensive method and provide an understanding of 

a molecular structure at the atomistic level that is useful in the further design of lipid species 

with desired properties. In the past, MD simulations have been shown to have the ability to 
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correctly predict the effects of lipid modification [27]. In this article, we show examples of 

synthetic lipids and surfactants in all of the above-described applications. In particular, we 

discuss studies in which MD simulations have already been applied. We will concentrate on 

cases in which MD simulations are suitable methods to provide a background for the future 

development of synthetic lipids and their applications. 

2. Pharmacological Applications 

2.1. Drug Delivery 

Drug delivery is challenging nanotechnology in which synthetic lipids are used intensively. 

Kohli et al. [5] pointed to three key steps in drug delivery that must be optimized and synthetic 

lipids might be a choice for such a task. The first step after the injection of liposomes into a 

blood vessel is its circulation. Liposomes composed of naturally occurring lipids are quickly 

removed from circulation by the immune system and their half-life in the bloodstream is about 

1 hour. An extended circulation time increases the accumulation of the drug in tumors and is, 

thus, highly desired. As liposomes have to deliver their cargo, their stability and low 

permeability are important. The second step is the targeting of liposomes to specific cell types 

and the final step is the release of the drug, preferably in a controlled way. MD simulations are 

applicable to study all of these steps and are able to provide novel insight into the structure and 

properties of delivery systems. 

The most commonly used method to extend liposomes’ circulation time is the use of so-

called stealth liposomes. Stealth liposomes are shielded from the immunological system by a 

layer of hydrophilic polymer that is covalently attached to lipids’ headgroups. The most 

commonly used polymer is PEG attached to a phosphatidylethanolamine headgroup. PEGylated 

liposomes are extensively studied (for review, see [28]). MD dynamics provided a few novel 

observations. First of all, the PEG corona was shown to bind Na+ cations; thus, PEGylated 
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liposomes carry a small positive charge [29]. The binding of K+ to PEG was much weaker and 

the Ca2+ cations did not interact with PEG [30]. PEG chains were observed to penetrate the 

membrane hydrocarbon core for the case of a membrane in a liquid state, while it did not 

penetrate the membrane in the gel state [29].  

Another interesting result obtained in MD simulation concern the location of a hydrophobic 

drug—porphyrin in this case—in the PEGylated bilayer. Simulations showed that porphyrin 

has two possible locations, one in the bilayer hydrocarbon core below carbonyl oxygens and 

the second in the PEG layer (see Fig. 1) [31]. This result was validated by a quenching 

experiment that showed the existence of two subpopulations of porphyrin—accessible and not 

accessible for the quencher. This observation is also in agreement with previous studies that 

show a higher binding constant of porphyrin to PEGylated liposomes than to a conventional 

one [32, 33]. Altogether, these results indicate that PEGylation increases the drug load 

efficiency of liposomes. 

Chol is a key molecule regulating almost all properties of lipid bilayers (for review, see [34, 

35]). From the point of view of drug delivery, the most important Chol effect on the structure 

of a lipid bilayer is the increase of the lipids’ tail order, which results in the increased stability 

and lower permeability of liposomes. For this reason, Chol is a common component of drug 

delivery liposomes [36]. Chol, however, is a relatively mobile lipid [37, 38] and can be quickly 

exchanged between liposomes and lipoproteins or cells; thus, the stability of the delivery vesicle 

might decrease in the blood stream and the circulation time might be shortened. This unwanted 

effect might be overcome by using phosphatidylcholines (PCs) that are designed with one or 

two tails substituted by Chol molecules (Chol-PC lipids, see Fig. 2) [39]. Liposomes formed 

from these lipids were shown to be stable and characterized by permeability similar to 

liposomes formed with Chol [40]. A comparison of the monolayers formed from Chol-PC lipids 
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and a dipalmitoylphosphatidylcholine (DPPC) and Chol mixture showed that the area per 

DPPC-Chol unit is about 10 Å2 smaller [41].  

Chol in higher concentrations, together with phospholipids, forms the so-called liquid-

ordered phase (Lo). The order of the tails in the Lo phase is similar to the order of the tails in 

the gel phase. MD simulations showed that PEG chains do not enter the hydrocarbon core of 

ordered bilayers in the gel state [29], but MD simulations of PEGylated bilayers with Chol 

showed, however, that PEG chains are able to enter the bilayer core [42]. Interestingly, PEG 

chains in each case entered the bilayer next to a Chol molecule. The penetration of the PEG 

chains into the bilayer core resulted in an increase of the surface area per lipid molecule; a 

bilayer with a 50 mol% area increased 6 Å2 and the order of the hydrocarbon tails decreased. 

Experimental studies showed that Chol might be released from the lipid bilayer by PEGylated 

lipids [43]. MD simulations seem to agree with this result, as the observed behavior resembles 

the first step of Chol migration toward the PEG corona. 

Targeting of drug delivery devices is another important problem in the entire delivery 

process [44]. The targeting of liposomes to selected cells may be achieved by the attachment of 

ligand-like carbohydrates, peptides or whole proteins. MD simulations have been used to 

complement experimental attempt of constructing a stealth delivery vesicle with an activated 

endothelium targeting peptide (AETP) that targets the vascular endothelium [45]. Although the 

AETP itself activated the endothelium, the constructed delivery system did not show improved 

targeting. MD simulations of an analogical system with an AETP and, additionally, with more 

hydrophilic RGD peptide showed that both peptides are covered by PEG chain and thus are not 

exposed and not available for receptors in the endothelium. Not surprisingly, more hydrophobic 

AETP was covered to the larger extent. These studies suggest that the use of more hydrophilic 

polymer instead of PEG might solve this problem. 
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The final step of drug delivery is the release of the carrier payload, preferably via a controlled 

mechanism. Triggering may be achieved via hit, light, ultrasound, pH, redox potential or 

enzymatic reaction (for more extensive reviews, see [46, 47]). Although triggered liposomes 

have not yet been successful in clinical tests, they are still promising and actively developed. 

An example of a triggered system studied both experimentally and in silico is liposomes doped 

with synthetic porphyrin-phosphatidylcholines [48]. These liposomes were shown to be 

triggered by near infrared light via a calcein-release test and their efficacy in mouse tumors was 

indicated. MD simulations showed that bilayers formed with 10 mol% of these lipids were 

stable and not significantly perturbed by the porphyrin. The porphyrin ring was shown to be 

located below the water membrane interface similar to porphyrins that were not functionalized 

with lipids [31, 49].  

The optimization of the delivery vesicle might even go beyond the triggered release. In 

recent studies, van Hell et al. [50] designed and constructed liposomes doped with short-chain 

sphingolipid analogs N-hexanoyl-SPM and N-octanoyl-glucosylceramide and demonstrated 

that a new delivery system increased the cellular accumulation of the drug. The mechanism 

responsible for this phenomenon was explained by MD simulations, which demonstrated that 

doxorubicidin, the drug molecules used in these studies, together with short-tail lipid analogs 

formed transmembrane pores promoting the translocation of the drug thorough the membrane 

(see Fig. 3). Doxorubicidin translocation occurs in the s time scale [51], while in a newly 

constructed system this time is reduced to the ns time scale. Tests performed on multidrug-

resistant mammary tumor cells showed superior efficacy of the liposomes with new lipids 

analogs in comparison to traditional liposomes or a doxorubicidine solution. The proposed 

mechanism of antitumor activity can be split into 3 parts: (1) in physiological conditions, 

liposomes are known to accumulate in the tumors [52], increasing local doxorubicidin 

concentration which (2) further effectively translocated into tumor cells, due to the formation 
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of transient pores and lipids analogs. Finally (3), short-tail lipid analogs might be translocated 

to the other cell membrane by ABC-type drug efflux transporters [53] from where they are 

available for doxorubicidin to form a transient pore and flip back into the inner membrane. This 

might be seen as a recycling mechanism further enhancing the cellular uptake of 

doxorubicidine. 

Transdermal drug delivery also might be improved by the application of synthetic lipids and 

might be studied with MD simulations. A few MD simulations of lipid bilayers with a 

composition similar to Stratum Corneum, the most external layer of the skin, showed a very 

rigid structure (see Fig. 4) [54-56] and high penetration barriers for small drug-like molecules 

[57, 58]. Synthetic lipids turned out to be useful in overcoming this barrier [58]. A ceramide 

analog with a 15-carbon sphingosine chain and 4- to 6-carbon acyl chain were able to increase 

the skin permeability up to 79 times.  

2.2. Lipids as a pharmaceutical drugs  

Lipids are involved in numerous cellular processes, so it is not surprising that they are both 

targets and potential drugs. In particular, lipids and synthetic lipid analogs have been 

extensively studied in the context of their anti-cancer properties [59]. In this context, analogs 

of fatty acids with trans-unsaturated double bonds were shown to have anti-cancer properties 

by activating the mitochondrial patchway of apoptosis [60]. Another example is ether 

glycolipids [61]. Moreover, it was proposed that targeting the sphingolipid metabolism might 

be useful in cancer therapy [62]. Unfortunately, the molecular mechanism of anti-cancer 

activity is not known for these lipids.  

Lipid A is the main component of the outer-cell membrane of gram-negative bacteria since 

it is the anchor of lipopolysaccharide. Due to its importance for bacterial cells, Lipid A’s 

biosynthetic pathway is a target for novel drugs (for extensive review, see [63]). Lipid A is 

considered as an endotoxin due to its ability to induce inflammation in picomolar concentration. 
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The activation of the immunological system is triggered via the tool-like receptor 4 (TLR4) 

which, with co-receptor myeloid differentiation factor and lipopolysaccharide, form dimers 

[64]. Lipid A has no therapeutic value due to its toxicity; however, its synthetic analogs are 

potential agonists or antagonists of TLR4. The synthetic analog of lipid A E5564 (eritoran) was 

tested in gram-negative septicemia, but it was not found to be effective [65]. However, E5564 

was shown to effectively protect a mouse from a lethal influenza infection [66]. 

