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Background-—Recent studies have revealed sexually dimorphic associations between the carbamoyl-phosphate synthase 1 locus,
intermediates of the metabolic pathway leading from choline to urea, and risk of coronary artery disease (CAD) in women. Based on
evidence from the literature, the atheroprotective association with carbamoyl-phosphate synthase 1 could be mediated by the
strong genetic effect of this locus on increased circulating glycine levels.

Methods and Results-—We sought to identify additional genetic determinants of circulating glycine levels by carrying out a meta-
analysis of genome-wide association study data in up to 30 118 subjects of European ancestry. Mendelian randomization and
other analytical approaches were used to determine whether glycine-associated variants were associated with CAD and
traditional risk factors. Twelve loci were significantly associated with circulating glycine levels, 7 of which were not previously
known to be involved in glycine metabolism (ACADM, PHGDH, COX18-ADAMTS3, PSPH, TRIB1, PTPRD, and ABO). Glycine-raising
alleles at several loci individually exhibited directionally consistent associations with decreased risk of CAD. However, these
effects could not be attributed directly to glycine because of associations with other CAD-related traits. By comparison, genetic
models that only included the 2 variants directly involved in glycine degradation and for which there were no other pleiotropic
associations were not associated with risk of CAD or blood pressure, lipid levels, and obesity-related traits.

Conclusions-—These results provide additional insight into the genetic architecture of glycine metabolism, but do not yield
conclusive evidence for a causal relationship between circulating levels of this amino acid and risk of CAD in humans. ( J Am Heart
Assoc. 2019;8:e011922. DOI: 10.1161/JAHA.119.011922.)
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M etabolites derived from gut microbiome and hepatic-
mediated metabolism of dietary choline and L-carnitine,

such as trimethylamineN-oxide and betaine, have recently been
shown to be proatherogenic in mice and novel biomarkers of
coronary artery disease (CAD) risk in humans.1–3 In searching
for genetic determinants of these metabolites, we identified
sexually dimorphic associations between the carbamoyl-

phosphate synthase 1 (CPS1) locus and not only plasma
trimethylamine N-oxide and betaine levels, but also other
intermediates in the metabolic pathway leading from choline to
urea.4 We and others further noted that, of the various other
biomarkers/metabolites that had previously been linked to
CPS1,5–14 the strongest effect size and most significant
association was with circulating glycine levels in women.4,15–
17 Most important, the lead CPS1 variant also exhibited a
strikingly significant female-specific association with
decreased risk of CAD.4 However, the direction of the
associations between CPS1 and the various biomarkers and
metabolites was opposite to what would be expected for a
variant that decreased risk of CAD.

One explanation for the protective association of CPS1 with
CAD could be the strong genetic effect of this locus on
increased circulating glycine levels.4 For example, previous
in vitro and in vivo studies have shown that glycine reduces
inflammation and oxidative stress in endothelial cells, activated
macrophages, and other leukocytes.18–22 Furthermore, platelet
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aggregation of both human and rodent platelets can be
prevented by glycine in a dose-dependent manner through
mechanisms involving the glycine receptor.23 Interestingly, the
same glycine-raising CPS1 variant has been associated with
reduced platelet counts.24 Alternatively, glycine has been
reported to have antihypertensive effects in mice and
humans.25 A recent epidemiological study also demonstrated
an inverse relationship between plasma glycine levels and
risk of an acute myocardial infarction.26 Taken together,
these observations support the concept that glycine could
have atheroprotective properties, but direct evidence for a
causal relationship between this amino acid and risk of CAD is
lacking.

In the present study, we used a meta-analysis approach
with genome-wide association study (GWAS) data to identify
additional genetics determinants of circulating glycine levels.
The identified loci were then used to investigate the possible
causal association between circulating glycine levels and
risk of CAD and traditional risk factors. In total, 12 loci
were identified for circulating glycine levels, 7 of which were
novel and not previously known to be involved in glycine
metabolism. However, various analytical approaches with
glycine-raising alleles at these loci did not provide conclusive
evidence for a causal relationship between circulating glycine
and risk of CAD in humans.

Methods
The statistical methods used in this study will be made
available to other researchers for purposes of reproducing
the results or replicating the analyses. The summary
statistics of the meta-analysis for circulating glycine levels
will be made available through the NHGRI-EBI Catalog of
published GWASs (https://www.ebi.ac.uk/gwas/download
s/summary-statistics/).

Study Populations
The present analyses included 30 118 subjects of European
ancestry from the GeneBank (GB),4 FINRISK 1997 and 2007
(FR97 and FR07),27 YFS (Cardiovascular Risk in Young Finns
Study),28 NFBC1966 and NFBC1986 (Northern Finland Birth
Cohort),29 and METSIM (Metabolic Syndrome in Men)30

studies. Details of subject recruitment and genotyping
methodology for each cohort are provided in Data S1. For
each cohort, written informed consent was obtained from all
participants before being enrolled, and the studies were
approved by the institutional review boards of the participat-
ing institutions. The present analysis was approved by the
institutional review board of USC Keck School of Medicine.

