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ABSTRACT 33 

        Many coastal and offshore fish species are highly dependent on specific habitat 34 

types for population maintenance. In the Baltic Sea, shallow productive habitats in the 35 

coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as 36 

more exposed rocky and sandy areas are utilised by fish across many life history stages 37 

including spawning, juvenile development, feeding and migration. Although there is 38 

general consensus about the critical importance of these essential fish habitats (EFH) for 39 

fish production along the coast, direct quantitative evidence for their specific roles in 40 

population growth and maintenance is still scarce. Nevertheless, for some coastal 41 
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species, indirect evidence exists, and in many cases, sufficient data are also available to 42 

carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found 43 

in areas that are highly utilized and valued by humans, they are subjected to many 44 

different pressures. While cumulative pressures, such as eutrophication, coastal 45 

construction and development, climate change, invasive species and fisheries, impact 46 

fish in coastal areas, the conservation coverage for EFH in these areas remains poor. 47 

This is mainly due to the fact that historically, fisheries management and nature 48 

conservation are not integrated neither in research nor in management in Baltic Sea 49 

countries. Setting joint objectives for fisheries management and nature conservation 50 

would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly 51 

inform management, improvements in the development of monitoring strategies and 52 

mapping methodology for EFH are also needed. Stronger international cooperation 53 

between Baltic Sea states will facilitate improved management outcomes across 54 

ecologically arbitrary boundaries. This is especially important for successful 55 

implementation of international agreements and legislative directives such as the Baltic 56 

Sea Action Plan, the Marine Strategy Framework Directive, the Habitats Directive, and 57 

the Maritime Spatial Planning Directive, but also for improving the communication of 58 

information related to coastal EFH among researchers, stakeholders, managers and 59 

decision makers. In this paper, efforts are made to characterize coastal EFH in the Baltic 60 

Sea, their importance and the threats/pressures they face, as well as their current 61 

conservation status, while highlighting knowledge gaps and outlining perspectives for 62 

future work in an ecosystem-based management framework. 63 

 64 

 65 

 66 
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1. INTRODUCTION AND BACKGROUND 67 

 68 

        Fish are central for the functioning of food webs and ecosystems in the Baltic Sea 69 

(Österblom et al. 2007, Östman et al. 2016), and are broadly used in environmental 70 

monitoring as indicators for ecosystem status and health (Bergström et al. 2016ab). Fish 71 

are also important in socio-economic terms, such as for commercial and recreational 72 

fisheries (Holmlund and Hammer 1999). The geographical distribution and occurrence 73 

of fish in the Baltic Sea, and thereby the species composition of fish communities, differ 74 

over both large and small scales. Fish distributions are largely driven by spatiotemporal 75 

differences in natural biotic and abiotic factors as well as by human pressures 76 

(Bergström et al. 2016a, Östman et al. 2017). The same habitat may have only one or 77 

several functions during different seasons with regard to e.g. spawning, feeding and 78 

overwintering for the same or different species (Aro 1989, Vetemaa et al. 2006). 79 

Examples of common gradients and factors that are determining fish distribution are 80 

salinity, temperature, depth, pollution, eutrophication, predation, food availability, 81 

fishing pressure, and also the availability and conditions of coastal essential fish habitats 82 

(EFH) which is the focus of this review article (Leppäkoski and Bonsdorff 1989, Sparholt 83 

1994, Bonsdorff and Pearson 1999, MacKenzie et al. 2007, HELCOM 2010, Olsson et al. 84 

2012, Seitz et al. 2014). In the review, efforts are made to characterize coastal EFH in the 85 

Baltic Sea, their importance and the threats/pressures they face, as well as their current 86 

conservation status, while highlighting knowledge gaps and outlining perspectives for 87 

future work in an ecosystem-based management framework. 88 

 89 

        In a broad sense, an EFH is any environment that is needed for the maintenance of a 90 

fish population. More specifically, coastal EFH are defined as shallow and nearshore 91 
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waters and substrates necessary to any life-stage of fish for spawning, breeding, feeding 92 

or growth to maturity (Benaka et al. 1999, Rosenberg et al. 2000). In this respect, the 93 

term waters include all aquatic coastal areas (down to a maximum depth of 10–20 m) 94 

and their physical, chemical, and biological properties, whereas substrates include 95 

surfaces and their associated biological communities that make them suitable as fish 96 

habitats (Rosenberg et al. 2000). Coastal EFH are thus comprised of juvenile growth 97 

areas, foraging areas, reproduction areas and migratory routes. While the latter three 98 

are of direct importance for fisheries, by offering high catches or value per fishing effort 99 

(Airoldi and Beck 2007, Seitz et al. 2014), the former one is a step required to produce 100 

recruits to replenish the fishery (Beck et al. 2001). Fishing may, however, be challenging 101 

for the sustainable management of some coastal EFH, not only as some fishing practices 102 

are detrimental to the habitats per se, but also because targeted extraction of species 103 

from the general marine ecosystem may indirectly influence the habitats by altering 104 

predator-prey interactions (Hopkins 2003, Eriksson et al. 2011, Pikitch et al. 2014, 105 

Östman et al. 2016, Pommer et al. 2016, Eddy et al. 2017). Despite consensus among 106 

scientists on the critical importance of EFH, their role for sustaining fish stocks and 107 

communities has received relatively little attention (Beck et al. 2001, Gillanders et al. 108 

2003, Armstrong and Falk-Petersen 2008, Sheaves et al. 2015). The influence of the 109 

amount and quality of EFH on fish population dynamics has generally been poorly 110 

described in the scientific literature, and only rarely, has the information been 111 

incorporated into scientific advice for fisheries management (Mangel et al. 2006, 112 

Armstrong and Falk-Petersen 2008, Thrush and Dayton 2010, Kallasvuo et al. 2017). As 113 

coastal EFH are often found in areas that are highly valued and utilized by humans (de 114 

Groot et al. 2012, Šiaulys et al. 2012), numerous pressures/threats and management 115 
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issues are implied (Korpinen et al. 2012) and thus the gaps in knowledge with regard to 116 

the importance of coastal EFH need to be addressed (Sundblad and Bergström 2014).  117 

 118 

        Coastal EFH represent “home grounds” for coastal fish species throughout their lives 119 

and for other fish species during different life history stages when they are using the 120 

coastal zone. Major coastal EFH consist of: (1) coastal wetlands and shallow bays 121 

(including salt marshes, estuaries, river mouths, coastal lagoons and flads), (2) shallow 122 

vegetated areas (including seagrass meadows and macroalgal beds, but also freshwater 123 

plants in brackish water areas), (3) biogenic reefs and hard structures (including mussel 124 

beds, rocky shores, mariculture installations and other artificial substrates) and (4) 125 

unvegetated soft and sandy areas and shallow open water (modified from Seitz et al. 126 

2014). Thus, basically, most types of shallow benthic and pelagic areas can function as 127 

coastal EFH, at least for some species at some life stage. In temperate waters, shallow 128 

and wave-sheltered EFH are generally characterised by higher water temperatures, 129 

extensive macrophyte vegetation and a particularly high production of zooplankton and 130 

zoobenthic prey, thus providing excellent conditions for survival and growth of fish 131 

larvae and juveniles (Blaber and Blaber 1980, Karås and Hudd 1993, Gibson 1994, Karås 132 

1996, Ljunggren 2002, Stål et al. 2007, Härmä et al. 2008, Kallasvuo et al. 2009, Snickars 133 

et al. 2009, 2010, Ljunggren et al. 2010, Seitz et al. 2014). Many habitats, such as 134 

seagrass and macrophyte meadows, perennial macroalgal belts and mussel beds, also 135 

aid in maintaining fish populations by providing three-dimensional benthic structures 136 

serving as more or less permanent habitats, temporary nursery areas, rich feeding areas 137 

and refuges/shelter from predation (Rajasilta et al. 1989, Jackson E.L. et al. 2001, Pihl 138 

and Wennhage 2002, Lappalainen et al. 2004, 2005, 2008, Härmä et al. 2008, Díaz et al. 139 

2015). Mariculture installations, artificial substrates and rocky bottoms, in turn, are 140 
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important for providing surfaces for habitat-forming macroalgae and sessile animals, 141 

which serve as food and refuge from predation (Pihl and Wennhage 2002, Seaman 2007, 142 

Fabi et al. 2011, Kraufvelin and Díaz 2015, Bergström et al. 2016c). Finally, seabeds 143 

without macroscopic vegetation as well as open shallow waters are often highly 144 

productive, both with regard to primary and secondary production (Gerbersdorf et al. 145 

2005, Engelsen et al. 2008). As such they support a diverse range of fish by providing 146 

spawning, juvenile growth, feeding and resting grounds (McCormick et al. 1998, 147 

Wennhage and Pihl 2002, Cattrijsse and Hampel 2006, Florin et al. 2009, Seitz et al. 148 