A lipid-drug conjugate is another application of synthetic lipids. For example, CMX001 is a 

conjugate of the acyclic nucleotide analog cidofovir (CDV) that is covalently bonded with a 

lipid which has already been tested in humans [67]. CDV is an antiviral drug used against 

dsDNA viruses [68]. The lipid conjugate CMX001 has clear advantages over CDV. CMX001 

can be provided orally, as it is absorbed in the small intestine, while CDV must be administered 

by intravenous infusion. A high level of CDV in plasma is associated with nephrotoxicity, while 

due to the cellular uptake of CMX001, the CDV level in plasma is low. This leads to a higher 

concentration of the CDV in the targeted cells [69].  

Intravenous lipids emulsions (ILEs) used for the treatment of drugs’ toxic effects are another 

interesting direct application of lipids as medicament [70, 71]. ILEs are used as antidotes for 

drug overdoses or strong adverse reactions to medications. ILEs were tested for a large set of 

drugs, which includes local anesthetics, antiepileptic drugs, cardiovascular drugs, psychotropic 

medications, calcium channel blockers and β-blockers. One of the proposed mechanisms of 

ILEs’ therapeutic properties is the so-called sink hypothesis, which assumes that lipophilic 

drugs would be adsorbed by ILE droplets. Few studies have confirmed this hypothesis [72-74]; 

however, it is not necessarily the only mechanism of ILE action. ILE is typically prepared from 

egg phospholipids, soybean oil, fish oil, or olive oil and little is known about the importance of 

specific ILE composition. Taking into account the specificity of the chemical structure of 

possible drugs to which an overdose might be treated by ILE, one would expect that that the 
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optimization of ILEs’ composition might be of high relevance. For instance, it was shown that 

the synthetic liposomes composed of a mixture of PC and PG interacted stronger with 

amiodarone, ketamine and amitriptyline than with commercially available emulsions [75]. 

Additionally, the application of synthetic lipids, specifically designed for selected drugs, might 

reduce ILEs’ adverse effects and their dose.  

3. Gen transfection 

3.1. Cationic lipids  

Physiological lipids are usually negatively charged, neutral, or zwitterionic. Apart from a 

few exceptions, such as the intermediate species sphingosine and the rare cationic 

glycosphingolipids identified in the brain, positively charged lipids are not known to occur in 

biological systems [76]. However, due to potential applications, there is increasing interest in 

obtaining cationic lipoid compounds that are able to form a bilayer. Two methods are used to 

introduce permanent positive charges into lipid membranes: (i) chemical modifications of the 

natural lipids or (ii) the use of synthetic double-chained cationic surfactants. Both of these 

groups of compounds are known in the literature as “cationic lipids” and self-organize in the 

aqueous environments with the formation of vesicular structures known as cationic liposomes. 

The cationic liposomes have found a variety of applications in biotechnology or medicine. For 

example, cationic liposome-based vectors for gene delivery are one of the most promising 

alternatives to viral vectors [77]. Cationic lipids interact electrostatically with nucleic acids 

condensing them and forming so-called lipoplexes [78]. Their cationic nature facilitates 

interaction with the plasma membrane and they are, therefore, reminiscent of the cell-

penetrating peptides that are typically strongly positively charged peptides and have been 

suggested as cellular delivery agents. In many (but not all) cases, the inclusion of “helper” lipids 
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in the cationic liposomes improves lipoplex efficiency [79]. Such lipids are usually 

phosphoethanolamines (PEs) or phosphocholines (PCs). 

In this section we present the progress and recent advances that have been made in the area 

of the characteristics of cationic lipids, mainly during the last decade. We focused mainly on 

the most frequently studied cationic lipids. Special attention has been paid to their ability to 

form bilayers alone and the presence neutral or zwitterionic lipids that are used as the helper 

lipid.  

3.2 Modified Natural Lipids 

Zwitterionic PCs can be readily converted into cationic derivatives by the esterification of 

their phosphate groups. This modification deprives the lipid molecule of the negative charge 

located on the phosphate, leaving the positively charged choline unchanged. Fig. 5 shows 1,2- 

dioleoyl -sn-glycero-3-ethylphosphocholine (DOEPC) as an example of such alkylated 

phospholipids. This ethylphosphocholine has been used to obtained cationic liposomes [80]. 

The positively charged lipid vesicles were prepared from a mixture of a cationic lipid, DOEPC, 

and a helper lipid, the 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), which is 

the most frequently used in transfection. The DOEPC/DOPE liposomes were mainly spherical 

with a diameter of around 100 nm and a lipid bilayer with a thickness of approximately 4.4 nm, 

showing an appreciable percentage of multilamellar structures. Microscopic observations 

revealed that the mixed liposomes may present a variety of looped, twisted and invaginated 

structures, indicating a relatively high elasticity of the membrane. These vesicular structures 

were used as colloidal vectors to condense and compact genetic material. The results showed 

that the compaction of DNA by the cationic liposomes was mostly driven by the strong 

electrostatic interaction among the positively charged surfaces of the colloidal aggregates and 

the negatively charged DNA.  
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3.3 Double-Chained Cationic Surfactants 

Dioctadecyldimethylammonium bromide (DODAB) (Fig. 5) is a synthetic, double-chained 

quaternary ammonium surfactant that assembles spontaneously in aqueous environments into 

bilayer structures [81]. However, the morphology of these structures, formed at room 

temperature, strongly depends on the method of preparation. Upon sonication, mostly bilayer 

fragments are formed [82], while the extrusion process results in the formation of nonspherical, 

faceted vesicle structures [83]. The DODAB vesicles have found widespread use both in 

fundamental studies on interfacial phenomena and in practical applications as DNA carrier 

systems for gene transfection and as vehicles for drug delivery [84]. MD simulations have been 

performed to obtain information on the molecular organization of the DODAB bilayer [84]. 

The results showed that the surfactant membrane arranges spontaneously into the rippled phase 

at 25 °C, where two distinct domains were present; the “zipped” domain, where the long alkane 

chains of the upper and lower monolayers are interdigitated with a thickness of 2.4 nm, and an 

“unzipped” domain, where the monolayers were separated by a distance with a thickness of 4.0 

nm. The ordering within the chain fragment closest to the headgroup was relatively low and it 

increased significantly for the carbon atoms located in the center of the membrane. The 

calculated average density of the hydrated DODAB bilayer equaled 0.99 g cm-3, which agreed 

well with the value determined experimentally (ca. 0.98 g cm-3) [85]. Additionally, the 

calculated area per DODAB molecule of 0.58 nm2 was in very good agreement with the 

experimental result of 0.56 mn2, determined at 20 °C using Langmuir monolayer measurements 

[82]. The molecular organization of DODAB bilayer revealed in the MD simulations was used 

to explained anomalous transitions of DODAB using fast-scanning liquid calorimetry [86]. 

The structure and spectroscopic properties of water associated with the DODAX (X = F, Cl, 

Br, I) membranes as a function of the counterion have been studied using experimental methods 

and MD simulations [87]. The attenuated total reflection, Fourier-transformed infrared (ATR 
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FTIR) measurements of hydrated-oriented lipid multilayers of DODAX showed that the 

hydration of the surfactant headgroups was strongly altered by the halide anion exchange. At 

low hydration, the measurements demonstrated different hydrogen-bonded populations of 

water within the membrane environment. The variation of halide counterions leads to different 

hydrogen bonding strengths, changes of water stretch absorptions and corresponding molecular 

orientations. The MD simulations of the DODAB bilayer confirmed the existence of differently 

hydrogen-bonded and oriented water within the DODAB multilayers. Relatively slow rotation 

and confined diffusion were found for the surfactant-associated water molecules. Moreover, the 

MD simulations results were used for an assignment of water stretch band components to 

structures. 

Gemini surfactants belong to a class of amphiphiles having two hydrophobic tails and two 

hydrophilic headgroups covalently linked by a spacer. The simplest and most-studied cationic 

gemini surfactants are the quaternary ammonium compounds that are present in two identical 

ammonium head groups connected by a saturated alkyl chain spacer with s carbons and two 

symmetric-saturated alkyl tails comprising m carbons [88]. Dimethylene 

bis(octadecyldimethylammonium bromide) (bisODAB), shown in Fig. 5, is an example of such 

gemini surfactants. A series of dicationic alkylammonium bromide gemini surfactants with 

different spacer (s = 2, 4, 6, 10, 12) and tail length (m = 12, 16 and 18) were synthesized and 

their effect on the structural and dynamic properties of the DODAB membranes was studied 

using differential scanning calorimetry (DSC) and MD simulations. It was shown that the 

thermotropic behavior of the mixed DODAB–gemini surfactant bilayers was strongly 

influenced by the molar fraction of the added surfactant, the spacer length and the chain length. 

MD studies revealed that the structure and order of the mixed bilayers were directly related to 

the vertical position of the gemini molecules. Gemini surfactants with long tails, compared with 

those of DODAB, were responsible for a higher atom density in the center of the bilayer, while 
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those with short tails reduced the respective density. In turn, a long spacer promoted a deeper 

insertion of the gemini molecule into the bilayer via a hydrophobic effect. This reduced the 

impact of short tails on the density of the hydrophobic region of the bilayer.  

N-t-butyl-N’-tetradecyl-3-tetradecylaminopropionamidine (diC14-amidine, Fig. 5) is a 

fusogenic cationic lipid that forms stable vesicular structures under physiological pH and 

temperature. A pure diC14-amidine membrane and a series of DiC14-amidine/DMPC 

membranes have been simulated at 27 °C to gain insight into their structure and dynamic 

properties [89]. The area per lipid was found to increase from 0.564 to 0.833 nm2, while the 

bilayer thickness decreased from 3.56 to 2.72 nm for the pure DMPC and diC14-amidine 

membrane, respectively. The diC14-amidine bilayer was in the fluid state with highly 

disordered, V-shaped lipid tails and, simultaneously, its leaflets were merged due to 

interdigitation. The presence of thermally accessible V-shaped lipids indicated a tendency for 

a strong bilayer curvature and fusion capabilities. Compared to more conventional lipids, 

diC14-amidine had a lowered affinity toward water and a smaller headgroup. Therefore, when 

mixed with physiological bilayers and in low quantities, the headgroups of diC14-amidine will 

be protected from contact with water via other lipids. Next, the properties of the diC14-amidine 

membrane were studied experimentally and compared to those of a zwitterionic lipid DMPC 

[90, 91]. It was shown that the diC14-amidine membrane had looser molecular packing in 

comparison to that of DMPC. As demonstrated with the MD simulations, below or around its 

transition temperature at 21 °C the membrane adopted an interdigitated structure. Above the 

transition temperature, a lamellar structure of the diC14-amidine membrane was observed [90]. 

