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Chapter 1
Introduction

In this introductory chapter, we look at iterations of conformal maps, random pro-
cesses such as random walks and statistical physics and establish some connections.

1.1 Iteration of conformal maps

We assume that the reader has some familiarity with Complex Analysis.1 Recall
that a differentiable function f : U → C, where U ⊂ C is a set containing an open
neighborhood of a point z0, is conformal at z0, if the map f preserves angles2 at
z0. If this holds for all points of U , we call f a conformal map. Remember also
that a function in a planar domain is conformal if and only if it is holomorphic and
one-to-one.

Let H be the upper half-plane and let fk : H→ H be a sequence of conformal
maps where k ∈ Z>0.3 Define

f J1,nK(z) = f1 ◦ f2 ◦ . . .◦ fn(z).

Suppose that each fk maps H onto a set which is the complement (with respect to
H) of a bounded set Kk, whose boundary is a curve, and suppose that | fk(z)| →∞ as
|z| → ∞. Then it turns out that fk extends continuously to the closure H.

Suppose that the set Kk is a line segment [ξk,ζk], where ξk ∈ R is the base point
and ζk ∈ H is the tip point. By the continuity of fk to the boundary, we can talk
about the point xk ∈ R which is mapped to the tip ζk by fk. Define now f̂k(z) =

1 The reader can use, for instance, Rudin’s book [7] as a reference. Notice the supplementary
material (appendices) of this book described in the preface, and also Chapter 3 below.
2 In the sense that if P1 and P2 are smooth curves that form an angle θ at z0, then also f ◦P1 and
f ◦P2 form an angle θ at f (z0).
3 Throughout this text we use the notations Z>0 = {k ∈ Z : k≥ 1}, Z≥0 = {k ∈ Z : k≥ 0}, R>0 =
{x∈R : x> 0}, R≥0 = {x∈R : x≥ 0} as well as J j,kK for the ordered set j, j+1, j+2, . . . ,k−1,k,
where j < k are integers.
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2 1 Introduction

(a) The grid lines in H. (b) The gridlines transformed
by the mapping z 7→ f̂R(z).

(c) The gridlines trans-
formed by the mapping
z 7→ f̂L(z).

Fig. 1.1 Two elementary conformal transformations that are being iterated in the process illus-
trated in Figure 1.2. Grid lines can be used to illustrate the action of conformal maps.

fk(z+ xk)− ξk. Then f̂k is conformal and it maps H onto the complement of a line
segment, whose base point is 0, it maps ∞ to ∞ and 0 to the tip of the line segment.
It turns out (as we will later see) that it is useful to consider conformal maps that
for large values of |z| are close to identity, in the sense that they neither expand or
shrink the grid as in Figure 1.1 far away from the origin.

If we iterate maps of this form, for instance, f̂1 ◦ f̂2, then the composition will be
a map from H onto the complement of a piecewise smooth curve. The continuity of
the curve at the points where the (images of) line segments meet, follows from the
fact that 0 is the base point of f̂2 and 0 is mapped to the tip point of f̂1 by f̂1.

Figure 1.2 illustrates the iterates f̂ J1,nK. We have chosen two conformal maps (see
Figure 1.1) that correspond to the line segments of the same length forming angles
απ and (1−α)π with the positive real axis, and each fk is one of the two maps.

The parameter n acts naturally as discrete time of the growth process. If we wish
study a continuous time limit of the iterates f̂ J1,nK, we need to take large n and adjust
the elementary conformal maps so that the sizes of the line segments are small, but
the composed piecewise smooth curve reaches roughly to a constant height. This can
be achieved by considering φ̂k(z) = n−a f̂k(naz) where a > 0 is a suitable constant.

Let F(n)
t denote the iterate φ̂ J1,bntcK for any n ∈ Z>0 and t ∈ [0,1].4 When n is

large, the composed piecewise smooth curve corresponding to φ̂ J1,bntcK increases by
tiny steps as t is increased. It seems reasonable to expect that the limit limn→∞ F(n)

t
exists and defines a continuous-time flow of the points of H.5 This is indeed the case
at least when the sequence fk are random, symmetrically distributed ( f̂R and f̂L are
equally likely) and independent. The continuous-time versions in the case of ran-
dom, symmetric and independent sequences are the Schramm–Loewner evolutions.