2014).  149 

 150 

        Despite the increased attention during recent years towards characterizing EFH in 151 

the Baltic Sea (HELCOM 2012, Sundblad et al. 2014, Kallasvuo et al. 2017), sufficient 152 

information is lacking for many fish species to quantitatively assess the role of coastal 153 

habitats for fish population growth and production. In this review, the main focus is on 154 

the role of coastal essential habitats for commercial, threatened and ecologically 155 

important (from a conservation perspective) fish species. The species and groups that 156 

benefit from a decrease in the environmental status of the Baltic Sea, such as cyprinids 157 

(Bergström et al. 2016ab) and three-spined stickleback (Gasterosteus aculeatus) 158 

(Bergström et al. 2015, Byström et al. 2015), are thus excluded. Within this process, the 159 

threats to and current conservation status of coastal EFH in the Baltic Sea are also 160 

thoroughly reviewed, while knowledge gaps are highlighted and perspectives for future 161 

work on this topic within an ecosystem-based management framework are outlined.  162 

 163 

 164 

 165 
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 166 

2. OCCURRENCE AND IMPORTANCE OF COASTAL EFH IN THE BALTIC SEA 167 

2.1. Occurrence of coastal EFH in the Baltic Sea 168 

        The Baltic Sea is the world’s largest semi-enclosed brackish water area, with a 169 

surface salinity gradient ranging from 2 in the northern and easternmost parts to 31 in 170 

Kattegat in the southwest. It is relatively shallow in relation to its size, with the coastal 171 

zone constituting a large and important part of the ecosystem. Figure 1, from HELCOM 172 

(2010), illustrates the richness of habitat types (named ecosystem components) in 173 

different parts of the Baltic Sea. The categorization of the ecosystem components in this 174 

figure closely resembles the EFH categorization used in this review, apart from a few 175 

classes based on species data and deeper aphotic bottoms away from the coast, and can 176 

thus, in our opinion, be used as a proxy for EFH in the Baltic Sea.  177 

 178 

        In the context of Figure 1, an ecosystem component refers to biological parts of the 179 

ecosystem such as species, biotopes formed by habitat-forming species or abiotic 180 

biotopes with a clear linkage to certain species (Korpinen et al. 2012). The 14 named 181 

ecosystem components in Korpinen et al. (2012) are divided into benthic biotopes 182 

(two), benthic biotope complexes (six), water column (two) and species data (four). In 183 

the map the habitats specifically constitute: 1) mussel beds and 2) eelgrass meadows 184 

(benthic biotopes); 3) photic sand, 4) non-photic sand, 5) photic mud and clay, 6) non-185 

photic mud and clay, 7) photic hard bottom and 8) non-photic hard bottom (benthic 186 

biotope complexes); 9) photic water and 10) non-photic water (water column); as well 187 

as 11) harbour porpoise, 12) seals, 13) seabird wintering grounds and 14) spawning 188 

and nursery areas of cod (species data). Note, however, that for the purposes of this 189 

review, a number of ecosystem components from the list above are not fully 190 
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synonymous to coastal EFH, as the term is interpreted and used in the present study. 191 

This clearly applies to the species data points 11–13 above, but also partly to non-photic 192 

bottoms (points 4, 6 and 8 above) and non-photic water column (point 10), i.e. for those 193 

parts that are occurring deeper down and farther away from the shoreline. 194 

 195 

 

196 

 197 

Figure 1. Map showing the number of ecosystem components present (benthic and 198 
water column biotope complexes, benthic biotopes and species-related data 199 
layers) as a proxy for EFH in 5 km × 5 km squares in the Baltic Sea. Altogether 14 200 
data layers were used when constructing the map, but no single square contained 201 
all ecosystem components. The map is taken from HELCOM (2010), with 202 
permission.  203 
 204 

        If the ecosystem components from Korpinen et al. (2012) and coastal EFH in the 205 

Baltic Sea are considered to be of the same kind, the richest diversity of 206 

components/EFH is found in squares in the southwestern Baltic Sea, for example in the 207 

Sound, in the Belts and in Kattegat. A reasonably high diversity of components/EFH are 208 

also found around the large islands and in the archipelagos of the central Baltic Proper. 209 
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Lower diversities (fewer EFH) are found in the Bothnian Bay and in the eastern parts of 210 

the Baltic Sea (Figure 1).  211 

2.2. Importance of coastal EFH in the Baltic Sea 212 

        The importance of coastal EFH can in general be assessed as the effects of changes in 213 

their quantity or quality on metrics of viability and production of fish populations, 214 

stocks or communities in time or space (e.g. Levin and Stunz 2005, Sundblad et al. 215 

2014). A recent review by Seitz et al. (2014) shows that in the Northeast Atlantic, 44% of 216 

all “ICES species”, i.e. species assessed and advised by the International Council for the 217 

Exploration of the Sea, utilizes coastal habitats as spawning, feeding, nursery or 218 

migration areas. These stocks contribute to 77% of the commercial landings of the “ICES 219 

species”. It follows then, that a limited habitat supply, possibly acting independently at 220 

different life-history stages utilising different habitats, can impact the size and dynamics 221 

of fish populations, although the relationships are not easily quantified (Seitz et al. 2014, 222 

Vasconcelos et al. 2014, Kallasvuo et al. 2017). 223 

 224 

        The available quantitative evidence for the importance of coastal habitats for fish 225 

production and viability has been achieved through a number of different approaches. 226 

These approaches include e.g. model based ones (e.g. Minns et al. 1996, Halpern et al. 227 

2005, Levin and Stunz 2005, Fodrie et al. 2009), long-term field experiments (Schmitt 228 

and Holbrook 2000), otolith chemistry (e.g. Fodrie and Levin 2008), habitat specific 229 

biomass and size distributions (e.g. Mumby et al. 2004) and nursery habitat size 230 

(Rijnsdorp et al. 1992). Species distribution modelling has, in this respect, emerged as a 231 

promising tool to map specific habitat requirements for different life stages of species 232 

with ontogenetic habitat shifts (Bergström et al. 2013, Sundblad et al. 2014). By using 233 

modelling techniques, species occurrence or abundance can be related to map-based 234 
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predictor variables and thereby, fine-scale mapping of the distribution of species and 235 

habitats across spatially heterogeneous ecosystems can be carried out (Elith and 236 

Leathwick 2009, Pittman and Brown 2011, Bučas et al. 2013, Kotta et al. 2016, Moore et 237 

al. 2016).  238 

 239 

 240 

2.2.1. Direct and indirect evidence of the effects of coastal EFH on fish population 241 

size 242 

        From the Baltic Sea, some case studies give direct (quantitative) evidence on the 243 

role of coastal EFH for fish populations and fish production, although most of the 244 

evidence can be characterised as indirect (Table 1). Also, there do not seem to be any 245 

studies available from the Baltic Sea utilizing habitat-specific demographic rates, 246 

although this has been a preferred method for demonstrating habitat dependence in 247 

many circumstances globally (Levin and Stunz 2005, Vasconcelos et al. 2014). As may be 248 

noticed from the case studies below, the area of establishing direct links between 249 

habitats and fish populations is quite understudied in the Baltic Sea and most evidence 250 

seems to be available between habitats and larval fish, not directly for adult populations. 251 

Despite the fairly low number of studies showing direct links between fish stock sizes 252 

and availability of habitats, a reasonable amount of data on occurrence, or preferentially 253 

abundance, of various life stages of different fish species in specific habitats still 254 

indirectly indicate the importance of coastal EFH and help in their further identification 255 

and verification.  256 

 257 

        As direct evidence, Sundblad et al. (2014) used species distribution modelling on 258 

data from Sweden and Finland and related the distribution of nursery habitats for perch, 259 
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Perca fluviatilis, and pikeperch, Sander lucioperca, to the size of the adult populations of 260 

these species in twelve archipelago areas in the northern Baltic Proper. By doing this, 261 

the authors reveal that availability of coastal EFH explains almost half of the variation in 262 

population size, indicating a crucial role in limiting adult stock sizes. The relationships 263 

are, however, non-linear, suggesting that the negative effects of e.g. habitat loss or 264 

positive effects of e.g. restoration measures will be most significant in areas with the 265 

most limited habitat availability.  266 

 267 

        For whitefish, Coregonus lavaretus, Vanhatalo et al. (2012) utilized data from both 268 

the Swedish and Finnish coasts of the Gulf of Bothnia to establish direct relationships 269 

between environmental variables characterizing coastal EFH and larval production. 270 