Measurement of Circulating Glycine Levels
Glycine levels were quantified using stable isotope dilution
high-performance liquid chromatography with online electro-
spray ionization tandem mass spectrometry in the GB study4

and by quantitative high-throughput NMR in the FR97, FR07,
YFS NFBC66, NFBC86, and METSIM cohorts.31,32

Data Harmonization and GWAS Analyses
Circulating glycine levels were first regressed on study-specific
covariates chosen by the investigators of each cohort. These
included age and sex in GeneBank; age, sex, and time from last
meal in FR97, FR07, YFS NFBC66, and NFBC8631; and age,
age,2 and body mass index in METSIM.32 Inverse rank-based
normal transformations were carried out on the residuals after
adjustment for covariates and used as the outcome in GWAS
analyses by linear regression in each study.

Meta-Analysis for Circulating Glycine Levels
We performed a fixed-effects meta-analysis for circulating
glycine levels with 7 487 927 SNPs that were imputed using
1000 Genomes Project data and that were common to all data
sets. This analysis was carried out assuming an additive model
and after controlling for population structure within each study,
as implemented in GWAMA (Genome-Wide Association Meta-
Analysis) software.33 In addition to a combined meta-analysis
with all subjects, we also carried out a sex-stratified fixed-
effects meta-analysis. The genome-wide threshold for signifi-
cant association was set at P=5.0910�8. A locus was defined
as novel if the lead single-nucleotide polymorphism (SNP) was
in weak or no linkage disequilibrium (r2≤0.1) with variants at
genome-wide significant loci previously reported for circulating
glycine levels. Manhattan and quantile-quantile plots were
constructed using the “qqman” package in R (R Foundation for
Statistical Computing, Vienna, Austria).34 To examine whether

Clinical Perspective

What Is New?

• The study identifies 12 genetic determinants of circulating
glycine levels, 7 of which are novel and not previously
known to be involved in the metabolism of this amino acid.

• Biological mechanisms for half of the loci associated with
circulating glycine levels are not directly evident.

What Are the Clinical Implications?

• Although findings from this study provide additional insight
into the genetic architecture of glycine metabolism, they do
not yield conclusive evidence for a causal relationship
between circulating levels of this amino acid and coronary
artery disease in humans.
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all novel loci identified in our meta-analysis were also signif-
icantly associated with other traits (phenome-wide association
studies), we used publicly available databases, such as
PhenoScanner,35 the UCSC Genome Browser (https://geno
me.ucsc.edu/), and the GWAS Catalog (https://www.ebi.ac.
uk/gwas/home). The significance threshold for phenome-wide
association studies analyses was set to P=5.0910�8 with a
linkage disequilibrium cut off of r2≥0.8 for proxy SNPs.

Proportion of Phenotypic Variance Explained
The proportion of variation in glycine levels explained by the
identified variants was estimated using SumHer software.36

SNP heritability was calculated using a weighted linkage
disequilibrium adjusted kinships model with the 12 glycine-
associated SNPs. 1000 Genomes Project–based imputed
genotypes in �4500 subjects of European ancestry from the
GB cohort were used as a reference panel for linkage
disequilibrium (r2) for these estimates.

Analysis of Variants With Risk of CAD and
Traditional Risk Factors
Publicly available summary results from large-scale GWAS in
subjects of European ancestry37–39 were used to determine
whether glycine-associated variants were associated with risk
of CAD and various lipid-, metabolic-, and blood-pressure–
related risk factors. Specifically, we tested associations using
3 analytical strategies with 4 genetic models that were based
on various nested combinations of the 12 identified variants.
Genetic model 1 included all 12 loci identified for glycine;
model 2 was designed to specifically test only the 7 novel loci
(ACADM, PHGDH, COX18-ADAMTS3, PSPH, TRIB1, PTPRD, and
ABO); and model 3 included only the 4 loci known to be
related to glycine metabolism (PSPH, PHGDH, GLDC, and
GCSH). Model 4 was the most restrictive and included only
the 2 glycine-associated loci that are known to be directly
involved in the catabolism of glycine through the glycine
cleavage system (GLDC and GCSH) and that did not exhibit
pleiotropic effects with other traits or metabolites. In the first
analytical approach, the average/overall association of CAD
and its risk factors with glycine-raising alleles in the 4 genetic
models were evaluated by meta-analysis, as implemented in
the “meta” R package (https://cran.r-project.org/web/packa
ges/meta/index.html). In the second approach, we generated
genetic risk scores (GRS) with the identified variants for the
same 4 genetic models to evaluate the cumulative joint
effects of glycine-raising alleles. Additive multi-SNP GRS
associations were estimated using the grs.summary function
of the “gtx: Genetic ToolboX” R package (https://cran.
r-project.org/web/packages/gtx). This approach approxi-
mates the regression of an intermediate trait or biomarker

onto a GRS, which is based on the weighted sum of the single
SNP coefficients derived from the association summary
statistics.40 For the third strategy, we carried out weighted
median and inverse variance weighted Mendelian randomiza-
tion (MR) analyses with the 4 genetic models, as implemented
in the “TwoSampleMR” R package.41 Because the weighted
median MR method requires 3 or more variants, only the
inverse variance weighted MR test was used for determining
association of the 2 SNPs in model 4 with CAD and traditional
risk factors.