4 We use a common notion that bxc is the largest integer smaller or equal to x.
5 Such a limit is an example of scaling limit. Two typical features of a scaling limit are that there
are scaling factor involved, such as n−a and na above, which ensure that the limit exists, and that
the limiting object will be described by continuous variables (another term is a continuum limit).
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1.2 On stochastic models and connection to statistical physics 3

(a) z 7→ z (b) z 7→ f̂1(z) (c) z 7→ f̂1 ◦ f̂2(z)

(d) z 7→ f̂1 ◦ f̂2 ◦ f̂3(z) (e) z 7→ f̂1 ◦ f̂2 ◦ f̂3 ◦ f̂4(z) (f) z 7→ f̂1 ◦ f̂2 ◦ . . .◦ f̂10(z)

Fig. 1.2 Consider conformal maps from the upper half-plane onto the complements of line seg-
ments. We can arrange so that ∞ is mapped to ∞ and that the base point of the line segment is 0
as well as the point which gets mapped to the tip of the segment. The figures here illustrate how
iterations of such maps look like.

1.2 On stochastic models and connection to statistical physics

1.2.1 Random walk and Brownian motion

We also assume some familiarity with Probability Theory.6

Recall that a stochastic process is a collection of random variables indexed by an
ordered set which is interpreted as the time variable. Let’s consider random walks
on Z as an example. We will denote probability measures generally by P. Let Xk,
k ∈Z>0, be a sequence of random variables which take two possible values±1, i.e.,
P[Xk =−1 ]+P[Xk =+1 ] = 1. Assume that Xk, k ∈ Z>0, are independent7 and fix
some x ∈ Z. The formula

St = x+
t

∑
k=1

Xk

defines a stochastic process8 (St)t∈Z≥0 . If the random variables Xk, k ∈ Z>0, have
symmetric distribution, that is, P[Xk =−1] = P[Xk =+1] = 1

2 , then the process is
called symmetric simple random walk on Z.

Often we wish to derive a continuum limit of the simple random walk or other
processes. Such a limit is a scaling limit in the same sense as in the previous sec-
tion. For that purpose, we choose a constant a > 0 and consider the continuous-time
process (n−aSbntc)t∈R≥0 . For suitably chosen constant a this process will converge

6 The reader can use, for instance, Durrett’s book [3] as a reference. Notice the supplementary
material (appendices) of this book described in the preface, and also Chapter 2 below.
7 Remember that for these given random variables, Xk, k ∈Z>0, are independent if for any n∈Z>0
and for any x1,x2, . . . ,xn ∈ {−1,+1}, P[Xk = xk for all k ∈ J1,nK ] = ∏k∈J1,nKP[Xk = xk].
8 We use the notation (Xt)t∈I where usually I = Z≥0 or I = R≥0, to denote a stochastic process.
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Fig. 1.3 Simple random walk

as n→ ∞ to a stochastic process (Bt)t∈R≥0 called Brownian motion. From the cen-
tral limit theorem (CLT) we know that a = 1/2 and that all the finite dimensional
distributions (distributions of vectors of type (Bt1 ,Bt2 , . . . ,Btk)) are Gaussian.9

1.2.2 Ising model and other statistical physics models

The study of Schramm–Loewner evolutions is motivated by their applications to
statistical physics. Those random curves appear in statistical physics under specific
circumstances as interfaces, that is, domain walls separating parts of the system
which differ in some microscopic property.

Fig. 1.4 Ising model with Dobrushin boundary conditions for T < Tc, T = Tc and T > Tc. Here the
black pixels are vertices with σ =+1 and the white pixels are vertices with σ =−1. An interface
is a broken line separating white and black regions.

A typical example of a lattice model of statistical physics (i.e., a simplified model
defined on a lattice such as Zd) is the Ising model, which models ferromagnetic
material. Each site v is occupied by an elementary magnet, spin, which takes values
σv ∈ {±1}. The Ising model is defined by an energy functional

H(σ) =−∑σvσw.

9 Remember that the result that a sum of independent and identical centered random variables
scaled by n−1/2 converges to a Gaussian random variable in distribution, is called the central limit
theorem.
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1.2 On stochastic models and connection to statistical physics 5

Here σ = (σv)v∈V is the spin configuration of the system and V is a finite subset
of the square lattice Z2 (we focus here on two-dimensional model). The sum in H
is over neighboring pairs of sites. The more there are pairs of aligned spins, the
more this functional favors the configuration (that is, the configuration has smaller
energy) — this can be seen as the source of the ferromagnetic phenomenon.

In the Ising model, we take the configuration σ ∈ {±1}V to be random. Its law is
given by the Boltzmann distribution corresponding to the energy functional H, i.e.,
the probability of observing σ is proportional to exp(−βH(σ)). Here β = 1/T , the
inverse temperature, is a parameter.

The behavior of the systems depends drastically on the temperature T , as the
reader can see from Figure 1.4. In the figure we use so called Dobrushin boundary
conditions, where we force the spins on the two complementary boundary arcs to be
constant −1 on one of them and +1 on the other. The interface which is the broken
line separating the large +1-cluster and the large −1-cluster, can be studied when
these boundary conditions are used.