At the phase transition, the interdigitation of the hydrocarbon chains was abolished, as observed 

by the jump-like increase of the membrane thickness (determined as the thickness of the 

hydrocarbon membrane core) from 1.78 to 2.02 nm and changes in the lateral area per molecule 

form 0.402 ± 0.002 to 0.732 ± 0.015 nm2.  
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Cationic lipids with trimethylammonium-propane (TAP) headgroups and various fatty acid 

tails are another class of compounds used to construct non-viral vectors. Fig. 5 shows, for 

example, dioleoyltrimethylammonium propane (DOTAP). This compound is the most widely 

used cationic lipid. It is relatively inexpensive and efficient in both in vitro and in vivo 

applications [92]. MD simulations of mixed bilayers containing DOTAP and zwitterionic 

DMPC, a helper lipid, at different DOTAP fractions have been performed [93]. The simulations 

were focused on the specific effects of unsaturated lipid chains on structural and dynamic 

properties of mixed cationic bilayers. It was found that most structural parameters of the mixed 

bilayers, as area per lipid, demonstrated non-monotonic behavior with increasing cationic lipid 

fraction with the minimum observed at the fraction equal 0.4. Moreover, adding unsaturated 

DOTAP lipids into DMPC bilayers promoted strong lipid chain interdigitation and fluidization 

of bilayers, as indicated by enhanced lateral lipid diffusion. The formation of DMPC-DOTAP 

charge pairs as a result of electrostatic interactions within the membrane-water interface was 

observed. The PC-TAP pairs led to the formation of PC lipid clusters containing two or three 

PC lipids around TAPs. 

4. Reporting molecules 

Due to their sensitivity and versatility, fluorescence and electron paramagnetic resonance (EPR) 

spectroscopies are widely used as the main tools to study the biophysics of lipid bilayers and 

association of small molecules with the membranes [94] Using these methods, one can 

experimentally determine several important parameters: (i) the membrane properties, such as 

fluidity, permeability, polarity, organization and the dynamics of lipids, can be determined 

using appropriate molecular probes [95-98]; (ii) the lateral diffusion coefficients of lipid-soluble 

molecules can be estimated by fluorescence spectroscopy [99]; (iii) equilibrium partitioning 

(binding) of the molecule to the lipid bilayer can be estimated using a fluorescence titration 
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technique [100] and (iv) position of the molecule in the membrane can be determined using 

depth-sensitive fluorescent quenching analyses (FQA) [101].  

Since membrane lipids are non-fluorescent and non-paramagnetic compounds, extrinsic 

membrane probes are widely used as so-called reporting molecules of the membrane properties. 

Unfortunately, the membrane probes are usually large foreign molecules inserted into the host 

lipid membrane. As a result, the perturbation of the bilayer structure and dynamics of bilayer 

components is inevitable, even at low probe concentrations. MD simulations present a 

convenient way to address these issues and have been increasingly used in recent years in this 

context. Computer simulations provide detailed information on the position and orientation of 

the reporting molecule inside the lipid bilayer, but also on changes in the organization of the 

lipid molecules after the incorporation of molecular probes [94]. To limit the perturbation of 

the membrane organization, the reporting molecules are generally constructed by modifying 

lipids. Therefore, the molecular probes are usually phospholipids with fluorophores or free 

radicals that are covalently linked to either the headgroup or one of the acyl chains, or sterols 

with fluorophores or free radicals attached to either the alkyl chain or the hydroxyl group. 

However, some lipoid dyes have been also proposed for reporting purposes.  

In this review, we divided reporting molecules into two classes: (i) fluorescing molecular 

probes and (ii) spin-labeled molecular probes. We focused our attention on the most recent MD 

and experimental studies on the molecular probes.  

4.1. Fluorescent molecular probes 

Several lipid-like probes (lipoid dyes) have been developed and studied. The study involved 

two types of substances: (i) covalent conjugates of lipids and fluorophores, such as 4,4-difluoro-

4-bora-3a,4a-diaza-s-indacene (BODIPY) or 7-nitrobenz-2-oxa-1,3-diazole (NBD) and (ii) 

amphiphilic dyes (fluorescent surfactants); for example, 1,1′-dioctadecyl-3,3,3′,3′-
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tetramethylindocarbocyanine perchlorate (DiI). The chemical structures of these compounds 

are shown in Fig. 6.  

Lipid Derivatives of BODIPY  

BODIPY dyes tend to be strongly UV-absorbing small molecules that emit relatively sharp 

fluorescence peaks with high quantum yields [102]. They are relatively insensitive to the 

polarity and pH of their environment, stable to physiological conditions and show good 

photostability. For these reasons, the BODIPY dyes are widely used to label lipids. The dye can 

be substituted in three positions (see numbering in Fig. 6). However, the substitution position 

affects the important photophysical properties of the fluorophore, such as UV absorption 

maxima, fluorescence emission maxima and quantum yields [102]. 

Different BODIPY-Chol conjugates have been prepared and studied [103, 104]. Holtta-

Vuori et al. proposed a meso-BODIPY-Chol probe, in which the sterol side chain was attached 

to the meso position of BODIPY, to visualize sterol trafficking in living cells and organisms 

[103]. MD simulations of Chol or meso-BODIPY-Chol embedded in DPPC or SPM membranes 

were performed to assess the potential of fluorescent Chol analogs to mimic the properties of 

endogenous Chol. The results indicated that the average area per lipid and membrane thickness 

were not affected by the BODIPY fluorophore, and the position of the steroid structure was 

very similar for both sterols. The perturbation of neighboring lipids in the DPPC membrane 

was slightly different for Chol and meso-BODIPY-Chol. However, in the more ordered SPM 

bilayer, the ordering properties of meso-BODIPY-Chol were essentially fully consistent with 

those of Chol. The BODIPY moiety had two preferred orientations with respect to the steroid 

structure. BODIPY was either standing along the steroid backbone with the long axis 

perpendicular to the bilayer normal or back-looping toward the head group region with the long 

axis oriented almost parallel to the membrane normal. The first orientation dominated in the 

more ordered SM membrane and the meso-BODIPY-Chol had a preference to stand in an 
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upright position with the BODIPY moiety located in the middle of the membrane, where its 

membrane perturbation effect is the smallest. It was concluded that meso-BODIPY-Chol 

closely mimics the ordering properties of Chol. The perturbations arising from the presence of 

the BODIPY moiety are minor and, importantly, become smaller as the membrane order 

increases. Further studies of BODIPY-Chol probes were presented by Solanko et al. [104], who 

proposed these conjugates to study intracellular Chol dynamics. Two probes (Fig. 6) were 

obtained by attaching Chol to BODIPY ring at meso or α position (α-BODIPY-Chol) [104]. It 

was shown experimentally that the orientation of the BODIPY moiety depended on the 

membrane’s Chol content. In cell and model membranes containing Chol, the fluorophore in 

meso-BODIPY-Chol and α-BODIPY-Chol was perpendicularly oriented and almost parallel to 

the lipid acyl chains, respectively. Thus, the experimentally assessed alignment of fluorophore 

of meso-BODIPY-Chol is in agreement with that observed in the MD simulations [103]. The 

difference in orientation had a strong influence on the lateral diffusion constant of the Chol-

analogs in cell membranes. It was demonstrated experimentally that α-BODIPY-Chol diffused 

significantly faster than meso-BODIPY-Chol in cell membranes, although there was no 

difference in the lateral diffusion in lipid model membranes. The authors speculated that the 

sterol orientation in α-BODIPY-Chol is less disturbed by the attached fluorophore than meso-

BODIPY-Chol; however, to confirm this, some MD simulations are required.  

Phospholipids have been tagged with BODIPY by incorporating the fluorophore into one of 

the acyl chains [105] or attaching it to the lipid headgroup [106]. They are ubiquitous in the 

studies of phase partitioning and also for understanding dynamics by using techniques such as 

fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy 

(FCS). The fluorescent lipid analog, 2-(5-butyl-4,4-difluoro-4-bora-3a,4adiaza-s-indacene-3-

nonanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-PC, see Fig. 6), have been 

applied as a reporting lipid in single-molecule fluorescence measurements to provide insight 
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into DPPC chain tilting and order at different surface pressures in both monolayers and bilayers 

[107, 108] These studies utilized out-of-focus polarized total internal reflectance fluorescence 

microscopy (PTIRF-M) to characterize the orientation of BODIPY-PC, doped into the DPPC 

monolayer and membrane. It was shown that the tilt orientation of BODIPY-PC was very 

sensitive to the lateral surface pressure and addition of sterols. At low surface pressures, the 

long axis of BODIPY was largely parallel to the plane of the film and evolved linearly to an 

orientation normal to the surface as pressure was increased, indicating an increase in the acyl 

chain order. The tilt angle dependence on surface pressure was used to construct a calibration 

plot to find the equivalent surface pressure for bilayers. The experimental measurements were 

next complemented by 1.5 μs-long comparative MD simulations of DPPC monolayer and 

bilayer systems incorporating one BODIPY-PC molecule per leaflet at low (3 mN/m), medium 

(10 mN/m), and high (40 mN/m) lateral pressures [104, 105] These MD simulations were 

addressed to explore (1) the microscopic correspondence between monolayer and bilayer 

structures, (2) the fluorophore position within the membrane, and (3) the microscopic driving 

forces governing the fluorophore tilting. The MD simulations reveal very close agreement 

between the monolayer and bilayer systems, in terms of the dye orientations and lipid chain 

order, suggesting that monolayer experiments can be used to approximate bilayer systems. The 

simulations capture the trend of the reduced tilt angle of the fluorophore with increasing surface 

pressure, as seen in the single-molecule experimental results. Additionally, it was shown that 

the fluorophore in BODIPY-PC predominantly interacts with lipid acyl chains at any given 

surface pressure, although the fluorophore interaction with water and a headgroup slightly 

increases as the surface pressure decreases, which was not obtainable in the experiments. The 

BODIPY-PC molecule indeed changed its orientation in response to the changes in the acyl 

chain properties through such extensive interactions with lipid acyl chains. The simulations also 

revealed that the enthalpic contribution is dominant at 40 mN/m, resulting in smaller tilt angles 
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of the fluorophore, and the entropy contribution is dominant at lower pressures, resulting in 

larger tilt angles. However, the MD simulations did not definitively resolve the origin of the 

bimodal distributions of BODIPY-PC tilt angles observed in the single molecule experiments 

of the dye molecules doped into the DPPC monolayers at low and high surface pressures. The 

authors suggested that such experimental distributions may result from the lipid phase 

separation, rather than the distinct dye locations in the membranes. 