Vanhatalo and colleagues used Gaussian processes for species distribution modelling 271 

and show that the most important variables describing potential larval areas over large 272 

scales, are bottom type, prolonged ice period in spring, ecological status of coastal areas, 273 

distance to large shallow sand areas and water depth. Thus, the most important 274 

variables are descriptors of coastal EFH for whitefish larvae and a metric of the current 275 

level of human impact on these areas. 276 

  277 

        In a recent Finnish case study, as a final example of direct connections between 278 

coastal EFH and coastal fish populations in the Baltic Sea, Kallasvuo et al. (2017) 279 

assessed the most important reproduction habitats for fish by using larval survey data 280 

and Bayesian species distribution models. By utilising data for four commercially and 281 

ecologically important fish species along the Finnish coast, Baltic herring (Clupea 282 

harengus membras), perch, pikeperch and smelt (Osmerus eperlanus), Kallasvuo and 283 

colleagues demonstrate that the production of fish stocks can be concentrated to very 284 
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limited areas compared to the total suitable production area that is available. Thus, 285 

spawning areas that are highly effective relative to the general pool of spawning areas 286 

can be identified. The applied methodology enables linking of the total production 287 

potential across the whole distribution area to fisheries stock assessment and 288 

management, especially for more strictly coastal species such as perch and pikeperch.  289 

 290 

       Concerning cod, Gadus morhua, there are a few studies available from the Baltic Sea 291 

that show the direct relationship between the volume of EFH for reproduction and the 292 

adult stock. MacKenzie et al. (2000) estimated reproduction volumes in time and space 293 

and demonstrate that the volume of EFH for egg survival determines the interannual 294 

stability in hatching success of cod eggs, while Cardinale and Arrhenius (2000) by the 295 

use of generalized additive models show that the volume of EFH for reproduction also 296 

affects cod recruitment. These results for cod are, however, not primarily focusing on 297 

coastal EFH. Still, with regard to coastal EFH, a recent study by Hinrichsen et al. (2017) 298 

demonstrates the importance of habitat availability for juvenile cod (nursery) and its 299 

effect on density-dependent growth, as a process relevant for recruitment success. Thus, 300 

across multiple life history stages, EFH availability influences stock size.  301 

 302 

        The remaining case studies presented in this chapter and in Table 1 are more 303 

indirect with regard to the connections between coastal EFH and fish populations, 304 

although there are no sharp distinctions between the direct studies mentioned above 305 

and the indirect ones mentioned below. 306 

 307 

        Hansen and Snickars (2014) utilized data from Sweden and Finland and report that 308 

the quality (species composition) of the macrophyte community on shallow soft bottoms 309 
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in relation to anthropogenic stressors shows good compliance with fish reproduction 310 

data. Bays that are dominated by stress sensitive macrophyte species also prove to be 311 

important nursery areas for fish. In another case study from Sweden and Finland, 312 

Snickars et al. (2010) report that distribution of spawning habitat for perch depends 313 

strongly on the type of substrate. The substrates generally consist of different types of 314 

vegetation, where the ones providing rigidity and structural complexity are preferred by 315 

the perch. Also, water depth, wave exposure and temperature matter to a relatively high 316 

extent with shallow depths and sheltered areas being preferred habitat characteristics. 317 

No direct links to the size of perch stocks have, however, been established. 318 

 319 

        In another case study from southern Finland, Engström-Öst et al. (2007) compared 320 

habitat choice and survival of pike larvae (Esox lucius) experimentally and conclude that 321 

pike larvae prefer and also survive better in filamentous algae (Cladophora glomerata) 322 

than in bladderwrack (Fucus vesiculosus) in the presence of predators. This is probably 323 

because the bladderwrack habitat is too “open” for the newly hatched pikes. In a related 324 

experimental study, Engström-Öst and Mattila (2008) compared the performance of 325 

larval pike under the influence of turbidity induced by phytoplankton. In this study, they 326 

report that the larval weight of pike is lower in turbid water, despite that pike larvae 327 

spend less time in vegetation and attack more prey. Thus, both direct (i.e. feeding and 328 

habitat choice) and indirect qualities (i.e. weight) of pike larvae are affected by the 329 

habitat quality (macroalgal structure, turbidity) and therefore probably also larval 330 

survival and recruitment to the adult population (Engström-Öst et al. 2007, Engström-331 

Öst and Mattila 2008). 332 

 333 
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        In a case study comprising the entire Finnish coastline, Uusitalo et al. (2012) used a 334 

Bayesian network model (expert driven model structure, data-learned parameters) to 335 

study the effects of many different factors (N, P, chlorophyll a, duration of ice coverage 336 

in winter, shore density in the area and salinity) on the CPUE (of reported commercial 337 

catches). Shore density was defined as the length of the shoreline within a rectangle, 338 

measured from the basic water level line from a 1:20 000 map and divided by the area of 339 

water surface in the rectangle (in ha), and it reflected the availability of coastal areas in 340 

the rectangle. The tested fish species were among others: pikeperch, pike, perch, 341 

flounder (Platichthys flesus), Baltic herring, burbot (Lota lota) and smelt. In their study, 342 

Uusitalo et al. (2012) report that shore density is the most influential factor. The 343 

strongest effects occur for pike, although it is concluded that shore density, 344 

corresponding closely to the availability of coastal EFH, is an important factor for all 345 

species, despite the fact that many of them are essentially freshwater ones, whose 346 

distribution also can be limited by salinity.  347 

 348 

        With regard to the importance of coastal EFH for production and viability of 349 

flounder, there are a number of case studies available from the Baltic Sea. In a study 350 

from Latvia, Ustups et al. (2013) utilized data spanning over 30 years to demonstrate 351 

that the spawning habitat (available water volume suitable for reproduction with regard 352 

to oxygen conditions) positively affects the survival and abundance of flounder larvae. 353 

Still, recruitment does not correlate with the supply of larvae, suggesting the presence of 354 

a bottleneck in the availability of juvenile growth habitat, which in itself, is also coastal. 355 

Case studies from southern Finland used fishery-independent data on adult flounder as 356 

well as historical and present-state data on juveniles in shallow coastal areas. These 357 

studies show that a pronounced decrease in abundance of juveniles correlates with an 358 
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increased bottom coverage of filamentous algae. A simultaneous decrease in the 359 

abundance of the adult stock indicates that a decline in the availability of EFH for 360 

juveniles acts as a bottleneck for the flounder population (Jokinen et al. 2015, 2016), 361 

supporting the conclusions of Ustups et al. (2013). Similar results have also previously 362 

been demonstrated by Pihl et al. (1994) and Carl et al. (2008) in the Kattegat and by 363 

Florin et al. (2009) for the Baltic Sea, but in the latter study more clearly for turbot 364 

(Scophthalmus maximus) than for flounder. The results for flounder above are further 365 

supported by Orio et al. (2017) who modelled spawning areas of flounder at a Baltic-366 

wide scale and recognise a positive correlation between flounder spawning areas and 367 

adult stocks. The findings by Ustups et al. (2013) and Orio et al. (2017) are included as 368 

direct evidence in Table 1, although like the case with cod above, these results are not 369 

fully “coastal”. 370 

 371 

        For pikeperch in the German area of the Baltic Sea, the population size is strongly 372 

connected with the occurrence of suitable spawning sites in the inner coastal waters 373 

with lower salinities around 5-6  (Winkler 1996). These EFH are the base for nearly 40% 374 

of the total annual catch of pikeperch in German coastal waters with higher salinities 375 

(around 10) and corresponding numbers, or 44 %, can be shown for roach (Winkler et 376 

al. unpubl.).  377 

 378 

        For pike, Nilsson et al. (2014) show an increased recruitment of juveniles in three 379 

coastal wetlands of SE Sweden which have been restored in different ways. In areas with 380 

temporally flooded terrestrial vegetation, the migration of pike juveniles is shown to 381 

increase from a few thousand individuals in previous years to >100,000 individuals after 382 

the measures have been taken. To what extent these restored wetlands affect adult fish 383 
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stocks in coastal areas remains to be clarified, although there are indications of positive 384 

effects (Fredriksson et al. 2013).  385 

 386 

        Finally, some species utilize both coastal habitats, coastal wetlands and rivers for 387 

spawning and may display sympatric, genetically isolated populations. While their 388 

juvenile and adult stages may occur in the same habitats, spawning takes place in either 389 

fresh or brackish waters (Westin and Limburg 2002, Wastie 2014). The relative 390 

proportions of these sympatric populations may differ between areas and through time. 391 

In case studies from Estonia and Sweden, the relative importance of fresh or brackish 392 

water recruitment areas (spawning habitat preferences) for brackish water fish 393 

populations was examined through the use of otolith Sr:Ca profiles. These studies 394 

demonstrate the importance of coastal wetlands and rivers as spawning habitats for 395 

(semi-)anadromous fish as pike (Engstedt et al. 2010, Rohtla et al. 2012), burbot and ide 396 

(Leuciscus idus) (Rohtla et al. 2014, 2015). In the Väinameri Sea area in Estonia, 90% of 397 

adult pike hatches in fresh water and only 10% in brackish water (Rohtla et al. 2012; 398 

Rohtla 2015). In Sweden, 20% of pike hatches in brackish water in the Forsmark area at 399 

the 60° N latitude and 80% hatches in brackish water in the Kalmar Sound at the 56° N 400 

latitude (Engstedt et al. 2010). When compared with older (observational or anecdotal) 401 

data, the Estonian results suggest that brackish-water spawning pike is becoming rarer, 402 

which may be a result of deteriorated brackish water spawning grounds (Rohtla 2015). 403 