The scaling limit of the interface is obtained by fixing a shape, say, a square and
the Dobrushin boundary conditions on its boundary and then by approximating that
shape by finite subsets of a lattice with a lattice mesh parameter. The scaling limit
is the limit as the lattice mesh tends to zero.

The phase transition of the model can be explained in terms of interface in the
following way. There is a critical temperature Tc such that for T < Tc for large sys-
tems looked far away (i.e. in the scaling limit) the interface is close to the minimal
energy line with fluctuations of order

√
N, where N is the side length of the box.

As T approaches Tc the fluctuations grow and at Tc they are of the size of the sys-
tem. Therefore T = Tc is the smallest value of the parameter where we expect a
non-trivial scaling limit for the interface. The fact that the scaling limit at T < Tc
is non-random is a result of [6]. For T > Tc, when looked far away, the spins be-
have more or less independently of the of each other and the interface looks like the
interface of T = ∞, for which value the spin configuration is truly totally disordered.

1.2.3 Conformal invariance of the scaling limits

Schramm–Loewner evolutions give an efficient tool for verifying conformal invari-
ance in the context of random curves of statistical physics and their scaling limits.

Based on physical arguments, the scaling limit is expected to be scale invariant.
In fact, under some hypothesis such as partial rotation invariance of the Hamiltonian
(π/4-rotation invariance of the Ising model on Z2) and short range of the interac-
tions, it is expected that the scaling limit is even conformally invariant. Conformal
invariance could be described to be local rotation, scale and translation invariance.
Here “local” refers to the fact that the factor that we use in e.g. scale invariance
can vary over the domain. Consult, for instance, the introduction of [5] for an in-
troduction to the physical theories of phase transitions. The conformal invariance
property of the Ising model should be understood concretely in the following way.
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If we start from any two shapes (simply connected domains) and approximate both
with sequences of discrete domains then the laws of the interfaces are equal in the
scaling limit, in the sense that they are conformal images of each other.

This property is related to the conformal Markov property of iterates of confor-
mal maps. Namely consider the conditional law of f̂ J1,n+mK given that we know f̂k,
k ∈ J1,nK. That conditional law is just the law of f̂ Jm+1,n+mK transformed by the
(known) conformal map f̂ J1,nK. This is an evidence of a connection between statis-
tical physics and the iterates of conformal maps. We call the argument Schramm’s
principle, see [10], the original article by Schramm [8] or Section 5.1.1 below.

Fig. 1.5 Realizations of a 1D Brownian motion (left) and the corresponding SLE(3) (right) driven
by the Brownian motion. SLEs are random curves which are fractal, in the sense, that they contain
statistically similar details repeating on different length scales.

1.3 An example: percolation model and Cardy’s formula

In this section we will present an example with some details that highlight the main
topics of this text and the example is one of the main application of the theory of
Schramm–Loewner evolution. The full argument is presented later in the text.

Consider the triangular lattice which is formed by the centers of the regular
hexagonal tiling of the plane. Take a finite, simply connected10 subgraph of the
triangular lattice. We call the centers of the hexagons sites.

In the site percolation model, each site carries a random variable which takes
value open or closed.11 In any pictures, we color the corresponding hexagon green

10 Simply connectedness means that the domain consisting of the hexagons is a simply connected
domain (i.e. with no holes) — in other words, if we have a closed path of hexagons in the domain,
it cannot disconnect any point in the complement of the domain from infinity.
11 From the modelling perspective, the open sites represent channels through which a substance,
say, water can flow. Therefore if we inject water into the sites of a set A1, the water will flow to
all the sites connected by a path of open sites to A1. In particular we are interested in connection
events that for fixed A1 and A2 there exists a connected path from A1 to A2 that stays in a set B.
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1.3 An example: percolation model and Cardy’s formula 7

if the site is open and red if the site is closed. The decision, whether a site is
open or closed, is made randomly, independently and from the same distribution
at each site. This leaves only one parameter in the model, which is the quantity
p := P[the site x is open] ∈ [0,1] which is independent of x.

Consider first the crossing probability for a fixed shape with varying size. More
specifically, take rhombi RN = {xe1 + ye2 : x,y ∈ J1,NK} where e1 = 1 and e2 =
exp(iπ/3) are two vectors in the plane that generate the triangular lattice. Denote
by f (p,N) the probability of a left-to-right crossing of RN . Clearly f is monotone
in p.12 As illustrated in Figure 1.6, as N tends to infinity the crossing probability
tends to a sharp step function. More accurately limN→∞ f (p,N) equals to 0, 1

2 and 1,
when p < 1

2 , p = 1
2 and p > 1

2 , respectively. We would arrive to a similar conclusion
if we had taken a rhombus with a different aspect ratio. The only difference is that
the limit of the crossing probability at p = 1

2 is not necessarily 1
2 , but it can take

some other value in (0,1). The parameter p = 1
2 is critical in the sense that outside

criticality limits of crossing probabilities are trivial, either 0 or 1. In fact, the limit
when p = 1

2 depends non-trivially on the aspect ratio of the rhombus.
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Fig. 1.6 The crossing probabilities of a left-to-right crossing in a rhombus RN of side length N.
The crossing probability is estimated using a computer simulation and plotted as a function of p
for different values of N (N = 1 blue, N = 4 orange, N = 16 yellow, N = 64 purple). Different
values of p are coupled using standard approach that uses uniform random variables. The sample
size is 200 for each value of N.