Sachl et al. have investigated mono-palmitoyl- and dipalmitoyl-phosphatidylethanolamine 

probes labeled in the polar headgroup region by BODIPY fluorophores (referred to as 

BODIPY-mPE and BODIPY-dPE, respectively, Fig. 6) and solubilized in lipid systems that 

exhibit different curvatures [106]. Due to the bulky BODIPY groups, BODIPY-mPE has a 

conical shape, whereas BODIPY-dPE molecules tend to be cylindrical. The authors 

hypothesized that, due to its shape, conical-shaped lipids should exhibit a pronounced affinity 

to highly curved regions compared to the cylindrical-shaped lipids. However, a careful analysis 

of time-resolved resonance energy transfer experiments by means of analytical models, as well 

as Monte Carlo simulations, shows that BODIPY-mPE has a comparable affinity to highly 

curved and planar bilayer regions. Furthermore, the monoacyl probes were effectively closer to 

each other in a lipid bilayer as compared to the diacyl probes. This self-aggregation was 

suppressed when using the diacyl instead of the monoacyl derivative and/or by attaching 

BODIPY groups to the acyl chain. It seems that MD simulations can give molecular insight 

into the behavior of BODIPY-mPE and BODIPY-dPE probes. 

Lipid Derivatives of NBD  

NBD is another fluorophore that is often applied to label different lipid molecules. This dye has 

an excitation maximum at ca. 480 nm and emission maximum at ca. 540 nm. NBD-labeled 

sterols, such as commercially available 22-(7-nitrobenz-2-oxa-1,3-diazol-4-yl-amino)-23,24-

bisnor-5-colen-3β-ol (22-NBDChol) and 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)methyl]-
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amino]-27-norcholesterol (25-NBD-Chol, Fig. 5), are commonly used as fluorescent 

cholesterol analogs in membrane biophysics [109, 110]. However, some experimental reports 

questioned their ability to mimic the behavior of Chol in phospholipid bilayers. For example, 

the rapid reduction of NBD by dithionite was observed for both NBD-labeled sterols, indicating 

an upside-down orientation of the probes in membranes and NMR-ordered parameters showed 

a significantly lower condensation of lipid chains by these probes compared to Chol [111]. To 

clarify whether these probes are suitable to mimic Chol, atomistic MD simulations of systems 

containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers doped with 

small concentrations of Chol, 22-NBD-Chol, or 25-NBD-Chol have been performed [110]. The 

results showed that the molecular probes had a tendency to adopt conformations with the NBD 

moieties that were oriented toward the membrane-water interface. In these molecules, the long 

sterol axis preferentially adopted orientations that were approximately parallel to the bilayer 

plane. In turn, these stretched conformations together with NBD-POPC interactions led to slow 

down the lateral diffusion of both fluorescent sterols compared to Chol. The order parameters 

and acyl chain tilts of the POPC chains were calculated for varying POPC-sterol distances. It 

was observed that the local ordering effect of sterol was altered in both fluorescent derivatives. 

In agreement with the reported experimental data, both fluorescent sterols were able to increase 

the order of POPC at a 20 mol% concentration (as some molecules adopted an upright 

conformation, which was possibly related to the formation of transbilayer aggregates), albeit to 

a smaller extent to that of Chol. Altogether, this study indicated that both 22- and 25-NBD-

Chol were unable to mimic the most important features of the Chol behavior in the lipid 

bilayers. 

1,2-Diacyl-sn-glycero-3-phosphoethanolamine labeled with NBD at the headgroup (NBD-

diCnPE) with the acyl chain length n = 14, 16 and 18 are commercially available and widely 

used as fluorescent probes in the studies of dynamic properties of biological membranes [112] 
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Recently, Filipe et al. [113] performed MD simulations of a POPC bilayer doped with 3 mol% 

of NBD-diCnPE with varying chain length (n = 4 to 18). Several parameters, such as location 

and orientation of the fluorophore, acyl chain order parameters of both POPC and NBD-

diCnPE, membrane electrostatic potential and lateral diffusion were calculated. The results 

showed that the NBD fluorophore was located near the lipid carbonyl region and adopted an 

orientation in which the NO2 group was facing the bilayer interior. Most of these probes induced 

local disordering of the POPC acyl chains, which was on the whole counterbalanced by ordering 

resulting from the binding of sodium ions to lipid carbonyl/glycerol oxygen atoms. The 

exception was NBD-diC16PE, which displayed optimal matching with the POPC acyl chain 

and induced a slight local ordering of phospholipid chains. Moreover, due to the fact that NBD-

diCnPE is negatively charged at a neutral pH, the inclusion of NBD-diCnPE probes increased 

the difference in the electrostatic potential between the bilayer interior and bulk water. 

Various phospholipids with NBD-labeled acyl chains are also commercially available. 

However, it has been shown—both experimentally [114] and by MD simulations [115] that the 

average position of NBD was characterized by broad distributions with a maximum pointing to 

the probe location at the membrane-water interface. This behavior was explained by the back-

looping of the fluorophore toward the aqueous phase. Due to its polarity and the acyl chain 

flexibility, the NBD moiety escaped from the membrane center to the headgroup region by 

bending the hydrocarbon chain to which it was attached and the nitro group was the most 

external part of the fluorophore. Such an arrangement of these probes caused considerable 

perturbation in the host membrane properties. 

Pyrene-labeled lipids  

The issue of optimal attachment of the external probe to a lipid chain in order to minimize the 

extent of host membrane perturbations has been addressed in a paper by Franová et al. [116]. 

The authors performed MD simulations of POPC membrane doped with 3 mol% of saturated 
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phosphocholines with pyrene (Pyr) moieties attached to the 6th, 8th or 10th carbon in both 

hydrocarbon chains (referred to as PC6-Pyr, PC8-Pyr and PC10-Pyr, Fig. 6) to explore how the 

position of Pyr moiety affected the membrane properties and the formation rate of Pyr dimers. 

The results showed that all the probes altered membrane order around them; thus, the dynamic 

properties of a Pyr-labeled lipid were different from those of native lipids. However, membrane 

perturbations leveled off within about one nanometer from the probe and are, therefore, of short 

range, affecting just the nearest neighbors of the probe lipid. The fluorophores in all derivatives 

were located in the membrane core, which agrees with the highly hydrophobic nature of Pyr 

molecules. However, in opposition to PC6-Pyr and PC8-Pyr, the Pyr groups in PC10-Pyr can 

locate the opposing leaflet, indicating quite profound interdigitation, and thereby also forming 

numerous dimers with pyrenes in the other leaflet. Thus, the formation of membrane-spanning 

pyrene dimers depends very strongly on the location of the fluorophore in its host lipid.  

Fluorescent Natural Sterols 

Intrinsically fluorescent sterols, dehydroergosterol (DHE) or cholestatrienol (CTL), can be used 

as molecular probes to mimic the behavior of Chol in membranes since both compounds have 

a quite similar chemical structure to that of Chol (Fig. 6). Three conjugated double bonds in the 

ring systems are responsible for their fluorescence emission. Moreover, DHE is a naturally 

occurring sterol, synthesized by the yeast Candida tropicalis and the sponge Biemna fortis. 

However, it was noticed that both reporting molecules suffer due to their unfavorable 

photophysical properties, which include absorption and emission in the UV region, relatively 

low molar absorption coefficient, low quantum yield, and rapid photobleaching [117]. All of 

these qualities can significantly limit their use in experimental work.  

Recently, MD simulation studies have been performed to compare the behavior of the 

fluorescent Chol analogs in lipid bilayers [118, 119]. The MD simulations were used to study 

the POPC bilayers containing variable amounts of DHE or CTL (~1.6, 20, and 50 mol %) [118] 



Kempczynski and Róg Biochimica et Biophysica Acta-Biomembranes 2016, 1858 (10), 2362-2379.  
http://dx.doi.org/10.1016/j.bbamem.2016.02.038 

 

25 | P a g e  
 

The ability of both sterols to mimic Chol in the different systems was evaluated by the 

assessment of the probe (location, orientation, dynamics) and phospholipid (area/lipid, bilayer 

thickness, acyl chain tilt and order parameters, dynamics) properties. The results showed that 

both DHE probes were adequate analogs of Chol, since their transverse location and orientation 

were similar to that of Chol. Probe rotational and translational dynamics were generally slightly 

faster than those of Chol, while the induced ordering of POPC bilayers was lower than that of 

Chol. The authors indicated that of the two studied probes, CTL was the one with behavior 

closest to that of Chol. This was related to the side-chain structure. CTL shares an identical 

side-chain with Chol and, therefore, it closely emulated the behavior of Chol, whereas DHE has 

a smaller ordering efficiency, which may be related to its modifications in the side-chain, an 

additional double bond and a methyl group. However, actual use of either sterol must also take 

into account the more limited availability of CTL compared to the naturally occurring DHE.  

Further studies on the DHE behavior at membrane were performed by Pourmousa et al. 