Results

GWAS for Circulating Glycine Levels
To identify novel loci for circulating glycine levels, we carried
out a meta-analysis of GWAS summary-level data with
7 487 927 genotyped and imputed SNPs in 30 118 subjects
of European ancestry. Table 1 shows the characteristics of
the study cohorts and data sets used for these analyses. A
GWAS was carried out for circulating glycine levels in each
cohort, followed by a fixed-effects meta-analysis. The genomic
control factor (lambda, k) in GB I (0.995), GB II (0.989), and
the combination of the FR97, FR07, YFS NFBC66, and
NFBC86 cohorts (1.039), and METSIM (1.014) were small or
modest, thus decreasing the likelihood of identifying spurious
associations attributed to population stratification (Figure S1).
To further account for this potential confounder, we also
applied genomic control to each study before the meta-
analysis. In total, 4934 variants distributed across 12 loci
were associated with circulating glycine levels at the genome-
wide significance threshold (P=5.0910�8; Figure 1, Table 2,
and Table S1). Seven of these loci (ACADM, PHGDH, COX18-
ADAMTS3, PSPH, TRIB1, PTPRD, and ABO) were novel and
identified as being associated with circulating glycine levels
for the first time herein (Figure 1, Table 2, and Figure S2). The
other 5 loci (CPS1, ALDH1L1, PPP1R3B-LOC157273, GLDC,
and GCSH) have previously been reported for circulating
glycine levels, but the association signals became more
significant in our meta-analysis because of increased sample
size (Figure 1, Table 2, and Figure S2). Overall, the 12
identified loci explained �15% of the variation in circulating
glycine levels.

Based on previous observations that the CPS1 locus
exhibited a pattern of sexually dimorphic associations with
glycine, various other metabolites, and risk of CAD,4,17 we
also carried out meta-analyses in men and women separately.
Five and 9 regions were significantly associated with circu-
lating glycine levels in females and males, respectively
(Figures S3 and S4), all of which were also observed in the
combined GWAS analysis with all subjects (Figure 1). With the
exception of the previously observed stronger association
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signal for glycine levels at the CPS1 locus in women
(b=0.572; P<1.0910�300) compared with men (b=0.322;
P=5.9910�189), the effect sizes at the remaining 11 loci were
similar in males and females with no significant evidence for
heterogeneity (Table S2 and Figure S5). We next carried out a
phenome-wide association studies analysis based on publicly
available data to determine whether any of the loci for glycine

were associated with other traits. Six of the 12 loci (ACADM,
CPS1, ALDH1L1, PPP1R3B-LOC157273, TRIB1, and ABO)
exhibited pleiotropic associations with blood cell counts or
lipid levels, some of which were even more significant than
the association signals for glycine (Table S3). Two other loci
(PSPH and PHGDH) had also been associated with serine and
homocysteine levels, which are metabolites related to glycine
metabolism (Table S3). However, no genome-wide significant
associations have previously been reported for the 4 remain-
ing loci (COX18-ADAMTS3, GLDC, PTPRD, and GCSH).

Association of Loci for Circulating Glycine Levels
With CAD and Traditional Risk Factors
We next sought to evaluate association of loci for glycine
levels with risk of CAD and traditional risk factors. Of the 12
regions identified, glycine-raising alleles of the lead variants at
the CPS1, PSPH, TRIB1, and ABO loci individually yielded
directionally consistent associations with decreased risk of
CAD at the Bonferroni-corrected threshold of P=4.2910�3 for
testing 12 loci (0.05/12; Table S4). We next tested 4 genetic
models based on various nested combinations of the 12
glycine loci for association with risk of CAD using 3 analytical
strategies (details provided in Methods). Consistent with the
individual SNP results, meta-analysis or GRS-based joint SNP

Table 1. Description of Cohorts Used in Meta-Analysis for
Circulating Glycine Levels

Cohort No. of SNPs N (Male/Female) Metabolomics Platform

GB I 8 986 545 391 (195/196) HPLC-MS

GB II 8 986 545 885 (602/283) HILIC-MS

FR97 11 512 433 6631 (3198/3433) NMR

FR07 11 512 433 4124 (1860/2264) NMR

YFS 11 512 433 1947 (1052/895) NMR

NFBC66 11 512 433 4483 (2152/2331) NMR

NFBC86 11 512 433 3112 (1508/1604) NMR

METSIM 16 888 882 8545 (8545/0) NMR

FR97 and FR07 indicates FINRISK; GB, GeneBank; HPLC-MS, high-performance liquid
chromatography with mass spectrometry; METSIM, METabolic Syndrome In Men Study;
NFBC, Northern Finland Birth Cohort; NMR, nuclear magnetic resonance; SNP, single-
nucleotide polymorphism; YFS, Cardiovascular Risk in Young Finns.