Along the Estonian coastal area, Rohtla et al. (2017) further demonstrate, also through 404 

the use of otolith chemistry techniques, that brackish water spawning whitefish has 405 

become rarer, which probably also reflects a poorer ecological status of its coastal 406 

spawning areas. Similarly, Byström et al. (2015) notice an important role of freshwater 407 
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habitats for perch recruitment in a Swedish coastal area with high abundance of the 408 

three-spined stickleback, which may prey on early life stage perch.  409 

 410 

 411 

 412 

 413 

 414 

 415 

2.2.2. Means to increase the knowledge of the importance of coastal EFH  416 

 417 

        Although many different coastal habitats are essential for fish production and for 418 

the provisioning of rich fish communities in the Baltic Sea, the establishment of 419 

direct/quantitative relationships demonstrating their actual role for fish production is 420 

still in its infancy. The relatively low number of studies explicitly dealing with the 421 

importance of EFH for fish stocks is somewhat surprising. For many species, too little 422 

seems to be known about the ecology of the species in order to assess whether habitats 423 

are actually essential and limiting the production and viability of the populations (Levin 424 

and Stunz 2005, Seitz et al. 2014). Better evidence is, however, often found for non-425 

migrating coastal species compared to migrating species (Iles and Beverton 2000), with 426 

cod (Hinrichsen et al. 2017) and the demersal ecotype of flounder (Orio et al. 2017) as 427 

possible exceptions. This could potentially be due to the conservative nature in habitat 428 

choice of non-migratory fish, or simply that it is easier to detect fish-habitat 429 

relationships in studies where many geographically restricted populations are included.  430 

 431 
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        In other cases, indirect evidence exists or data for quantitative examination of the 432 

importance of coastal EFH for fish stocks may already be available and additional 433 

analyses could contribute to pinpoint their ecological importance (Pulkkinen et al. 2011, 434 

Kraufvelin et al. 2016). In a recent paper, Macura et al. (2016) present a methodological 435 

protocol for conducting a systematic review mainly on the impact of anthropogenic-436 

induced physical and structural habitat changes on fish recruitment in shallow 437 

nearshore areas. Such a protocol can be used to assess the importance of undamaged 438 

coastal EFH for fish production. Further evidence on the role of coastal EFH can also be 439 

achieved using spatial approaches (e.g. assessing relationships between habitats of 440 

juveniles and adult fish to detect bottlenecks in early life stage), temporal data analyses 441 

(e.g. assessing variability between years in success of different life stages), stage-442 

structured modelling (assessing habitat specific survival in stage-structured models) or 443 

otolith chemistry techniques (comparing contribution of different habitats through 444 

“fingerprinting” of different juvenile habitats). Currently, the most promising approach 445 

may be to estimate habitat-specific demographic rates in stage-structured modelling 446 

(Levin and Stunz 2005, Vasconcelos et al. 2014). It is then important, however, to 447 

combine this approach with habitat maps to quantify the importance of different 448 

habitats. When used properly, this approach may identify low productivity (per unit 449 

area) habitats as important, if they are abundant enough, compared to very productive 450 

habitats that are scarcer. 451 

 452 

        It should also be stressed that the establishment of a link between coastal EFH and 453 

fish stocks may not always be the prime interest as this is sustained already by the 454 

definition of EFH and the fact that a fish population is viable. Instead, the importance of 455 

EFH utilised by a population throughout different life history stages should maybe be 456 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
20 

 

the centre of attention. This, in turn, leads to the question of “overlapping” EFH in a 457 

region or an area, and as a consequence, the difficulties to separate the relative effects or 458 

importance of different EFH (spawning, nursery, feeding, etc.) for a fish population and 459 

how “sub-EFH” are inter-linked and connected in the context of spatial/landscape 460 

ecology (Rose 2000, Levin and Stunz 2005, Vasconcelos et al. 2014). 461 

 462 

 463 

 464 

 465 

3. THREATS TO AND PRESSURES ON COASTAL EFH IN THE BALTIC SEA  466 

3.1. Generally about the conditions of coastal EFH in the Baltic Sea 467 

        Coastal EFH in the Baltic Sea are exceptionally vulnerable as several natural features 468 

make the sea area inherently susceptible to the influence of human pressures. The Baltic 469 

Sea has a long water residence time (~30 years) and a large catchment area, which is 470 

relatively highly populated. The environmental status of many coastal areas of the Baltic 471 

Sea has declined considerably over the last 50 years (Bonsdorff et al. 1997, Lotze et al. 472 

2006, Węsławski et al. 2013, Olsson et al. 2015, Andersen et al. 2015, Bergström et al. 473 

2016a). This has for example led to evident changes in species composition of coastal 474 

fish, benthic invertebrate and macrophyte communities (e.g. Boström et al. 2002, Olsson 475 

et al. 2012, 2013, Snickars et al. 2015, Bergström et al. 2016a). The multifaceted 476 

environmental problems of the Baltic Sea, including extensive algal blooms, increasing 477 

areas of anoxic sea bottoms, contaminated organisms, and overexploitation of fish 478 

stocks, emerge as real challenges for environmental management calling for integrated 479 

strategies focusing on both fish and their preferred environments (e.g. Borja et al. 2016, 480 

Uusitalo et al. 2016). Within this process, a central focus on nearshore coastal areas 481 
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subjected to environmental pressure could be pivotal for the future potential of the 482 

Baltic Sea to provide ecosystem goods and services (Holmlund and Hammer 1999, 483 

Rönnbäck et al. 2007, Ahtiainen and Öhman 2014, Uusitalo et al. 2016).  484 

 485 

        As a spatial representation for weighing large numbers of cumulative anthropogenic 486 

impacts against ecosystem components and describing the current condition of various 487 

part of the sea area, the Baltic Sea Impact Index has been developed (see Halpern et al. 488 

2008, HELCOM 2010, 2017 and table 2 in Korpinen et al. 2012 for details). This index 489 

shows that the lowest cumulative impact is generally found in the Gulf of Bothnia in the 490 

sparsely populated northernmost part of the Baltic Sea, and the highest impacts mainly 491 

occur in the coastal areas of the Finnish south and southwest, along the Estonian 492 

northern and western coast, along the east and west coast of southern Sweden, in the 493 

Polish Bay of Gdansk and in the Danish and German parts of the Baltic Sea (Figure 2). 494 

This impact map may be regarded as closely reflecting the general pressures on coastal 495 

EFH, as well. 496 

 497 

        Eutrophication, coastal construction and development, climate change, invasive 498 

species and fisheries have been acknowledged as major human-induced threats to 499 

coastal EFH in general (Jackson J.B.C. et al. 2001, Kappel 2005, Powers et al. 2005, Orth 500 

et al. 2006, HELCOM 2010, Hansen and Snickars 2014, Seitz et al. 2014, Sundblad and 501 

Bergström 2014, Kraufvelin et al. 2016). A specific feature and a natural threat to coastal 502 

EFH in the Baltic Sea is the post-glacial land-uplift process, which naturally, but 503 

constantly, shapes and alters the coastline and its shallow habitats for instance when 504 

semi-isolated flads and bays turn into freshwater ecosystems (Snickars et al. 2009, 505 

Meriste and Kirsimäe 2014). Among the human-induced threats, physical pressures 506 
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such as trawl fishery, shipping and boat traffic with the required infrastructure in the 507 

form of dredging, and shoreline modifications generally cause direct impacts on the 508 

habitats and are hence – in theory – easier to manage (Eriksson et al. 2004, Sandström et 509 

al. 2005, Sundblad and Bergström 2014, Pommer et al. 2016). Other (non-physical) 510 

threats/pressures usually act more indirectly and are hence often more challenging to 511 

manage (Elliott 2010, Duarte 2014). Most human-induced threats are severe on their 512 

own, but often have their largest impact when acting additively and synergistically 513 

(Elliott 2004, McLusky and Elliott 2004, Crain et al. 2008). Fish communities are affected 514 

both directly when exposed to these threats and indirectly through fragmentation, 515 

deterioration and loss of habitat. Here, the distinction between different fish species 516 

must again be stressed as for instance  517 
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 518 
 519 
Figure 2. Presentation of cumulative potential anthropogenic impacts by the 520 
Baltic Sea Impact Index in 5 km × 5 km assessment units. The index in each 521 
assessment unit consists of the sum of anthropogenic impacts on selected 522 
ecosystem components present in the unit. The original index formula is from 523 
Halpern et al. (2008) and Korpinen et al. (2012). The map is taken from HELCOM 524 
(2017), with permission.  525 
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mesopredatory fish, such as cyprinids and sticklebacks, may benefit from some of these 526 

threats/pressures or the negative effects of the threats/pressures imposed on other fish 527 

species (see e.g. Persson et al. 1991, Sandström and Karås 2002, Bergström et al. 2015, 528 