[119]. They used a combination of time-resolved fluorescence spectroscopy, quantum-

mechanical electronic structure computations, and MD simulations to characterize the 

perturbations induced by 20 mol% of DHE in a POPC membrane. It was shown that Chol was 

slightly stronger than DHE at both ordering and condensing membranes; the difference in the 

ordering effect of CHOL and DHE was more noticeable than the difference in their condensing 

effect. The area per lipid and the thickness of the POPCʷDHE system differed by 3 and 2%, 

respectively, from those of the POPCʷChol system, while the order parameter of the POPC 

chains in the POPCʷDHE system was 6% different from that of the POPCʷChol system. On 

the other hand, the interactions in the headgroup region were almost the same. Both sterols 

anchor similarly to the carbonyl, as well as the nitrogen groups of the POPC molecules, through 

H-bond and charge-pair interactions. 
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Fluorescent Surfactants 

Surfactants with fluorescent polar groups can be used in labeling lipid membranes. A complete 

homologous series of fluorescent NBD-labeled fatty amines with varying alkyl chain lengths 

(NBD-Cn, n = 4 to 16, Fig. 7) has been studied experimentally in aqueous solution and 

associated with BSA or lipid bilayers [120]. It was found that all of the amphiphiles interacted 

efficiently with the POPC bilayers. The photophysical parameters of the amphiphiles inserted 

in the POPC bilayers showed no significant variation along the series, indicating that the NBD 

group was located in the same region of membrane, regardless of the hydrocarbon length. An 

exception was noted for NBD-C14, whose parameters were somewhat different from the trend 

observed. Several MD simulations of NBD-Cn probes incorporated in POPC [121, 122], 

POPC/Chol (1:1) or SPM/Chol (6:4) [123] membranes were performed to gain molecular 

insight into NBD-Cn – membrane systems.  

Atomistic MD simulations of POPC bilayers containing 3 mol% of NBD-Cn revealed that 

the NBD fluorophore is located near the glycerol backbone/carbonyl region of POPC for all 

derivatives and establishes stable hydrogen bonding with POPC ester oxygen atoms [121]. 

Small differences observed in the transverse location of the fluorophore correlated with other 

calculated parameters, such as the area per lipid, POPC deuterium order parameter, NBD-Cn 

chain order parameter, bilayer thickness and with small discrepancies measured in the 

photophysical properties of the molecules [120]. In particular, the slightly deeper location of 

the fluorophore in NBD-C14 agreed with lower fluorescence quantum yield and anisotropy 

measured for this amphiphile. The longer-chained NBD-Cn amphiphiles showed a significant 

mass density near the bilayer midplane, and the chains of these derivatives interdigitated, to 

some extent, the opposite bilayer leaflet. This phenomenon led to a slower lateral diffusion for 

the longer-chained derivatives (n > 12). The perturbation induced by moderate concentrations 

(up to 3.1 mol %) of NBD-Cn was relatively mild, as small nonsystematic variations were 
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observed for parameters such as average area per lipid, bilayer thickness, POPC order 

parameters, and the lateral diffusion coefficient. Surfactants with chain lengths inside the 8 ≤ n 

≤ 12 range had lateral diffusion coefficients similar to that of POPC and, taking into account 

their relatively mild perturbing effect, can be useful fluorescent reporters of bilayer dynamics. 

MD simulations of NBD-Cn embedded into POPC/Chol (1:1) or SpM/Chol (6:4) 

membranes showed that the incorporation of Chol resulted in the shallower location of the 

fluorophore than that observed for pure POPC bilayers [123]. The position of NBD at the water-

membrane interface agreed with the lower fluorescent quantum yield, shorter fluorescence 

lifetime, and higher ionization constants (smaller pKa) determined experimentally. The more 

external location was also consistent with the changes measured in steady-state fluorescence 

anisotropy from POPC to POPC/Chol (1:1) vesicles. Accordingly, the equilibrium location of 

the NBD group within the various bilayers was mainly governed by bilayer compositions, and 

was mostly unaffected by the length of the attached alkyl chain. Similar to the behavior 

observed in POPC bilayers, the longer-chained NBD-Cn amphiphiles show significant mass 

density near the mixed bilayers’ midplanes and the alkyl chains of the longer derivatives 

penetrated the opposite bilayer leaflet to some extent. However, this effect was quantitatively 

less pronounced in these ordered bilayers than in POPC. Similar to the POPC bilayers, the 

effects of these surfactants on the structure and dynamics of the host lipid were found to be 

relatively mild.  

DiI is another amphiphilic dye proposed for study of the membrane properties (Fig. 7). The 

fluorescence lifetime of DiI is linearly correlated with the local viscosity of the dye-surrounding 

environment, so the DiI fluorescence lifetime can be used as membrane tension reporter [124]. 

Fluorescence lifetime analysis of the DiI probe has been recently used to study phase transitions 

and macroscopic phase separation in live cells and giant plasma membrane vesicles [125]. 

Atomistic MD simulations of DiI-labeled DPPC bilayers under physiological lateral tensions 
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ranging from ʷ2.6 mN mʷ1 to 15.9 mN mʷ1 were performed to quantify the precise 

relationship between tension, the structural properties of the membrane and the dynamics of 

lipids and a lipophilic reporter dye [126]. It was shown that DiI has systematically lower lateral 

and rotational diffusion coefficients compared to DPPC, but the increase in each with tension 

is quantitatively similar for DiI and DPPC. The lower dynamics of the probe is most likely due 

to the rigid and bulky structure of the DiI headgroup. Moreover, DiI is located near the lipid 

acyl chain region. Since the location of the dye with respect to lipid–water interface does not 

change with increased tension and water does not penetrate appreciably beyond lipid 

headgroups, no marked change in the DiI hydration is expected. This is important since the 

fluorescence lifetime of carbocyanine chromophores is sensitive to water accessibility and to 

the local microviscosity. These observations indicate that changes in the fluorescence lifetime 

of DiI due to membrane order are most likely attributed to changes in the viscosity near the 

headgroup, rather than due to changes in hydration. The authors concluded that the fluorescence 

lifetime of DiI, which depends on the lipid order near the headgroups, appears to be a good 

indicator of tension in membranes. 

N-[[4′-N,N-diethylamino-3-hydroxy-6-flavonyl]-methyl]-N-methyl-N-(3-sulfopropyl)-1-

dodecanaminium (F2N12S, Fig. 7) belongs to family of bright membrane-staining dyes, 

sensing polarity and hydration of lipid membranes via a mechanism involving an excited-state 

intramolecular proton transfer and the formation of hydrogen bonds with water, potentially 

accompanied by changes in molecular orientation [127]. Recently, this dye has been proposed 

as a molecular probe in fluorescence-detected linear dichroism (FDLD) measurements 

reporting on the molecular orientation and rotation of fluorescent molecules within the lipid 

membranes of liposomes and living cells [128]. The orientation of F2N12S molecules within 

POPC membrane was determined experimentally by using single- and two-photon polarization 

microscopy observations of linear dichroism. The results were consistent with a Gaussian-like 
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orientational distribution of the transition dipole moment of the dye, with a mean tilt angle of 

53.2 ± 0.1° with respect to the bilayer normal and a standard deviation of 13.3 ± 0.6°. To 

confirm such alignment of the fluorophore in the POPC bilayer, MD simulations were 

performed. The calculated values were very similar a mean tilt angle of 48 ± 4° and a standard 

deviation of 13 ± 2°. The good agreement between the experimentally and computationally 

obtained values validated this fluorescent optical probe reporting on cellular events through 

changes in linear dichroism. 

4.2. Spin-labeled probes 

Nitroxide-free radicals can be attached as spin labels to proteins, lipids or synthetic 

macromolecules [129]. Such labeling methods allow the targeted introduction of an electron 

spin into otherwise diamagnetic systems. Several different nitroxide free radicals were proposed 

in various fields of membrane biophysics, while the rigid and conformationally unambiguous 

Doxyl groups (Fig. 8) can be introduced during the synthesis of lipids, steroids or surfactants. 

These electron spin labels can be observed either directly by electron paramagnetic resonance 

(EPR) or indirectly by NMR spectroscopy via its hyperfine interactions with nuclear spins or 

can serves as quenchers in fluorescence measurements.  

Spin-labeled phospholipids are commonly used as fluorescence quenchers in depth-

dependent quenching studies of membrane penetration of fluorescent molecules embedded in 

membranes [101, 130, 131]. This method allows for the calculation of the vertical position of a 

fluorophore in the bilayer by comparing the extent of quenching by two lipid-bound quenchers 

that are located at known, but different, vertical depths in the bilayer. Therefore, an accurate 

depth position of fluorophores relies on the use of several spin-labeled probes placed in the 

membrane at various positions. The depth position of the quenchers (spin probes) has to be 

determined independently; however, experimental determination of transverse distributions of 

spin-probe depths is difficult. MD simulations seem to be the most appropriate method to solve 
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these problems. They were used to study the membrane behavior and depth distributions of 

spin-labeled phospholipids in a POPC bilayer [131]. Five phosphocholines, in which a Doxyl 

moiety was covalently attached to nth carbon atoms (n = 5, 7, 10, 12, and 14) of the sn-2 stearoyl 

chain, namely 1-palmitoyl-2-stearoyl-(n-Doxyl)-sn-glycero-3-phosphocholine (n-Doxyl-PC), 

and phosphocholine with the Tempo group linked to a headgroup, 1-palmitoyl-2-oleoyl-sn-

glycero-3-phospho(TEMPO)choline (Tempo-PC), have been simulated. The results revealed 

that the chain-attached spin labels were broadly distributed across the model membrane and 

their environment was characterized by a high degree of mobility and structural heterogeneity. 

Despite the high thermal disorder, the depth distributions of the Doxyl labels were found to 

correlate well with their attachment positions, indicating that the distribution of the spin label 

within the model membrane was dictated by the depth of the nth lipid carbon atom, rather than 

by the intrinsic properties of the label. In the case of the Tempo-PC probe, a much broader and 

heterogeneous distribution was observed, probably due to the hydrophobic nature of the Tempo 

moiety, which favored partitioning from the headgroup region deeper into the membrane. 