Figure 1. Results of GWAS meta-analysis for circulating glycine levels. The Manhattan plot shows 7 novel
significantly associated loci for circulating glycine levels (red dots) identified through meta-analyses of
GWAS data from 30 118 subjects in the GeneBank, FR97, FR07, YFS, NFBC66, NFBC86, and METSIM
cohorts. The 5 previously known loci are indicated by blue dots and all increased in significance in the meta-
analysis. Genome-wide thresholds for significant (P=5.0910�8) and suggestive (P=5.0910�6) association
are indicated by the horizontal red and dark blue lines, respectively. P values are truncated at �log10
(P)=40. FR97 and FR07 indicates FINRISK; GWAS, genome-wide association study; METSIM, METabolic
Syndrome In Men Study; NFBC, Northern Finland Birth Cohort; YFS, Cardiovascular Risk in Young Finns.
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effects analysis of glycine-raising alleles in all 4 genetic
models yielded modest, but significant, associations (odds
ratios, �0.98) with decreased risk of CAD (Figure 2). By
comparison, weighted median and inverse variance weighted
MR tests yielded much weaker or no evidence for a protective
association of glycine-raising alleles with CAD, including the
most restrictive model constructed with only variants at the 2
glycine cleavage system loci (Figure 2). We next evaluated
whether loci for glycine were associated with blood pressure,
lipid levels, and obesity-related traits using the same analyt-
ical strategies. Glycine-raising alleles at several loci (CPS1,
PPP1R3B-LOC157273, TRIB1, and ABO) individually exhibited
highly significant associations with decreased blood pressure
and lipid levels (Table S5). The meta-analysis and GRS-based
joint SNP effects analysis also provided evidence for similar
associations with blood pressure and lipid levels, although
these were only observed for the genetic models that included
either all 12 glycine-associated loci or the 7 novel loci.
However, the 2 MR analyses provided no evidence that
glycine-raising alleles were causally associated with any of the
selected traditional risk factors (Table S5).

Discussion
In the present study, we used a meta-analysis approach to
identify 7 novel genomic regions associated with circulating
glycine levels and strengthen the association signals at 5
previously known loci. Among all 12 loci, CPS1 and GLDC
were the most strongly associated with glycine levels, with

variants at the remaining 10 loci having anywhere between
�60% and 90% lower effect sizes. Furthermore, sex-stratified
analyses confirmed the strong effect of CPS1 on glycine levels
in women compared with men, but did not reveal sexually
dimorphic associations with any of the remaining 11 loci.
Follow-up analyses with the identified loci also yielded
evidence that glycine could be causally associated with risk
of CAD, although the biological mechanism(s) through which
this effect occurs remains to be determined.

Based on what is known about amino acid metabolism,
plausible biological links could be inferred between several of
the newly identified loci and glycine levels. For example,
PHGDH and PSPH encode phosphoglycerate dehydrogenase
and phosphoserine phosphatase, which catalyze the first and
last reactions, respectively, in the 3-step process leading to
the synthesis of serine from 3-phosphoglycerate.42 Although
the PHGDH and PSPH loci have both been strongly associated
with circulating serine or homocysteine levels,8,15,16,43–47

they were not known to be associated with glycine levels
before the results of our meta-analysis. Interestingly, serine
can serve as a substrate for the synthesis of glycine in a
reversible reaction catalyzed by SHMT,48 and glycine levels
have been reported to be lower in humans deficient for
PHGDH or PSPH.49–52 With respect to our results, the lead
variant at PHDGH has yielded several highly significant
(P values ranging from �1.0910�10 to 1.0910�34) cis
expression quantitative trait loci where the glycine-raising
allele of rs478093 (G) increases PHGDH mRNA levels.35 This
would presumably lead to increased production of serine and,

Table 2. Meta-Analysis Identifies 12 Loci Significantly Associated With Circulating Glycine Levels

Locus (Nearest Gene(s))* Lead SNP Position (bp)† Effect/Other Allele‡ EAF b (SE) P Value Direction§

1p31.1 (ACADM) rs12126607 76 217 097 A/G 0.27 0.06 (0.01) 1.1910�11 +�++

1p12 (PHGDH) rs478093 120 255 126 G/A 0.67 0.06 (0.01) 3.5910�10 ++++

2q34 (CPS1) rs1047891 211 540 507 A/C 0.34 0.43 (0.01) <1.0910�300 ++++

3q21.3 (ALDH1L1) rs2364368 125 905 080 T/A 0.40 0.09 (0.01) 2.2910�28 ++++

4q13.3 (COX18-ADAMTS3) rs143424675 73 749 419 T/C 0.03 0.19 (0.03) 7.3910�13 +�++

7p11.2 (PSPH) rs6955423 56 099 352 A/G 0.81 0.07 (0.01) 2.3910�11 ++++

8p23.1 (PPP1R3B-LOC157273) rs2126263 9 181 611 G/A 0.15 0.16 (0.01) 5.8910�44 ++++