Byström et al. 2015). This may also be the case, to some extent, for pikeperch, which 529 

seems to be benefitting from coastal eutrophication and warmer summers (Heikinheimo 530 

et al. 2014) and also for the non-indigenous round goby Neogobius melanostomus 531 

(Ojaveer et al. 2015).     532 

 533 

        From a strict habitat perspective, there are some inherent differences with regard to 534 

which threats/pressures are the most dramatic ones for coastal EFH in the Baltic Sea. 535 

Seagrass and macrophyte beds are threatened by anthropogenic factors such as poor 536 

water quality caused by pollution, eutrophication, dredging, excessive sedimentation, 537 

altered openness of sheltered bays to the sea, climate change (leading to increased land 538 

runoff) and coastal development (Hemminga and Duarte 2000, Idestam-Almquist 2000, 539 

Airoldi and Beck 2007, Snickars et al. 2009, 2015, Rosqvist et al. 2010). Perennial 540 

macroalgal belts are threatened by eutrophication processes increasing the abundance 541 

of ephemeral algae, that suppress or inhibit the recolonization of canopy-forming algae 542 

and other organisms (Thompson et al. 2002, Råberg et al. 2005, Korpinen et al. 2007, 543 

Kraufvelin et al. 2007, 2010), but also by human construction and urbanization affecting 544 

water movement, water quality and causing habitat-related changes (Vogt and Schramm 545 

1991, Eriksson et al. 1998, Kraufvelin 2007, Kraufvelin et al. 2010). Mussel beds are 546 

threatened by eutrophication, pollution, sedimentation, invasive species (e.g. the round 547 

goby), destructive fishing practices, and processes connected with climate change, such 548 

as higher water temperatures, acidification, increased storminess, increased land run-off 549 

and decreased salinity (Thompson et al. 2002, Airoldi and Beck 2007, Rakauskas et al. 550 
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2013, Díaz et al. 2015). Some of these pressures may, however, sometimes also prove to 551 

be beneficial, for instance for blue mussels (Mytilus trossulus) when new settlement 552 

areas are provided or when there are moderate increases in water movement (Díaz et al. 553 

2015) and in temperature levels seasonally (Widdows 1991). The information on 554 

current threats to sedimentary environments, finally, is quite scarce (Brown and 555 

McLachlan 2002), but the major pressures on these habitats consist of the construction 556 

and use of marinas and ship ways including dredging, extraction of sand or gravel, trawl 557 

fishery, eutrophication, tourist developments, pollution from sewage discharge and 558 

industries as well as aquaculture activities (Newell et al. 1998, Airoldi and Beck 2007).  559 

 560 

        Thus, not all coastal EFH are affected by exactly the same threats, nor do they 561 

respond in the same way to similar pressures. All the human activities mentioned above 562 

are involved in causing different types of pressures and impacts on the habitats e.g. 563 

anoxic conditions in estuaries and enclosed basins (Karlson et al. 2002), accumulation of 564 

drifting algae (Vahteri et al. 2000), long-term accumulation of contaminants (Islam and 565 

Tanaka 2004) and introduction of non-indigenous species (Leppäkoski et al. 2002, 566 

Katsanevakis et al. 2014, Ojaveer and Kotta 2015). For more detailed information on 567 

species and habitats in the north-eastern Atlantic, see http://www.marlin.ac.uk/. 568 

Exclusively for the Baltic Sea, this kind of information is being gathered within HELCOM 569 

(http://www.helcom.fi/) and at a national level at least in Finland 570 

(http://paikkatieto.ymparisto.fi/velmu/).  571 

 572 

 573 

 574 

 575 
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3.2. Case studies about threats to and pressures on coastal EFH 576 

        Eutrophication favours the production of fast-growing, short-lived benthic and 577 

planktonic algae, that alters the structure and function of marine habitats and may cause 578 

hypoxia when accumulated and broken down (Lundberg 2005, Conley et al. 2009, 579 

Kraufvelin et al. 2010, Paerl and Otten 2013). This human pressure is acknowledged as a 580 

major problem to coastal EFH all over the Baltic Sea (HELCOM 2010, 2017, Kraufvelin et 581 

al. 2016). The large-scale decrease in distribution of the macroalga bladderwrack in 582 

eastern Sweden and southwestern Finland at the deeper end of its depth limit is of 583 

specific relevance for this study. This bladderwrack habitat loss is mainly caused by 584 

eutrophication-related processes in form of decreased light penetration and hampered 585 

recruitment and growth due to competition with filamentous algae and sedimentation 586 

(Kautsky et al. 1986, Korpinen et al. 2007, Kraufvelin et al. 2007, Rinne et al. 2011). As a 587 

consequence of this, large areas of shallow waters, potentially valuable for coastal fish, 588 

have been lost (Kautsky et al. 1986, Bergström et al. 2013, Vahteri and Vuorinen 2016). 589 

Similar patterns were also found in the shallow Puck Bay in Poland (Plinski and Florczyk 590 

1984, Ciszewski et al. 1992, Węsławski et al. 2009), although this area is now slowly 591 

recovering (Węsławski et al. 2013). Another typical phenomenon due to eutrophication 592 

is the reed belt overgrowth of lagoons, sheltered bays and river mouths (Pitkänen et al. 593 

2013, Altartouri et al. 2014, Meriste and Kirsimäe 2014). This process is potentially 594 

making shallow areas less useful as habitats for fish (Kneib and Wagner 1994, Weinstein 595 

and Balletto 1999), although see also Härmä et al. (2008), Lappalainen et al. (2008), 596 

Snickars et al. (2010) and Nilsson et al. (2014) for some positive influences of reed 597 

vegetation on fish communities, especially pike, but also for perch. Probably, too wide-598 

spread and compact reed belts are negative for fish, while more restricted belts, and 599 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
27 

 

belts from the previous season that have been flattened from ice and waves as well as 600 

the outer edges of reed areas are generally positive for fish (Lappalainen et al. 2008).  601 

 602 

        Eutrophication is also often acting in concert with other pressures such as coastal 603 

construction, seabed disturbance, climate change, overfishing and species introductions 604 

(Lundberg 2005) and understanding relationships between ecosystems and multiple 605 

human-induced pressures acting simultaneously is indeed a major challenge within 606 

marine environmental management (Borja 2014, Borja et al. 2016). Eutrophication 607 

combined with mesopredator release due to overfishing of large piscivorous fish species 608 

constitutes an example of a cumulative pressure, which can have strong effects on 609 

coastal EFH and present extensive challenges for management (Eriksson et al. 2009, 610 

2011, Östman et al. 2016, Uusitalo et al. 2016). Eutrophication combined with the 611 

presence of invasive species can also impose interactive pressure on coastal EFH, as in 612 

the case with the recent invader in the northern Baltic Proper, Harris mud crab, 613 

Rhithropanopeus harrisii, occurring in both bladderwrack (Jormalainen et al. 2016) and 614 

eelgrass beds (Gagnon and Boström 2016) in the Finnish Archipelago Sea and in boulder 615 

fields with bladder-wrack (Nurkse et al. 2015) as well as in un-vegetated soft bottom 616 

areas in Estonia (Lokko et al. 2017). This invader acts as a mesopredator and can 617 

strongly reduce the number of grazers and impair their capability to buffer excessive 618 

growth of filamentous algae leading to decreased biodiversity and lowered habitat 619 

quality. Eutrophication effects combined with coastal construction dampening wave 620 

action can be exemplified by Kraufvelin et al. (2010) who conducted long-term 621 

experiments in outdoor rocky shore mesocosms. Kraufvelin and colleagues show that a 622 

combination of high nutrient enrichment with 50% lowered wave action over two years 623 

lead to a 2.5-fold reduction of habitat-forming perennial brown algae (mainly of the 624 
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order Fucales) and an 80-fold increase in annual green algae (mainly of the order 625 

Ulvales).  626 

 627 

        The physical pressure from human activities is both high and increasing in the 628 

coastal zone, especially in the shallowest areas and habitats (Sundblad and Bergström 629 

2014). Activities such as recreational boating, building of marinas and other forms of 630 

construction constitute major problems for coastal EFH all over the Baltic Sea, but 631 

perhaps currently to a higher extent in Sweden, Finland, Poland, Germany and Denmark 632 

than in Estonia, Latvia and Lithuania (HELCOM 2010, Dafforn et al. 2015, Kraufvelin et 633 

al. 2016). In the Stockholm archipelago of Sweden, Sundblad and Bergström (2014) used 634 

predictive habitat modelling and mapping of human pressures to estimate the 635 

cumulative long-term effects of coastal development in relation to fish habitats. The 636 

results suggest an annual increase in the proportion of degraded areas of 0.5% on 637 

average and of 1% for areas close to larger human population centres. Furthermore, the 638 

same study shows that approximately 40% of available habitat for pike, perch and roach 639 

was already subject to some form of construction by 2005 (Sundblad and Bergström 640 

2014).  641 

 642 

        In Estonia, Latvia, Lithuania and Poland, invasive species are, apart from 643 

eutrophication, brought forward as important human-induced threats to coastal EFH 644 