Depending on the concentration of Tempo-PC lipids (11 or 29 mol%), the probable depth of 

the Tempo moiety could span a range from 1.44 to 1.82 nm from the membrane center.  

Next, the tempo-PC and five n-Doxyl-PC probes have been used to investigate the 

immersion depth of the NBD fluorophore attached to the lipid headgroup in NBD-PE 

incorporated into a POPC bilayer [132]. A combination of MD simulations and depth-

dependent fluorescence quenching was used to calibrate the methodology for extracting 

quantitative information on membrane penetration. The immersion depth of NBD was 

estimated by measuring steady-state and time-resolved fluorescence quenching with spin-

labeled lipids co-incorporated into lipid vesicles. Using the methodology of Distribution 

Analysis, the immersion depth and the apparent half-width of the transversal distributions of 

the NBD moiety were estimated to be 1.47 and 0.67 nm, respectively, from the bilayer center. 
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This position was validated by atomistic MD simulations of the POPC bilayer with incorporeted 

NBD-PE. The MD simulations results showed good agreement with the experimental resutls. 

A variety of nitroxide-labeled probes have been used in EPR measurements to characterize 

the dynamic structure on a molecular level of the liquid ordered (Lo) and liquid-disordered (Ld) 

coexisting phases in the brain-sphingomyelin/dioleoylphosphatidylcholine/cholesterol 

(SPM/DOPC/Chol) model lipid system [133]. The analysis of the EPR spectra of the probes 

provided the rotational diffusion rates and order parameters, which characterize the local 

molecular dynamics in the coexisting Lo and Ld phases. The use of 10 different spin-labels 

labeled along the acyl chain and within the headgroup of phospholipids, as well as a labeled 

Chol analog, allowed for analysis of both the hydrophobic and hydrophilic regions of the model 

bilayer. Based on the results, a molecular model of the Lo phase was proposed, including the 

condensing effect of Chol on the phospholipid acyl chain dynamics and ordering and the 

“umbrella model” of the phospholipid headgroup.  

Spin-labeled fatty acids are commonly used for EPR and fluorescence studies of cell 

membranes to investigate physical properties such as phase transitions, fluidity, and the location 

of fluorophores inside lipid membranes. These compounds are commercially available and 

much cheaper compared to the spin-labeled phospholipids. The position and behavior of the 

quenching moieties of the spin-labeled stearic acids (SASLs) in the DPPC bilayer were 

determined previously by MD simulations [97]. Three SASL derivatives with the Doxyl group 

attached at the 5th, 10th or 16th carbon atom along the chain (5-SASL, 10-SASL, and 16-SASL, 

Fig. 8) were studied. It was shown that the incorporation of SASL molecules into the lipid 

bilayer resulted only in a small increase in order parameters and a related decrease of surface 

area, but it did not change the overall bilayer structure. The positions of the spin labels were 

calculated to be 1.27 ± 0.22, 1.02 ± 0.23, and 0.86 ± 0.29 nm for 5-SASL, 10-SASL and 16-

SASL, respectively. This indicates that, similar to Doxyl-PCs, the distributions of locations 
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were rather broad and, depending on the attachment position, were shifted in comparison to the 

location of lipid acyl carbon atoms by two to eight positions toward the membrane surface. 

Opposite to the Doxyl-PC probes, SASLs can dissociate in the aqueous environments. The 

authors indicated that under experimental conditions, the carboxylic group of the SASL 

molecule should be dissociated. This can be achieved by increasing the pH to approximately 

9.5, since the carboxyl group of 5-SASL in the membrane showed an apparent pKa of around 

7.5. As shown with MD simulations, the uncharged form of SASL behaved drastically 

differently from that of charged SASL molecules. It was located deeper in the membrane and 

was able to diffuse between membrane layers during the simulation time.  

The SASL probes have been applied with success in several experimental studies to 

determine the position of fluorescent molecules using fluorescence-quenching analysis (FQA). 

The obtained results were compared with MD simulations. For example, the complementary 

results of fluorescence and MD simulation studies on the behavior of small organic molecule, 

2,6-bis(decyloxy)naphthalene, inside the POPC membrane were presented. Stable free radicals 

16-SASL, 5-SASL, and 3β-Doxyl-5-cholestane (CSL, Fig. 8) were used as quenchers. The 

quenching experiments showed that the naphthalene ring of the compound was located shallow 

in the membrane at approximately 1.4 nm from the center of the bilayer. The MD simulations 

provided more detailed information and revealed that the aromatic group resided in the upper 

acyl chain region near the headgroups of the bilayer and the hydrocarbon tails were directed to 

the center of the bilayer, which was in line with the experimental results. Recently, similar 

methodology has been used to study the effect of membrane PEGylation on the location and 

orientation of 5,10,15,20-tetrakis(4- hydroxyphenyl)porphyrin (p-THPP), a model hydrophobic 

compound [31]. The properties of p-THPP in the presence of different fluid PC bilayers and 

PEGylated membranes were considered. Both fluorescence-quenching and MD simulation 

results indicated that p-THPP within zwitterionic membranes were located at the interface 
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between the hydrocarbon chain region and the polar region or close to the water-membrane 

interface, whereas p-THPP solubilized in PEGylated liposomes was localized in two preferred 

positions: deep within the membrane (close to the center of the bilayer) and in the outer 

poly(ethylene glycol) corona.  

In both papers [31, 94], CSL was used as a spin label with the quenching group located at 

the water-membrane interface. Since the position of CSL in the bilayer has not been previously 

examined, it was assumed that the depth of the nitroxide group of CSL is similar to the depth 

of the OH group of Chol. According to the finding by Rog and Pasenkiewicz-Gierula, such 

group is located in the region of the PC phosphate groups [134]. Although this assumption 

seems to be reasonable, MD simulations of the CSL behavior in lipid membranes are desirable 

since this probe is commercially available.  

SASLs have been used as spin probes to determine the liposome microviscosity with EPR 

spectroscopy [98, 135]. The effective microviscosities were determined from the calibration of 

the EPR spectra of the probes in solvent mixtures of known viscosities. Next, by measuring the 

EPR-order parameter and correlation time of the SASL probes incorporated into the membrane, 

it was possible to quantify the value of effective microviscosity at different depths inside the 

liposome membrane. The developed methodology was proven to be useful to study changes in 

the membrane fluidity induced by temperature or the drug incorporation.  

5. Synthetic lipids help to understand lipids structure-function 

relationship 

Synthetic lipids are useful in studies concerning structure of lipids aiming to connect particular 

structural elements with properties of lipid bilayers formed by the studied lipid. The group 

might be removed or replaced by other groups with different chemical properties, such as a 

different charge or ability to form hydrogen bonds. In this context, Chol and sphingolipids were 
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particularly extensively studied; both experimentally and via MD simulations and we discussed 

them in more detail in next paragraph. Glycerol-based lipids were also studied with synthetic 

analogs (e.g. synthetic analogs with various sizes of headgroups) [136], or analog with altered 

chirality [137], and reverse charge were synthetized. In last paragraph we describe a case of 

reverse zwitterionic lipids. 

5.1. Cholesterol synthetic analogs  

Chol is the central molecule regulating the physical properties of lipid bilayers. Cholesterol 

affects lipids’ phase behavior by decreasing the temperature of the main phase transition and 

decreasing its cooperativity in small and moderate concentrations. In large concentrations, Chol 

completely eliminates phase transition. In higher Chol concentrations, Chol with other lipids 

forms a Ld phase which, in certain temperatures and concentration ranges, may coexist with 

the Lo phase. Chol increases the mechanical strength of the lipid bilayer and decreases its 

permeability. Molecular mechanisms behind these Chol properties are its abilities to increase 

lipid tails’ order and condense the lipid bilayer. Thus, it is not surprising that Chol modulates 

interactions between membrane lipids and membrane proteins, both integral and peripheral. 

Chol concentration in various types of membrane differs significantly from being lowest in 

mitochondrial membranes and highest in the cell membrane. For all of these reasons, Chol is 

one of the most intensively studied molecules; in particular, the importance of its structure has 

been in the spotlight for a long time. Already in 70-ties Chol structure was shown to be 

composed of three structural elements necessary for its membrane function: small polar 

headgroup 3β-OH, sterol ring and short isooctyl tail [138]. Changes of these structural elements 

typically decreases sterol’s ordering and condensing abilities. This old observation was recently 

highlighted by post-analysis of published data on numerous sterols and proven to be statistically 

significant [139]. In the next paragraph, we show examples of synthetic sterols with 

modifications related to these three structural elements. 
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Enantiomeric cholesterol (ent-Chol) is a synthetic Chol analog not existing in nature in 

which all 8 chiral centers have reverted chirality compared to Chol. Ent-Chol was synthetized 

for the first time in 2002 by Jiang and Covey with 23-step synthesis and an overall yield of 

2.6% [140]. More recent studies described 16-step synthesis, but with an overall yield of 2% 

[141]. Ent-Chol was shown to affect the lipid bilayer and monolayer properties to the similar 

extent as Chol [142-144]. Surprisingly in cell lines with impaired Chol biosynthesis, ent-Chol 

was able to substitute Chol and promote cell growth [145]. These abilities of ent-Chol make it 

useful to recognize whether or not the observed effect of Chol on membrane proteins’ functions 

result from direct, specific interactions or is mediated through the bulk membrane properties 

[146]. For instance, two bacterial toxins streptolysin O and Vibrio cholerae cytolysin that are 

known to destabilize Chol-containing membranes were shown to be specific toward bilayers 

with Chol but not with ent-Chol [147]. Similarly, peptides known to affect the phase behavior 

of Chol-containing bilayers were not affecting bilayers with ent-Chol [148]. Ent-Chol, contrary 

to Chol, was found not to be able to activate acyl-CoA cholesterol acyltransferase [149]. 

Finally, ABC-type transporters were shown to be sensitive on sterol chirality [150]. However, 

for the case of a serotonin 1A receptor, ent-Chol was able to replace Chol and maintain receptor 

functions [151].  