8q24.13 (TRIB1) rs28601761 126 500 031 G/C 0.41 0.06 (0.01) 1.6910�13 +�++

9p24.1 (GLDC) rs71503800 6 102 648 T/C 0.05 0.46 (0.02) 8.5910�121 �++

9p24.1 (PTPRD) rs12003835 8 424 378 T/G 0.03 0.15 (0.03) 8.2910�9 �++

9q34.2 (ABO)k rs492488 136 144 960 G/A 0.55 0.05 (0.01) 1.2910�8 �+++

16q23.2 (GCSH) rs11860711 81 132 493 C/T 0.80 0.12 (0.01) 4.2910�31 ++++

EAF indicates effect allele frequency; SNP, single-nucleotide polymorphism.
*Novel loci identified in this study are highlighted in gray.
†

SNP base pair (bp) positions are given according to NCBI build 37 of the reference human genome sequence (hg19).
‡

Effect allele refers to allele that increases glycine levels.
§

Direction of betas in the 4 data sets used for meta-analysis are in the following order: GB I, GB II, Combination of FR97-FR07-YFS-NFBC66-NFBC86, and METSIM.
k
N=27 006 for chromosome 9q34.2 locus.
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by extension, glycine, thus providing a directionally consistent
molecular mechanism for the observed association of the
PHGDH locus with circulating glycine levels. However, even
when taking into account previously identified associations at
loci harboring enzymes involved in either glycine catabolism
(GLDC, GCSH)53,54 or downstream detoxification through the
urea cycle (CPS1),55,56 biological mechanisms for half of the
loci associated with circulating glycine levels are not directly
evident.

A primary goal of our study was to test whether glycine is a
causal and protective biomarker of CAD risk. To address this
question, we used the results of large GWAS meta-analyses to
determine whether loci identified for glycine levels were
associated with CAD and traditional risk factors. Glycine-
raising alleles at 3 of the 7 novel loci (PSPH, TRIB1, and ABO)
were individually associated with decreased risk of CAD at the
Bonferroni-corrected significance threshold (P=4.2910�3), of

which TRIB1 and ABO had been identified as CAD suscepti-
bility loci in previous GWASs.37,57,58 Rather than glycine
levels, it is likely that association of TRIB1 and ABO with CAD
is attributed to their stronger effect sizes on lipid levels and
hematological parameters12,59,60 and, in the case of ABO,
numerous other CAD-relevant traits.35 When all 12 loci or only
the 7 novel loci were considered in combination, the meta-
analyses and joint SNP effects analyses also revealed
association of glycine-raising alleles with decreased risk of
CAD. Because several of the loci included in these analyses
(CPS1, PSPH, PPP1R3B-LOC157273, TRIB1, and ABO) exhib-
ited associations with other CAD-related traits, either individ-
ually or in various combinations, it was not possible based on
these results alone to conclude that glycine is the causal
biomarker driving the association of these loci with CAD.
Therefore, we assessed causality more directly with 2
different MR tests, which provided little to no evidence that

Figure 2. Association of loci identified for circulating glycine levels with risk of CAD. Individual associations between glycine-raising alleles at
each locus and risk of CAD are shown by blue squares in the forest plots. Purple diamonds indicate combined associations based on meta-
analysis, joint SNP effects with a genetic risk score (GRS), and weighted median (WM) or inverse variance weighted (IVW) Mendelian
randomization (MR) test. Model 1 included all 12 glycine-associated loci (A), model 2 included the 7 novel loci for glycine in this study (B), model
3 included the 4 loci known to be involved in glycine metabolism (C), and model 4 was constructed with only the 2 loci directly involved in the
catabolism of glycine through the glycine cleavage complex (D). CAS indicates coronary artery disease; OR, odds ratio; SNP, single-nucleotide
polymorphism.
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glycine-raising alleles were associated with risk of CAD or lipid
levels, blood pressure, and obesity-related traits. In this
regard, the results of MR tests with the most restrictive
genetic model that included only the 2 loci directly involved in
glycine degradation (GLDC and GCSH) are particularly relevant.
For example, no CAD-related traits, aside from glycine levels,
are known to be associated with the GLDC and GCSH loci, thus
satisfying the lack of pleiotropy as 1 of the major assumptions
in MR analysis. Moreover, the glycine-raising alleles of
rs71503800 at the GLDC locus and rs1047891 at the CPS1
locus have nearly equivalent effect sizes on circulating glycine
levels. However, none of the analyses with rs71503800 at the
GLDC locus yielded evidence for association of this variant with
risk of CAD or traditional risk factors. Taken together, we
conclude that evidence for a causal relationship between
circulating glycine and risk of CAD is relatively weak and
requires additional studies.