(HELCOM 2010, Kraufvelin et al. 2016). Among invasive species, the round goby has 645 

been of increasing importance during the last years (Ojaveer et al. 2015, Kotta et al. 646 

2016) with potential to impact the distribution of EFH in the form of blue mussel beds 647 

(Järv et al. 2011, Kornis et al. 2012, Rakauskas et al. 2013). Round gobies generally 648 

prefer hard bottom habitats, where mussels make up its most important food source 649 
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(Barton et al. 2006, Karlson et al. 2007, Järv et al. 2011, Kornis et al. 2012, Rakauskas et 650 

al. 2013), although Nurkse et al. (2016) characterize the species as a generalist 651 

consumer. Due to competition with round gobies, it has also been shown that juvenile 652 

turbot change their diet and turbot recruitment simultaneously decreases significantly 653 

(Ustups et al. 2016). Round gobies may also, through competition for food and habitat, 654 

negatively affect flounder (Karlson et al. 2007, Järv et al. 2011, Orio et al. 2017), ruffe 655 

Gymnocephalus cernua (Rakauskas et al. 2013), and viviparous eelpout Zoarces viviparus 656 

(https://www.nobanis.org/marine-identification-key/fish/fish-start/fish-657 

key/neogobius-melanostomus/). The effects of invasive species increase as the 658 

populations establish and spread to adjacent areas as can be seen with the round goby 659 

in the southwestern Baltic Sea (Azour et al. 2015). The round goby may, however, not 660 

only influence the biological communities of the Baltic Sea negatively. Recent studies 661 

from the northeastern German coast (Oesterwind et al. 2017) and from Estonia 662 

(Liversage et al. 2017) show that the round goby is included in the local food web, 663 

including fish eating birds.  664 

 665 

         In Germany, Denmark and on the southern and southwestern coast of Sweden, 666 

major human-induced threats to coastal EFH are, in addition to eutrophication and 667 

climate change, coastal construction, demersal trawling, tourism, dredging and material 668 

extraction (HELCOM 2010, Kraufvelin et al. 2016). Material extraction, e.g. extensive 669 

removal of stones and boulders in coastal areas of Denmark has not only led to 670 

destruction of reefs and removal of hard bottom habitat, but also to the loss of biogenic 671 

structures associated with and characteristic of these reefs (Carr 1994, Dahl et al. 2008). 672 

Støttrup et al. (2014) studied a re-established stony reef in Kattegat and documented an 673 

increase in fish abundance and can thereby demonstrate that these damages may be to 674 
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some extent reversible. Also, bottom trawling in the Kattegat has led to a decrease in 675 

hard bottoms in general through removal of stones and boulders (homogenisation of 676 

mixed bottoms) and to a decrease in the amount of sensitive species, some of which are 677 

habitat-forming (Hopkins 2003, Pommer et al. 2016). 678 

  679 

        Interestingly, despite many scientists mentioning climate change as a major threat 680 

to coastal EFH in their regions (Kraufvelin et al. 2016), there are still few studies from 681 

the Baltic Sea that explicitly focus on climate change related effects on EFH. This is 682 

surprising as many different pressures in the Baltic Sea fall under the climate change 683 

umbrella such as increased temperatures, decreased salinity, decreased oxygen 684 

concentrations, acidification, increased storminess, increased sea levels, etc. (BACC 685 

Author Team 2008, HELCOM 2013). There are, however, some references available that 686 

are related to effects on coastal EFH, e.g. for macrophytes from the Baltic Proper 687 

(Idestam-Almquist 2000, Härmä et al. 2008), for perennial bladderwrack from the Baltic 688 

Proper and from the southwestern Baltic Sea (Kraufvelin et al. 2012, Graiff et al. 2015, 689 

2017), for blue mussels from the southwestern Baltic Sea (Thomsen et al. 2010, 690 

Havenhand 2012), and for fish and zoobenthos from the entire Baltic Sea (MacKenzie et 691 

al. 2007) and from the Baltic Proper (Snickars et al. 2015), although most of the 692 

reported and projected habitat effects in these studies are rather minor ones. 693 

 694 

        To better quantify and evaluate the magnitude of all threats to and pressures on 695 

coastal EFH highlighted in the case studies above and to provide more accurate and 696 

reliable information and recommendations for the management and conservation of 697 

EFH in a Baltic Sea wide perspective, maps of pressure variables, together with a 698 

mechanistic understanding of habitat effects of different threats/pressures, need to be 699 
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integrated with habitat maps. For these kinds of purposes, web-based knowledge 700 

platforms such as the one developed by MarLin for the UK (http://www.marlin.ac.uk/) 701 

can be utilized and applied. An attempt in this direction has also been done by HELCOM 702 

(2010) and Korpinen et al. (2012), as may be seen in Figure 2 of this review. More recent 703 

web resources can be found in HELCOM HOLAS II (http://helcom.fi/helcom-at-704 

work/projects/holas-ii/, see also HELCOM 2017) and the associated HELCOM TAPAS 705 

(http://helcom.fi/helcom-at-work/projects/tapas). A promising approach to assess 706 

habitat quality based on the ecological status of benthic indicators and the EU Habitats 707 

Directive (Anon. 1992) has also recently been presented for Estonian waters by Torn et 708 

al. (2017) and similar approaches could be further developed for other regions of the 709 

Baltic Sea. Another way forward could be to combine probabilistic Bayesian network 710 

models describing the complex relationships between human activities and sensitive 711 

ecosystem components (e.g. sensitive habitats), with GIS databases (Stelzenmüller et al. 712 

2010, Helle et al. 2016).    713 

 714 
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 725 

 726 

4. INTEGRATED MANAGEMENT AND CONSERVATION OF COASTAL EFH IN 727 

THE BALTIC SEA         728 

 729 

        The increasing anthropogenic impacts on marine waters have fuelled the discussion 730 

on how to manage and to conserve marine resources sustainably. During the last decade, 731 

there has been a raised focus on ecosystem-based management of marine ecosystems to 732 

secure the maintenance of healthy, productive, and resilient ecosystems capable of 733 

providing the services needed for the well-being of society (Collie et al. 2013, Yáñez-734 

Arancibia et al. 2013, Borja 2014, Andersen and Kallenbach 2016, Borja et al. 2016). 735 

Within the Baltic Sea region, the current leading directives and agreements for this are 736 

the EU Marine Strategy Framework Directive (MSFD; Anon. 2008), the HELCOM Baltic 737 

Sea Action Plan (BSAP; HELCOM 2007) and the Common Fisheries Policy (CFP; Anon. 738 

2013), but also the EU Habitats Directive (HD; Anon. 1992), the EU Water Framework 739 

Directive (WFD; Anon. 2000) and the EU Maritime Spatial Planning Directive (MSPD; 740 

Anon. 2014) are important.  741 

 742 

        Although both healthy fish populations and benthic habitats are central elements for 743 

maintaining a good status of the coastal environment, management of fisheries and 744 

nature conservation have historically been separated in the Baltic Sea region like in 745 

many other parts of the world (Sissenwine and Symes 2007, Kenny et al. 2009, 746 

Kraufvelin et al. 2016). The awareness of potential synergies between the two has also 747 

been low. Traditional management of marine resources has typically ignored 748 

interactions between fisheries and the status of coastal habitats, cross-system fluxes, 749 
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predator-prey interactions and other ecosystem components. An ecosystem-based 750 

management perspective where conservation and fisheries issues are integrated could 751 

instead provide mutual benefits and has therefore been brought forward as a more 752 

convenient platform for coastal systems (Pikitch et al. 2004, Leathwick et al. 2008, 753 

Thrush and Dayton 2010, Möllmann et al. 2014). Such a perspective would better cover 754 

the traits and needs of whole ecosystems and not only the ones of certain species, while 755 

simultaneously ensuring that multidisciplinary scientific approaches are adopted and 756 

that the right actors and stakeholders are involved (Hopkins et al. 2011, Long et al. 757 

2015). The multitude of drivers to account for, however, also calls for other 758 

management strategies. With regard to the management of threats/pressures, 759 

cumulative impact assessments could be a functional approach for setting limits on 760 

allowable levels of human impact on ecosystems (Halpern et al. 2008, Korpinen et al. 761 

2012, Rahikainen et al. 2014, Andersen et al. 2015, HELCOM 2017).  762 

 763 

        The conservation of coastal EFH is generally poor in the Baltic Sea, although coastal 764 

benthic habitats, and thus EFH, in many countries around the Baltic Sea, have been a 765 

focus of national conservation efforts (Sundblad et al. 2011). Within the fisheries 766 

management sector, attention has, however, mainly been devoted to commercial and 767 

threatened species. Maintenance and restoration of fish stocks have indeed been 768 

objectives in nature conservation, but still with restricted focus on the habitats 769 

themselves and with most focus directed towards salmonids or the threatened species 770 

covered by the Habitats Directive (Anon. 1992) and the European and national IUCN 771 

red-lists 772 

(http://ec.europa.eu/environment/nature/conservation/species/redlist/index_en.htm, 773 
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Kraufvelin et al. 2016). Sundblad et al. (2011) investigated the representativity and 774 

connectivity of Marine Protected Area (MPA) networks in the northern Baltic Proper 775 