A Chol ring is asymmetric and has two faces: α-face with no substituents and β-face with 

two methyl groups and hydroxyl group pointing out from the β-face. Due to this configuration 

in the membrane plane, 3-fold symmetry is observed [152]. The first sterol at the Chol 

biosynthetic pathway lanosterol has 5 methyl groups located at both faces, thus synthesis steps 

and the removal of the methyl groups make sterols gradually smoother. Further, the ordering 

and condensing capability of sterols along the biosynthetic pathway gradually increase, 

suggesting that the biosynthetic pathway reflects evolutionary optimization of the sterol 

properties [153]. Building on this idea, we designed a new sterol with all methyl groups 
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removed - 18-19-di-nor-cholesterol (Dchol) (see Fig. 9b) [154] and a few sterols with a single-

methyl group removed [155], expecting further improvement of sterol properties. MD 

simulations, however, showed that methyl groups are important elements that maintain sterol 

orientation in membranes and their removal actually decreases sterols’ ordering abilities. Our 

initial results were recently confirmed experimentally. Dchol synthesis, although complicated, 

was shown to be possible. Synthesis required 18 steps from commercially available compounds 

and its yield is 3.5% [156]. Biophysical studies showed slightly lower-condensing properties of 

Dchol and generally weaker effects on bilayer properties [157]. A more expanded description 

of this case can be found in Rog et al. (2015) [27].  

Only the polar part of a Chol molecule is a 3β- hydroxyl group, which is present in the 

majority of the natural membrane-active sterols (e.g., typical for fungus ergosterol or plant 

sterol camposterol). The only natural steroid present in significant amounts in a biological 

membrane with an altered head group is cholesterol sulphate (CS). Properties of CS showed 

that its effects on bilayer properties are weaker than that of Chol, likely due to a shift toward 

the water phase of the location of the polar part [158, 159]. Few steroids with a synthetically 

modified polar group are known and their properties were reported to be different from Chol. 

For example cholesteryl PC (see Fig. 9h) was shown to form bilayers with Chol, di-acyl-

glycerol, and ceramide [160]. Next, the cholesteryl PC-ordering effect in the POPC bilayer was 

much weaker than of that of Chol. Thio-cholesterol (see Fig. 9k), a steroid with the OH group 

substituted with a slightly less polar SH group, was shown to have a slightly weaker effect on 

the bilayer properties [161]. In the next two paragraphs, we offer two examples of more 

extensively studied cases of sterols with modified a headgroup: epicholesterol and cholesteryl 

hemisuccinate. 

Epicholesterol (see Fig. 9i), an epimeric form of Chol with 3α- hydroxyl group, does not 

occur in nature. A few older studies showed that epicholesterol effects on membrane ordering, 
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passive permeability and phase state are weaker in comparison to Chol [138, 162, 163]. The 

results of MD simulations’ study were in line with these experimental data: epicholesterol 

ordering and condensing effects were shown to be weaker than effects of Chol [164]. The 

proposed mechanism of decreasing the strength of sterol-phospholipid interaction was to shift 

the polar part of the sterol toward the water phase. This mechanism is in line with the much 

higher spontaneous transfer rate between liposomes of epicholesterol than Chol [165]. More 

recent calorimetric studies, however, showed that the epicholesterol effect on phase behavior 

in comparison to Chol depends on sterol concentration [166]. In lower concentrations, 

epicholesterol affects the phase behavior more than Chol, but at higher concentrations (30-50 

mol%), the effects of Chol are stronger. Not surprisingly, epicholesterol was shown not to be 

able to substitute Chol in its interaction with the serotonin 1A receptor necessary for receptor 

activity [151].  

Cholesteryl hemisuccinate (see Fig. 9f) (CHS) is a detergent that is frequently used to 

substitute Chol in crystallography and in biochemical studies of G-protein couplet receptors 

[18, 167-170]. The choice of CHS instead of Chol is dictated by its higher solubility; thus, it is 

easier to handle in laboratory conditions. CHS was shown to stabilize liposomes [171, 172] and 

decrease the fluidity of the cell and model membranes [173, 174]. MD simulations of CHS 

embedded into saturated PCs showed that CHS affects lipid properties less than Chol, in 

particular its charge form, which is dominant in neutral pH and was less effective [175]. For 

the case of the unsaturated bilayer, the neutral form of CHS was almost as effective as Chol, 

but the effects of the charge form was clearly weaker than that of Chol [176]. Time-resolved 

fluorescence anisotropy of diphenylhexatriene measurements confirmed that CSH is less 

effective than Chol in ordering the lipid bilayer. MD simulations showed that the tilt of the 

sterol ring of CSH is larger than that of Chol, which is one of the determinants of sterols’ 

ordering capability [177, 178]. CSH was also shown to protrude more into the water phase than 
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Chol, particularly in the charge form that is translocated more toward water. All of these effects 

showed that CSH is not able to fully substitute Chol. Cationic analog of CSH DC-Chol (3β-[N-

(dimethylaminoethane)-carbamoyl]-cholesterol) (see Fig. 9j) was also synthetized and used, 

such as for immune-stimulating complex (ISCOM) formulation [179, 180] and in monolayer 

studies [180]; however, its bilayer properties are not well characterized. Another similar but 

neutral moiety is attached to the so-called exchangeable Chol (see Fig. 9g) used in nearest-

neighbor recognition assay [181]. In this form of sterol, the short tail is ended with a reactive 

thiol group. 

The last structural sterol element, the alkyl tail, shows certain diversity in naturally occurring 

sterols, but the isooctyl tail seems be superior over other natural variants. The characteristic 

feature of the Chol tail is branching at its end. The role of this feature was recently examined 

by using synthetic Chol analogs with unbranched tails that were 3–14 carbon atoms long (see 

Fig. 9d, e)  [182]. Chol was shown to have the strongest ordering effect and sterol, with an 

unbranched, 12-carbon tail, had ordering properties closest to Chol in the POPC bilayer. In the 

DPPC bilayer, sterols with tails that varied in length from 7 to 13 contained ordered bilayers to 

a similar degree with Chol. Surprisingly, sterols’ effect on bilayer permeability and lateral 

diffusion were not correlated with sterols’ ordering capability. A clickable version of Chol (see 

Fig. 9c) with a click group located in the Chol tail is in use for Chol-protein studies, but the 

effect of this modification on the sterol behavior is not known [183]. 

5.2. Sphingomyelin  

SPMs, a class of lipids with numerous biological functions [184], have a structure based on 

sphingosine, an amino alcohol with an 18-carbon-atom chain and a trans unsaturated bond at 

position 4–5 (see Fig. 10a, e). The hydrocarbon tail is attached via an amide bond and PC 

headgroup via an ester bond. Due to this, SPM differs significantly from glycerol-based lipids, 

which are the dominant lipids group. SPMs have hydroxyl and amide groups that are both 
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capable of forming H bonds as a donor; these groups in a lipid bilayer are located at the water 

membrane interface. A few naturally occurring modifications of sphingosine are possible; for 

example, a species lacking a trans unsaturated bond or a species with additional hydroxyl 

groups exist (for a more comprehensive review of SPM structure, see [185]). PC is not the only 

possible headgroup for sphingolipids, ceramide species in which the hydroxyl group is not 

esterified is also a base for glycolipids and inositols. Natural variants of SPM provide an 

opportunity to understand the importance of modified groups and were intensively studied (for 

review, see [186, 187]) but few synthetic species of SPM provided additional insight into the 

importance of the SPM structure.  

The PC headgroup is connected with ceramide via an ester bond in all natural PSMs. The 

role of the chemical nature of this connection was examined via studies of species with oxygen 

atoms replaced with sulfur atom (PSM-S) (see Fig. 10l), NH (PSM-NH) (see Fig. 10h) and CH2 

(PSM-CH2) groups (see Fig. 10d) [188]. For the PSM-S, an increase in the stability of the 

bilayer and decreased polarity at the membrane-water interface region were observed. Opposite 

results were noted for both PSM-NH and PSM-CH2; membrane stability was decreased and 

interface polarity increased. While interactions of PSM and its analogs with Chol were studied, 

it was found that all lipids form a Chol-rich domain; however, for the case of PSM-NH and 

PSM-CH2, lower thermal stability of the formed domain was observed.  

PC is a relatively large headgroup, mainly due to the bulky nature of the choline group. The 

importance of the PSMs’ headgroup size was studied with PSM analogs in which methyl groups 

of choline were substituted with hydrogen atoms one by one (modified PSM with 2 methyl 

group and 1 hydrogen CPE-Me2 (see Fig. 10b), with 1 methyl group and 2 hydrogens CPE-

Me1 (see Fig. 10f), and with 3 hydrogens CPE (see Fig. 10j)), where the last lipid in the series 

is phosphatidylethanolamine [189]. Experimental calorimetric studies showed that with the 

increasing number of methyl groups, the temperature of the main-phase transition is lowered 
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while corresponding MD simulations showed that the area per lipid is larger and the order of 

the acyl tail is lower. Interactions of PSM and its analogs with Chol were also affected by the 

number of methyl groups— the affinity of sterols was higher for species with a larger number 

of methyl groups. MD simulations showed that the Chol ordering effect was larger in a bilayer 

composed of species with a larger number of methyl groups. Moreover, MD simulations 

showed an increasing number of polar interactions between Chol and lipids for the species with 

a larger number of methyl groups. These results are in agreement with the so-called umbrella 

model, one possible mechanism of Chol condensing and ordering effects [190]. In this 

mechanism, the PC headgroup acts as an umbrella preventing the Chol hydrophobic part from 

unfavorable interactions with water. Another lipid which has a small cross-section area of the 

polar groups compared to the hydrophobic tail is ceramide. Ceramide is known to have 

condensing properties and the umbrella model was also suggested to be mechanism of this 

effect [191]. For this reason, one could expect similarities to the Chol behavior described above, 

but differential scanning calorimetry and fluorescence spectroscopy showed that the size of 

headgroup—for the case of PSM and its analogs with a lower number of methyl groups—does 

not affect ceramide interaction with these lipids [192]. Moreover, it was shown that 

sphingomyelinase from Bacillus cereus was capable of degrading CPE-Me2, but not CPE-Me1 

and CPE [193].  