Whereas the present results have revealed novel genetic
determinants of circulating glycine levels, our study should
also be taken in the context of certain limitations. First,
depending on the cohort, metabolomic analysis was carried
out using different platforms and glycine was measured in
either serum or plasma, some of which were not fasting
samples. Although this may have led to identifying fewer
significant associations for circulating glycine levels, our
relatively large sample size in the meta-analysis still provided
sufficient power to detect robust associations at several
previously known loci and 7 novel genomic regions. Second,
the sex-stratified analyses had approximately half the number
of females than males, which likely decreased power to
identify loci for circulating glycine levels that were either
specific to, or more strongly associated in, 1 sex or the other.
Third, all study subjects in our study were of European
ancestry, and it is possible that the genetic association results
for either circulating plasma glycine levels may not be
generalizable to other populations. Last, our evaluation of the
causal relationship between glycine and risk of CAD or
traditional risk factors may have resulted in biased estimates
because of pleiotropic effects, especially in models that
included all 12 loci or the 7 newly identified SNPs, or because
of weak instruments in nested models that included only the 4
or 2 loci directly involved in glycine metabolism.

In summary, the results of our study provide additional
insight into the genetic architecture of glycine metabolism,
but a more-complete understanding of the mechanisms
through which some of these loci influence circulating levels
remains to be determined. Despite these genetic findings, we
did not obtain conclusive evidence for a causal relationship
between glycine and risk of CAD, raising the possibility that
another unknown metabolite or biological pathway is driving
the protective association of glycine-raising alleles at the
CPS1 locus with risk of CAD.
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Data S1. 

 

Detailed Description of Cohorts 

 

GeneBank Study:  The Cleveland Clinic GeneBank study is a single site sample repository 

generated from consecutive patients undergoing elective diagnostic coronary angiography or 

elective cardiac computed tomographic angiography with extensive clinical and laboratory 

characterization and longitudinal observation.  Subject recruitment occurred between 2001 and 

2006.  Ethnicity was self-reported and information regarding demographics, medical history, and 

medication use was obtained by patient interviews and confirmed by chart reviews. All clinical 

outcome data were verified by source documentation.  Coronary artery disease (CAD) was 

defined as adjudicated diagnoses of stable or unstable angina, myocardial infarction (MI) 

(adjudicated definition based on defined electrocardiographic changes or elevated cardiac 

enzymes), angiographic evidence of ≥ 50% stenosis of one or more major epicardial vessel, 

and/or a history of known CAD (documented MI, CAD, or history of revascularization).  The 

GeneBank Study has been used previously for discovery and replication of novel genes and risk 

factors for atherosclerotic disease1-4.  Plasma glycine levels were measured in blood samples 

obtained upon entry into GeneBank.  Genome-wide genotyping was carried out on 3031 

GeneBank subjects of European ancestry using the Affymetrix Genome-Wide Human Array 6.0 

SNP chip. After conversion of genomic coordinates to GRCh37/hg19, exclusion of SNPs with 

duplicates, call rates <97%, minor allele frequencies (MAFs) <1%, and without chromosome and 

base pair position, and exclusion of 44 subjects with genotype call rates <90%, 642,766 were 

available for imputation in 2972 participants.  Imputation was carried out on the forward (+) 
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strand using the University of Michigan Imputation Server 

(https://imputationserver.sph.umich.edu) and data from the 1000 Genomes Project (Phase 3, 

Version 5).  Application of the same quality control filters described above to the 46,180,700 

imputed SNPs, with the addition of excluding SNPs with Hardy-Weinberg equilibrium p-values 

<0.0001 and imputation Rsq scores <0.3, resulted in 8,986,545 autosomal SNPs that were 

available for analysis in 1276 GeneBank subjects for whom plasma glycine levels were also 

available.  All patients provided written informed consent prior to being enrolled in GeneBank 

and the study was approved by the Institutional Review Board of the Cleveland Clinic. 

 

FINRISK:  FINRISK (FR) surveys are cross-sectional, population-based studies conducted 

every five years since 1972 to monitor risk of chronic diseases.  For each survey, a representative 

random sample was selected from 25- to 74-year-old inhabitants of different regions in Finland.  

The survey included a questionnaire and a clinical examination, at which a blood sample was 

drawn, with linkage to national registries of cardiovascular disease and other health outcomes.  

The study protocol has been described elsewhere5.  Study participants were followed up through 

December 31, 2012.  Eligible individuals from FINRISK surveys conducted in 1992, 1997, 2002, 

and 2007 (total n=27 838) were genotyped in three separate batches and analyzed separately to 

avoid batch effects, followed by a meta-analysis for glycine levels as described previously6.  

Genome-wide genotyping was carried out on an Illumina core-exome chip.  After quality 

controls, including SNP call rates ≥ 95%, minor allele frequencies (MAFs) ≥ 1%, and sample 

call rates ≥ 95%, identity-by-descent (IBD) ≤ 0.1, without sex mismatches, duplicates, and 

heterozygosity outliers by eye from distribution, 273,113 SNPs was available for imputation.  

IMPUTE2 was used for imputation based on 1000 Genomes Project March 2012 version.  
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Further exclusions included p for Hardy–Weinberg equilibrium ≤ 1.0x10-6 and imputation info ≤ 

0.46. 

Cardiovascular Risk in Young Finns Study (YFS):  The Cardiovascular Risk in Young Finns 

Study (YFS) is a population based prospective cohort study.  It was conducted at five medical 

schools in Finland (Turku, Helsinki, Kuopio, Tampere and Oulu) with the aim of studying the 

levels of cardiovascular risk factors in children and adolescents in different parts of the country.  