(Sweden and Finland) with respect to a coastal fish assemblage and associated habitats 776 

based on fish distribution maps and the linking of specific life stage occurrences to 777 

environmental variables. These analyses reveal that both the representativity and the 778 

connectivity of the network are poor as only 3.5% of the assemblage recruitment habitat 779 

is protected and 48% of potentially connected habitats are included in the MPA network.  780 

Furthermore, from a coastal EFH perspective, it appears that the most relevant areas are 781 

not always the ones being preserved. The lack of an ecosystem-based management 782 

perspective and the traditional split of fisheries and environmental management have 783 

again been major reasons underlying the poor conservation status of EFH in the Baltic 784 

Sea. Further challenges to the management of fish and habitats in the coastal zone are 785 

that they are under national jurisdictions of ten different countries in the Baltic Sea area, 786 

which cause large practical differences in management regimes. Hence, the authors see a 787 

need for the EFH perspective to be more strongly considered at both national and 788 

international levels of coastal management and conservation. Currently, changes appear 789 

to be taking place in many countries around the Baltic Sea (Kraufvelin et al. 2016) so 790 

now would be an opportune time for science advisors to bring EFH to the forefront of 791 

policy makers’ attention.  792 

 793 

        In order to aid in merging the management of fisheries and environmental issues, 794 

there is a general need for a common awareness of the importance of coastal EFH and 795 

also about the threats to these habitats among managers, politicians and the public (e.g. 796 

Lotze 2004). There has been an apparent lack of information on the importance of the 797 

habitats for fish production and viability, but also previously a lack of maps depicting 798 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
35 

 

the spatial distribution of specific types of coastal EFH to be used in marine spatial 799 

planning, permitting processes and for other management purposes. To that end, there 800 

is also a great need for more species- and life-stage-specific knowledge, both in terms of 801 

population-level effects and the geographical distribution of coastal EFH. As quantitative 802 

evidence for habitat limitation of fish production is slowly accumulating from different 803 

areas and species through the use of various methods (Vasconcelos et al. 2014, Seitz et 804 

al. 2014), the possibilities for integrating fish habitats in fisheries management and 805 

nature conservation will improve accordingly. 806 

 807 

        In order to reach a higher level of protection of coastal EFH, the role of habitats in 808 

supporting fisheries must also be disentangled in a broader context so that the value of 809 

the ecosystem services that these habitats provide can be emphasized more strongly 810 

(Holmlund and Hammer 1999, Rönnbäck et al. 2007, Uusitalo et al. 2016). These 811 

services may include producing fish for commercial and recreational fisheries, 812 

aquaculture and biological regulation (e.g. regulation of eutrophication symptoms 813 

through top-down control of filamentous algae), but also maintenance of biodiversity 814 

and ecosystem resilience. Many habitats considered EFH are also of importance for 815 

coastal protection against erosion, as nutrient filters, carbon sinks and for human 816 

recreation and scientific, educational and cultural purposes (Ahtiainen and Öhman 817 

2014, Bouma et al. 2014, Ivarsson et al. 2017). Natural scientists together with 818 

environmental economists and social scientists should therefore consider all the ways in 819 

which coastal fish habitats provide value to society and use these as examples in 820 

communicating the needs for protection of coastal EFH and their sustainability (Støttrup 821 

et al. 2016). In this context, the general protection of coastal EFH from diverse pressures 822 

and what level of sustainable use that can be permitted should also be clearly stated 823 
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(Turner et al. 1999, Fluharty 2000). This information can be included in utility functions 824 

of decision support tools and in that way be accounted for when the performance of 825 

alternative management strategies/actions are evaluated quantitatively (see Laurila-826 

Pant et al. 2015).  827 

 828 

        In the process of developing an efficient management scheme for the protection of 829 

coastal EFH, merging the objectives of fisheries and environmental management, 830 

possible difficulties of a common management of habitats and fish must be taken into 831 

careful consideration (Rose 2000, Rice 2005). Most exploited fish are long-lived, utilise 832 

many different habitats during their life cycle, and often exhibit large fluctuations in 833 

abundance. Efficient management therefore requires understanding how environmental 834 

variability, due to both natural and anthropogenic sources, affects fish population 835 

dynamics. Rose (2000) described a number of issues that are related to quantifying 836 

effects of environmental quality on fish populations and which at the same time may 837 

serve as demonstrations of how modelling could be used to address them. These issues 838 

include difficulties with the detectability of relationships, uncertainties due to 839 

heterogeneity in the habitat and disproportional population responses, unnecessary 840 

sacrifice of biological realism, neglected significance of community interactions, and 841 

ignored sublethal and cumulative effects. The quantification of effects of environmental 842 

quality on fish populations can be improved if these issues are carefully considered in 843 

the analyses, and by adopting multidisciplinary approaches that combine stage-844 

structured modelling and life history theory (Rose 2000, Levin and Stunz 2005, 845 

Vasconcelos et al. 2014).  846 

 847 
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        Finally, the need to combine alternative management strategies or actions and the 848 

objectives of the society, i.e. decision-making criteria against which success or failure of 849 

management are to be evaluated, should also be explored. Laurila-Pant et al. (2015) 850 

discuss these issues in connection with criteria setting towards a more holistic 851 

framework, although mainly with focus on biodiversity-related objectives. From a risk 852 

management perspective, approaches based on the precautionary principle may also 853 

sometimes be needed (Long et al. 2015, Chapman 2017). This, because uncertainty and 854 

lack of sufficient evidence are not acceptable reasons for not protecting supposedly 855 

essential habitats, if losing them may cause the collapse of fish stocks, with effects 856 

potentially propagating throughout food webs. Another issue which may complicate 857 

joint management is the inconsistency in the definition and understanding of the term 858 

habitat and habitat-related concepts in general (Elliott S.A.M. et al. 2016). It will not be 859 

dwelled further into habitat definitions in this review, but according to Elliott S.A.M. et 860 

al. (2016), unclear use of habitat-related terminology could have implications for the 861 

effectiveness of ecosystem-based fisheries management when e.g. different actors 862 

within marine science use the same terms with different connotations. However, when 863 

coastal management is implemented at local scales, the inclusion of all stakeholders 864 

from an early stage can go some way to mitigate such incommensurable language 865 

barriers and potential miscommunication (Hopkins et al. 2011). 866 

 867 

 868 
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 873 

 874 

 875 

 876 

 877 

 878 

 879 

5.  SYNTHESIS  880 

        881 

        Coastal EFH form elementary cornerstones of the Baltic Sea ecosystem due to the 882 

central importance of fish for ecosystem functioning and the dependence of fishes upon 883 

specific coastal habitat types. As such, there are strong needs to focus on the protection 884 

of coastal EFH in addition to increasing our understanding of their species-specific 885 

importance, and on disentangling causal factors, pressures and mechanisms behind the 886 

changes that are observed in their status. Efficient management measures can be 887 

developed based on improved knowledge of causal factors and mechanisms for 888 

ecosystem change, e.g. how various stressors interact to structure communities (e.g. 889 

Rose 2000). The same applies to monitoring, assessing and mapping the availability and 890 

the state of coastal EFH as well as the documentation of human activities and pressure 891 

variables related to them (HELCOM 2010, Kraufvelin et al. 2016). Initial steps to bring 892 

this work forward could be to construct roadmaps, focus on directed studies and 893 

develop and harmonize the methodology (Kraufvelin et al. 2016). During this process, 894 

there will be evident needs for intensified cooperation between the Baltic Sea countries 895 

in order to reach successful implementations of international agreements and legislative 896 

marine acts such as the Baltic Sea Action Plan (BSAP), the Habitat Directive (HD), the 897 
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Marine Strategy Framework Directive (MSFD) and the Marine Spatial Planning Directive 898 

(MSPD). At the same time, local/regional conditions and the actual characteristics of the 899 

targeted ecosystems need to be taken into consideration more efficiently, because, as it 900 

has been shown in a number of cases in this review, the most efficient management may 901 

sometimes benefit from being planned and implemented case-specifically.  902 

 903 

        A major underlying objective for developing a more efficient management 904 

framework should be to improve the possibilities for connecting fisheries and 905 

environmental management across sectors (Pikitch et al. 2004, Thrush and Dayton 906 