1.3.1 Cardy’s formula from SLE(6)

We will describe here how to derive a formula for the crossing probability using a
conformal invariance hypothesis. Consider for simplicity the crossing probability
in a rectangle [0,aL]× [0,a], where a > 0 and L > 0, for an open crossing from
{0}× [0,a] to {aL}× [0,a]. Map the rectangle conformally onto the upper half-
plane H such that (0,0) 7→ U0,(aL,0) 7→ V0,(0,a) 7→W0,(aL,a) 7→ ∞. The exact
form of the mapping doesn’t play a role here.

12 The reader should stop to think this for a moment, though.
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Fig. 1.7 Percolation on two different shapes. Cardy’s formula tells that the probability of an open
crossing of the quadrilaterals depends only on the conformal modulus in the scaling limit, at criti-
cality, and gives an explicit expression for it.

Next introduce a new layer of hexagons around the rectangle, as in Figure 1.8.
Assign boundary conditions such that the hexagons on ([0,aL]×{0})∪ ({aL}×
[0,a]) are closed and on ([0,aL]×{a})∪ ({0}× [0,a]) open. Then there will be an
interface separating the closed cluster and the open cluster that touch the boundary.
In Figure 1.8, this is the blue path.

Fig. 1.8 After introducing the extra layer of hexagons for boundary conditions, there will be inter-
face that separates the red and blue clusters that touch the boundary.

Antti Kemppainen, Schramm–Loewner evolution, 2017/06/24



1.4 On reading this book 9

We can read the crossing event from the interface. Namely, the left-to-right cross-
ing exists if and only if the interface hits {aL}× [0,a] before [0,aL]×{a}.

Let’s next consider the probability conditionally on the initial segment of the in-
terface. Suppose that the interface is γ(t), t ∈ [0,T ]. The conditional probability of
an open crossing given the initial segment γ(s), s ∈ [0, t], is a crossing probability
but now in the complement of γ[0, t] in the rectangle from the union of {0}× [0,a]
and the left-hand side of γ[0, t] to {aL}× [0,a]. It is natural to transform that do-
main also onto the upper half-plane and take the points γ(t),(aL,0),(0,a),(aL,a) to
Ut ,Vt ,Wt ,∞, respectively.

We make an assumption that the scaling limit of the interface is conformally
invariant and more specifically, we make a guess that the scaling limit is a process
called SLE(6). Under further assumptions it holds that

Ut =
√

6Bt , V̇t =
2

Vt −Ut
, Ẇt =

2
Wt −Ut

where Ẋt = ∂tXt . The first equality is the fact that the process is SLE(6) and the two
others represent the Loewner flow of the marked points.

Set Zt = (Ut −Wt)/(Vt −Wt), which is a quantity called cross-ratio. That is
equivalent of mapping H with marked points Ut ,Vt ,∞,Wt onto H with marked
points z,1,∞,0. We further map the latter domain using a conformal map of the
form φ(z) =C

∫ z w−2/3(1−w)−2/3dw onto a equilateral triangle PQR. Suppose that
φ(W ) = P, φ(V ) = Q and φ . Then ζt := φ(Zt) ∈ PQ.

Based on stochastic calculus we can verify that the process ζt is a time change
of a Brownian motion on PQ and thus the crossing probability, which can be re-
formulated as the probability that the process ζt hits Q before P, can be calculated.
After an argument from stochastics (time-changed Brownian motions are conserved
on average) and some algebra we end up to famous Cardy’s formula

lim
N→∞

f (pc,N) =
φ(z)−φ(0)
φ(1)−φ(0)

=
3Γ
( 2

3

)
Γ
( 1

3

) z
1
3 2F1

(
1
3
,

2
3
,

4
3

;z
)

where pc =
1
2 , Γ is the gamma function and 2F1 is the hypergeometric function. The

original articles on Cardy’s formula are [2, 4, 9, 11].

1.4 On reading this book

The next two chapters review background material on Stochastic Calculus and Com-
plex Analysis. The reader familiar with those topics may choose to jump directly to
the main chapters, Chapters 4–6. Those chapters build on the prior chapters and are
easiest read in the order of presentation. Appendices with additional material are
provided in separate documents (see the preface) and cited occasionally here.
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