The latest follow-up was conducted in 2007 at which serum samples were used for metabolomics 

analyses.  The study and data collection protocols have been described in detail previously7.  

Genome-wide SNP data were generated from a custom Illumina BeadChip containing 670,000 

SNPs and CNV probes.  The custom content on the custom 670K array replaced some poor 

performing SNPs on the Human610 BeadChip and added more CNV content, and includes 

546,677 SNPs passing QC from 594,210 SNPs on the chip.  The custom 670K chip shares 

562,643 SNPs in common with the Illumina Human610 BeadChip.  Genotypes were called using 

Illumina's clustering algorithm.  A total of 2,556 samples were genotyped. After initial 

clustering, we removed 2 subjects for poor call rates (CR<0.90), and 54 samples failed 

subsequent QC filters (i.e., duplicated samples, heterozygosity, low call rate, or custom SNP 

fingerprint genotype discrepancy).  The following filters were then applied to the remaining data: 

MAF 0.01, GENO 0.05, MIND 0.05, and HWE 1×10−6. Three individuals were removed for 

low genotyping (MIND>0.05), 11,766 markers were excluded based on HWE test (P≤1×10-6), 

7,746 SNPs failed missingness test (GENO>0.05), 34,596 SNPs failed frequency test 

(MAF<0.01), and one individual failed gender check.  A final list of 546,677 SNPs passed QC 

and allele frequency filters8.  IMPUTE2 was used for imputation based on 1000 Genomes 
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Project March 2012 version.  Further exclusions included p for Hardy–Weinberg equilibrium ≤ 

1.0x10-6 and imputation info ≤ 0.46. 

Northern Finland Birth Cohort (NFBC):  The Northern Finland Birth Cohorts were initiated 

20 years apart in 1966 (NFBC66) and 1986 (NFBC86) to examine risk factors involved in pre-

term birth and intrauterine growth retardation, and the consequences of these early adverse 

outcomes on subsequent morbidity and mortality, as described in detail previously9.  Mothers 

living in the two northern-most provinces of Finland (Oulu and Lapland) were invited to 

participate if they had expected delivery dates during 1966 or 186.  Individuals still living in the 

Helsinki area or Northern Finland were asked at age 31 to participate in a detailed biological and 

medical examination as well as a questionnaire.  GWAS analyses for circulating glycine levels, 

as measured by NMR, were carried out in 4,483 and 3,112 from the NFBC66 and 1986 NFBC86 

studies, respectively.  Genomic DNA was extracted from whole blood using standard methods 

and samples were genotyped on the Illumina Infinium 370cnvDuo array at the Broad Institute 

Biological Sample Repository.  All individuals in the study were genotyped with call rates 

>95%.  Individuals with discrepancy between their reported sex and the sex determined from the 

X chromosome were excluded from analysis.  The identity-by-descent (IBD) analysis option of 

PLINK45 was used to determine possible relatedness among sample subjects and identify sample 

duplications and sample contamination (the latter identified as individuals who seemed to be 

related to nearly everyone in the sample).  If the sample duplication issue could not be resolved 

by external means, both samples were excluded.  All apparently contaminated samples were also 

excluded.  For pairs of individuals identified to be related at the level of half-sibs or closer in the 

IBD analysis, the subject with less complete genotyping was excluded.  Variants were excluded 

from the analysis if the call rate in the final sample was <95%, if the P value from a test of 
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Hardy-Weinberg Equilibrium (HWE) was <0.0001, or if the MAF was <1%10.  This resulted in 

335,118 SNPs that were available for imputation.  IMPUTE2 was used for imputation based on 

1000 Genomes Project March 2012 version, with further exclusions for p for Hardy–Weinberg 

equilibrium ≤ 1.0x10-6 and imputation info ≤ 0.46. 

 

The Metabolic Syndrome in Men (METSIM) Study.  METSIM is a population-based study 

that recruited 10,197 Finnish men from the city of Kuopio in Eastern Finland between 2005-

2010.  The aims of METSIM are to investigate nongenetic and genetic factors associated with 

the risk of type 2 diabetes and cardiovascular disease, and with cardiovascular risk factors11.  The 

protocol included a detailed phenotyping of the participants, an oral glucose tolerance test, 

fasting laboratory measurements, including proton NMR measurements, mass spectrometry 

metabolomics, as well as adipose tissue biopsies and stool samples in a subset of participants.  