2010). Efforts made in these directions will also simultaneously aid in improving the 907 

sustainability of coastal EFH, enhance our abilities to predict and mitigate current and 908 

future effects of environmental change as well as support activities to create and 909 

implement adaptive management plans. To increase the awareness of the benefits of 910 

integrating management of fish and habitats, the scientific community can contribute in 911 

many ways. Ecological synergies achieved by protecting coastal EFH can be 912 

demonstrated; methods for large-scale mapping of EFH can be developed and utilized; 913 

effects of different threats to EFH may be quantified; and the importance of the habitats 914 

may be communicated (Kraufvelin et al. 2016). However, since not all habitats can be 915 

conserved or restored, some general frameworks to prioritize critical habitats of e.g. 916 

exploited fishes or red-listed species need to be developed and followed (Rose 2000). It 917 

must also be kept in mind that if a specific fish habitat is not strictly limiting population 918 

growth, a change in its availability does not lead to a change in stock sizes, provided that 919 

other regulating factors remain constant (Levin and Stunz 2005, Rice 2005).  920 

 921 
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        This review gives an overview of the current knowledge as well as the lack of 922 

knowledge about coastal EFH in the Baltic Sea and brings about some suggestions for 923 

future work and cooperation. The topic is timely and of high importance in the current 924 

era of rapidly improving habitat modelling, new demands for better monitoring of 925 

marine ecosystem such as BSAP (HELCOM 2007), MSFD (Anon. 2008) and MSPD (Anon. 926 

2014), and the findings that the Baltic network of MPAs cannot be considered 927 

ecologically coherent (Sundblad et al. 2011). The review also stresses the importance to 928 

protect key habitats vital for the survival of early life stages of fish and to map these 929 

areas (Kraufvelin et al. 2016). Apart from the need for conducting more investigations 930 

into the topics mentioned above, further studies also seem to be especially urgent within 931 

the field of attaining quantitative data for the value of coastal EFH for fish production, 932 

including defining the key habitats for protection and for possible restoration efforts, as 933 

well as disentangling the major threats/pressures and their effects (e.g. Elliott 2004, 934 

Elliott, M. et al. 2016). Improved integration of habitat quality in fish stock assessment 935 

and ecosystem-based fishery management is also warranted when this path is followed 936 

(Seitz et al. 2014, Sundblad et al. 2014). A crucial part of this work could consist of 937 

carrying out additional analyses on existing data as a lot of the needed information 938 

already seems to be available through monitoring and mapping work carried out in 939 

Baltic Sea countries (Kraufvelin et al. 2016). During this process, the utilization of meta-940 

analytical approaches could be worth considering (see e.g. Pulkkinen et al. 2011, Östman 941 

et al. 2016). The initiation of common research projects and intensified outreach efforts 942 

constitute fruitful ways to bring this work forward on a Baltic-wide scale. In order to 943 

succeed with all these undertakings, devoted endeavours focusing on all aspects of 944 

coastal EFH will be of utmost importance. Successful implementation of these activities 945 
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will then in turn hopefully lead to clear and lasting improvements for fish and their 946 

habitats in the entire Baltic Sea region. 947 

 948 

 949 

 950 

 951 

 952 

 953 
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Direct evidence     

Fish species Area Studied topic(s) Central findings Reference(s) 

Perch (Perca fluviatilis) 
and pikeperch (Sander 

lucioperca) 

Sweden and Finland  Species distribution modelling was used on 
coastal data from twelve archipelago areas 
where the distribution of nursery habitats for 
perch and pikeperch was related to the size of 
adult populations.  

Habitat availability explains almost half of the 
variation in population size and indicates a 
crucial role in limiting adult stock sizes. 

Sundblad et al. 2014 

Whitefish (Coregonus 

lavaretus) 
Gulf of Bothnia, 
Sweden and Finland 

Species distribution modelling was used on 
coastal data on whitefish to evaluate 
relationships between variables describing EFH 
and larval production. 

Metrics describing EFH and their current level 
of human impact are the most important ones 
for the abundance of whitefish larvae. 

Vanhatalo et al. 
2012 

Perch, pikeperch, Baltic 
herring (Clupea harengus 

membras) and sprat 
(Osmerus eperlanus) 

Finnish coast Species distribution modelling was used on 
larval survey data of a number of fish species to 
assess the most important reproduction 
habitats.  

Identification of highly effective spawning 
areas, i.e. that production of fish stocks can be 
concentrated to very limited areas compared to 
the total suitable production areas that are 
available. 

Kallasvuo et al. 2017 

Cod (Gadus morhua)* Baltic Proper Various statistical models were used for the 
determination of relationships between the 
volume of EFH (coastal and non-coastal) 
available for Baltic cod and processes affecting 
adult stock size.  

Positive relationships exist between the volume 
of EFH and cod reproduction (and thus the 
adult stock size) as well as between habitat 
availability for juvenile cod (nursery areas) and 
density-dependent growth. 

MacKenzie et al. 
2000, Cardinale and 
Arrhenius 2000, 
Hinrichsen et al. 
2017  

Flounder (Platichtys 

flesus)* 
Baltic Proper Spawning area availability of pelagic spawning 

flounder through time was quantified by 
species distribution modelling, and related to 
larval production and adult stock sizes. 

Decreases in spawning habitat availability have 
been accompanied by a decrease in larval 
production as well as a decrease in adult stock 
sizes. 

Ustups et al. 2013, 
Orio et al. 2017 

Indirect evidence     
Fish species Area Studied topic(s) Central findings Reference(s) 
Perch Sweden and Finland  Investigation of how coastal spawning habitats 

for perch are dependent on the type of 
substrate.  

Vegetated substrates providing rigidity and 
structural complexity are preferred by the 
perch. Also, shallow depths and sheltered areas 
are preferred characteristics. 

Snickars et al. 2010 

Juvenile fish Sweden and Finland Relationships between fish reproduction data 
and the quality (species composition) of 
macrophyte communities on shallow soft 
bottoms were investigated 

Investigated bays that are dominated by stress 
sensitive macrophyte species are important 
nursery areas for fish. 

Hansen and 
Snickars 2014 

Pike (Esox lucius) Southern Finland Habitat choice and survival of pike in 
filamentous algae and in bladder-wrack were 

In the presence of predators, pike larvae prefer 
and also survive better in filamentous algae 

Engström-Öst et al. 
2007 
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tested experimentally. than in bladderwrack. 
Pike Southern Finland The performance of larval pike under the 

influence of turbidity induced by phytoplankton 
was investigated experimentally. 

Larval weight of pike is lower in turbid water, 
despite that pike larvae here spend less time in 
vegetation and attack more prey. 

Engström-Öst and 
Mattila 2008 

Commercial fish species Entire Finnish 
coastline 

Relationships between many environmental 
variables (N, P, chlorophyll a, duration of ice 
coverage in winter, shore density in the area 
and salinity) and the CPUE (of reported 
commercial catches) were investigated. 

Shore density, corresponding closely to the 
availability of EFH, is an important factor for all 
species, although the strongest effects occur for 
pike. 

Uusitalo et al. 2012 

Flounder Southern Finland Fishery-independent data on adult flounder as 
well as historical and present-state data on 
juveniles in shallow coastal areas were utilized 
to study relationships between EFH and the 
production of flounder. 

Increased coverage of filamentous algae 
correlates with a pronounced decrease in the 
abundance of juvenile flounder. A simultaneous 
decrease in the abundance of adult flounders 
indicates that the declined EFH availability for 
juveniles acts as a bottleneck for the population. 

Jokinen et al. 2015, 
2016 

Pikeperch Germany Investigation of pikeperch spawning in inner 
coastal waters of salinities around 5-6. 

Coastal EFH of lower salinities are the base 
for nearly 40% of the total annual catch of 
pikeperch in waters with higher salinities 
(around 10). 

Winkler 1996, 
Winkler et al. 
unpubl. 

Pike Southeastern 
Sweden 

The recruitment of pike was studied in coastal 
wetlands restored in different ways. 

In restored wetlands with temporally flooded 
terrestrial vegetation, juvenile pike migration 
increase from a few thousand individuals in 
previous years to >100,000 individuals 
afterwards.  

Nilsson et al. 2014 

Pike Swedish east coast The relative importance of fresh and brackish 
water recruitment areas (spawning habitat 
preferences) for pike was examined through 
the use of otolith Sr:Ca profiles. 

For pike, 20% hatches in brackish water in the 
Forsmark area at the 60° N latitude and 80% 
hatches in brackish water in the Kalmar Sound 
at the 56° N latitude. 

Engstedt et al. 2010 

Pike, whitefish, burbot 
(Lota lota) and ide 
(Leuciscus idus) 

Estonia The relative importance of fresh and brackish 
water recruitment areas (spawning habitat 
preferences) was examined for brackish water 
fish populations through the use of otolith Sr:Ca 
profiles. 

The relative importance of coastal wetlands and 
river-mouths as spawning grounds compared to 
brackish water areas is demonstrated. There 
are indications that brackish water spawning is 
becoming rarer. 

Rohtla et al. 2012, 
2014, 2015, 2017, 
Rohtla 2015 

 

Table 1. Direct and indirect evidence from the Baltic Sea with regard to the effects of EFH on fish population size. *Note that the 

results for cod and flounder in the Baltic Proper are not strictly coastal (see text for more details). 