Phosphatidylserine is a frequent negatively charged headgroup in glycerol-based lipids, but 

is not known to occur as a headgroup of sphingolipids. Nevertheless, synthetic sphingolipid 

with phosphatidylserine (SSM) (see Fig. 10i) was synthetized and its interactions with Chol 

were examined [194]. SSM was found to form a Chol-rich domain slightly less effectively than 

PSM, contrary to glycerol-based phosphatidylserine. 

SPM has two hydrogen bonding groups, OH and NH, which are located at the water 

membrane interface. The role of these groups was studied utilizing three synthetic analogs in 
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which these groups were methylated (PSM-Ome (see Fig. 10c), PSM-Nme (see Fig. 10g), and 

PSM-ONme (see Fig. 10k)). In one analog, both groups were methylated and, in two others, 

OH or NH groups were methylated [195]. The presence of methylation destabilized the gel 

phase and decreased the temperature of the main-phase transition. MD simulations showed that, 

in the fluid phase, methylation led to surface area expansion and a decrease of the order 

parameter, particularly for the case of an analog with both groups methylated. The methylation 

of the OH group almost completely abolishes the formation of the sterol-rich ordered domain, 

while methylation of NH does not abolish domain formation but, instead, domains were less 

thermostable. Chol affinity toward membranes formed by methylated analogs was much lower 

than for the case of SPM. Further MD simulations showed much weaker polar interactions 

between Chol and methylated analogs than SPM. Methylation of the NH group was found to 

be particularly important for interactions of PSM with ceramide [196]. Methylation of the OH 

group was not affecting the degradation of this lipid by sphingomyelinase from Bacillus cereus, 

but NH methylation was reducing the rate of degradation [193]. Finally, the methylation of any 

of the group abolished membrane pore formation by toxin sticholysin II derived from sea 

anemone Stichodactyla heliantus known to specifically interact with PSM [197]. 

N-cholesteryl sphingomyelin (SPM-Chol) is a synthetic sphingolipid with amide link tail 

substituted by Chol carbamate [198] similar to that discussed above (paragraph 2.1) in the 

context of drug delivery glycerol-based PC-cholesteryl constructs (see Fig. 2). SPM-Chol was 

found to be able to form vesicles of various radiuses that were resistant to Triton X-100. SPM-

Chol in mixture with other lipids had ordering properties, although not as strong as Chol. Unlike 

SPM, SPM-Chol in mixture with POPC is not capable of forming sterol-rich ordered domains. 

Similar to glycerol-based PC-cholesteryl, SPM-Chol seems be a good candidate for use in drug 

delivery, due to its high stability, ordering properties and resistance to phospholipases A2 [198].  
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5.3. Invers zwitterionic lipids 

Naturally occurring zwitterionic lipids have a phosphate group attached to a glycerol backbone 

and then a positively charged group (ethanolamine or PC) attached to a phosphate group. Due 

to this configuration, the positively charged group is more dynamic and protrudes more at the 

water phase. Inverse zwitterionic lipids, or lipids with reverse order of positively and negatively 

charged groups, do not exist in nature but were synthetized as a possible candidate for use in 

drug delivery system. Until now, however, their applications have been rather limited, but they 

provide an additional understanding of the natural lipids. In all, synthetized lipids’ choline 

group was first attached to the glycerol backbone and next charge group – phosphate, methyl 

phosphate, carboxyl, sulfonate or sulfate (see Fig. 11) [199-201]. The phase behavior of these 

lipids differs significantly from PCs; the temperature of the main-phase transition is very high, 

which is not expected for lipids with large headgroups. Interactions of these lipids with cations 

are significantly reduced. This effect is particularly important for Ca++, as it is able to 

destabilize liposomes and induce fusion. MD simulations of inverse PC (with methyl 

phosphate) were in agreement with experimental studies [202]. Interactions with Na+, K+, 

Ca++ anions were reduced. Next, the water layer at the water membrane interface was 

differently ordered than in natural PCs and the profile of electrostatic potential was significantly 

altered. The reverse of the groups strongly affected the hydration of the bilayer. The most 

important observation concerns the carbonyl groups of lipids which attract water in natural PCs, 

but were almost dehydrated in the reverse lipid case. This might be the reason for the higher 

temperature of main phase transition since water in the carbonyl group significantly affects the 

bilayer order. 

6. Summary  

In this review, we have discussed several applications of synthetic lipids in pure and applied 

science with a focus on studies where atomistic MD simulations contributed for obtaining 
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understanding into atomistic level mechanisms associated with new functionalities of synthetic 

lipids. Examples discussed in this paper clearly document the usefulness of MD simulations. 

This provides additional information useful to the interpretation of experimental results 

(reporting molecules) and additionally suggests possible mechanisms responsible for both 

success and failure of synthetic lipids in practical applications like drug delivery, allowing us 

to better understand the relationship between lipids structure and their properties. Moreover, 

MD simulations have been shown to have predictive power, for example, the case of cholesterol 

analogs. The methodology of MD simulations is still under intensive development and from 

time to time spectacular failures have been described in the literature (discussed in the article 

by Karttunen in this issue of Biochim. Biophys. Acta). On the other hand, the accuracy of the 

force fields for lipids has been greatly improved over few last years (discussed in the article by 

Lyubartsev in this issue of Biochim. Biophys. Acta) and methodological issues seem to be well 

understood. Finally, time and size scales that can be achieved in simulations nowadays are 

definitely appropriate for kind of problems we have described. Taking into account all these 

facts one should expect further intensive study of synthetic lipids and surfactants with MD 

simulations as a routine method. 
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Figure Legend 

Figure 1. “Images of the systems consisting of p-THPP molecules in DLPC/DLPE-PEG 

bilayers: four p-THPP molecules (system M3) at (a) t = 0 and (b) after 100 ns of simulation; 

two p-THPP molecules (system M4) at (c) t = 0 and (d) after 350 ns; and six p-THPP molecules 

(system M5) at (e) t = 0 and (f) after 350 ns. The porphyrin molecules are shown in red as a 

licorice representation. DLPC molecules are shown as blue sticks, with black spheres for 

phosphate groups. DLPE-PEG lipids are shown as beige sticks. For clarity, water and ions are 

not shown” (reprinted with permission from Dzieciuch et al. 2015). 
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Figure 2. Structure of the cholesterol-modified lipids: (a) Sn2-cholesteryl phosphatidylcholine; 

(b) di-cholesteryl phosphatidylcholine; (c) N-cholesteryl sphingomyelin. Color code: light blue 

– carbon, white – hydrogen, dark blue – nitrogen, red – oxygen, brown – phosphorus, and 

yellow/orange sulfur. Figure prepared with VMD [203]. 
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Figure 3. “Short-chain phosphatidylcholines dynamically assemble into a molecular gateway 

for doxorubicin. (A), (B) Snapshots of simulations of a pure DPPC bilayer (A) or a 451 

DPPC:DOctPC bilayer (B). Doxorubicin was localized at the center of the bilayer by a 

harmonic potential. During doxorubicin traversal, the short-chain lipids assemble a transient 

membrane channel. Doxorubicin is in red, water in blue, DPPC in yellow and DoctPC in green; 

lipid headgroups are represented by a single bead at the phosphorus position. Increased 

therapeutic window of doxorubicin by GC-mediated membrane modulation. (C): From the 

liposomal vehicle, fDox (red) and free GC (green) leak into the interstitial fluids and partition 

into the (tumour) cell membrane (top cartoon). fDox plasma peak levels are much reduced by 

liposomal formulation (thinner red arrows left of membrane), but doxorubicin entry in the 

tumour cell is low in absence of GC (middle cartoon). GC, when co-inserted into the membrane, 

enhances membrane traversal of doxorubicin (thickened red arrow right of membrane) and thus, 

accumulation into tumour cell DNA” (reprinted with permission from van Hell et al. 2013). 
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Figure 4. (a) “Lipid bilayer of a 1:1:1 ternary mixture of ceramide (green), cholesterol (yellow), 

and free fatty acid (blue) with 0.1000 mole fraction oleic acid (orange) (300 K) shown (reprinted 

with permission from Hoopes et al. 2011).” (b) Snapshots of the ceramide bilayer at 305 K and 

structure of the ceramide molecule (reprinted with permission from Guo et al. 2013).  
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Figure 5. Structures of cationic lipids mentioned in this article. 
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Figure 6. Structures of membrane probes mentioned in this article. BODIPY, NBD, and Pyr 

are shown in red, blue, and green, respectively. The numbering system for BODIPY dyes is 

also shown.  
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Figure 7. Structures of fluorescent cholesterol analogs and surfactants mentioned in this article. 

Hexatrien chromophore in the dehydroergosterol (DHE) or cholestatrienol (CTL) structures and 

NBD are shown in green and blue, respectively.  
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Figure 8. Structures of spin-labeled probes mentioned in this article. Tempo and Doxyl groups 

are shown in green and red, respectively.  
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Figure 9. Structures of cholesterol (a), Dchol (b), clickable cholesterol (c), cholesterol with 3 

carbons tail (d), cholesterol with 14 carbons tail (e), cholesteryl succinate (f), exchangeable 

cholesterol (g), DC-chol (h), epicholesterol (i), cholesteryl phosphatidylcholine (j), and thio-

cholesterol (k). Color code is same as in Fig. 2. Figure prepared with VMD [203]. 
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Figure 10. Structures of sphingomyelin (a, e) (double bond shown in green at panel (e)), CPE-

Me2 (b), PSM-OMe (c), PSM-CH2 (d), CPE-Me1 (f), PSM-NMe (g), PSM-NH (h), SSM (i), 

CPE (j), PSM-ONMe (k), and PSM-S (g). Arrows indicates modified groups. Acyl tails are cut 

for clarity. Color code is same as in Fig. 2. Figure prepared with VMD [203]. 
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Figure 11. Structures of phosphatidylcholine (a) and charge reverse lipids: choline sulfates (b) 

choline sulfonates (c) choline carboxylate (d), choline phosphate (e), choline ethyl-phosphate 

(f). Acyl tails are cut for clarity. Color code is same as in Fig. 2. Figure prepared with VMD 

[203]. 
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