Participants were genotyped on the Human OmniExpresss-12v1_C BeadChip (OmniExpress) 

and Infinium HumanExome-12 v1.0 BeadChip (Exome Chip) platforms. Quality controls 

included sample-level controls for sex and relatedness confirmation, sample duplication, and 

detection of sample genetic ancestry outliers using principal component analysis.  Based on these 

quality control measures, 14 samples with sex chromosome anomalies, 18 with evidence of 

participant duplication, 12 population outliers, and 9 samples with non-Mendelian inheritance 

inconsistencies were removed.  In addition, one individual from each of seven monozygotic twin 

pairs was removed.  Variants with low mapping quality of probes to genome build GRCh37, low 

genotype completeness (<95% and<98% for the OmniExpress and ExomeChip, respectively), or 

Hardy-Weinberg equilibrium P<106 were also filtered out.  OmniExpress variants passing quality 

control with SHAPEIT v2 were phased and imputed using minimac v2.  For imputation, a 
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reference panel of 20.9M variants from the GoT2D study (including SNVs, indels and large 

deletions) based on the whole genome sequence of 2874 Europeans, including 1004 Finnish 

individual, was used.  Following imputation, variants directly genotyped on the ExomeChip were 

added.  In cases of common markers between imputed and genotyped variants, the directly 

genotyped calls from the ExomeChip were used.  Subsequently, 16,607,533 variants with high 

imputation quality (i.e. minimac RSQ0.3) were carried forward for single-variant association 

testing.  GWAS analyses for circulating glycine levels, as measured by NMR, were carried out in 

a subset of 8545 non-diabetic men as described previously12.  The institutional review boards of 

the University of Kuopio and Kuopio University approved the METSIM study.  Written 

informed consent was obtained from each participant.   
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Supplemental Table Legends (see Excel file): 

 

Table S1. Results of 12 Loci Significantly Associated with Circulating Glycine Levels Stratified 

by Metabolomics Platform. 

 

Table S2. Results of 12 Loci Significantly Associated with Circulating Glycine Levels Stratified 

by Sex. 

 

Table S3. PheWAS Results for 12 Loci Significantly Associated with Circulating Glycine 

Levels. 

 

Table S4. Association of 12 Glycine-associated Loci with CAD in CARDIoGRAM+C4D and 

UK Biobank. 

 

Table S5. Individual and Joint SNP Effect Associations and Mendelian randomization analysis 

of Glycine-associated Loci with Traditionally CAD Risk Factors. 
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Figure S1. Quantile-quantile (Q-Q) plot of GWAS meta-analysis results for circulating glycine levels in 30,118 subjects.  The 

observed versus the expected p-values from the meta-analyses for glycine levels are shown in the Q-Q plot.  These analyses yielded a 

genomic inflation factor (λ) of 1.035, indicating that the GWAS meta-analyses were not confounded by underlying population 

stratification. 
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Figure S2. Twelve loci identified for circulating glycine associated levels.  Regional plots for the ACADM, PHGDH, CPS1, ALDH1L1, COX18-

ADAMTS3, PSPH, PPP1R3B-LOC157273, TRIB1, GLDC, PTPRD, ABO, and GCSH loci are shown in panels A-L.  Each region is centered on the lead 

SNP (purple diamond) and the genes in the interval are indicated in the bottom panel.  The degree of linkage disequilibrium (LD) between the lead 

SNP and other variants is shown as r2 values according to the color-coded legend in the box.
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Figure S3. Results of GWAS meta-analysis for circulating glycine levels in women.  (A)  The Manhattan plot shows five previously identified 

loci significantly associated with circulating glycine levels (blue dots) in a stratified GWAS analysis with 10,886 women.  Red dots indicate 

association signals for the seven novel identified in our meta-analysis with all 30,118 subjects, all of which were only suggestively associated in 

women.  Genome-wide thresholds for significant (P=5.0x10-8) and suggestive (P=5.0x10-6) association are indicated by the horizontal red and dark 

blue lines, respectively.  P-values are truncated at −log10 (P)=40.  (B)  The Q-Q plot shows the observed versus the expected p-values from the meta-

analyses for glycine levels in women.  These analyses yielded a genomic inflation factor (λ) of 1.002, indicating that the GWAS meta-analyses were 

not confounded by underlying population stratification. 
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Figure S4.  Results of GWAS meta-analysis for circulating glycine levels in men.  (A)  The Manhattan plot shows nine loci significantly 

associated with circulating glycine levels in a stratified GWAS analysis with 19,004 men.  The five loci identified in previous studies are indicated by 

blue dots.  The red dots indicate association signals at the seven novel identified by our meta-analysis with all 30,118 subjects, of which four were 

also significant in only men.  Genome-wide thresholds for significant (P=5.0x10-8) and suggestive (P=5.0x10-6) association are indicated by the 

horizontal red and dark blue lines, respectively.  P-values are truncated at −log10 (P)=40.  (B)  The Q-Q plot shows the observed versus the expected 

p-values from the meta-analyses for glycine levels in men.  These analyses yielded a genomic inflation factor (λ) of 1.035, indicating that the GWAS 

meta-analyses were not confounded by underlying population stratification. 
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Figure S5. Sex-stratified results for 12 loci identified for circulating glycine levels.  Effect sizes for the lead SNPs at the 12 loci identified for 

circulating glycine levels are shown in men (blue) and women (red) separately.  With the exception of CPS1, which is associated with approximately 

two-fold higher glycine levels in women compared to men, effect sizes at the 11 other loci were similar in males and females.  EA, effect allele; OA, 

other allele. 
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