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This study is part of an ongoing larger project concerning student self-assessment skills in university 
courses. We have developed a method enabling large cohorts of students to assess their own learning 
outcomes and to give their own course grades with the help of an automatic verification system. This 
paper explores the question of accuracy, namely, whether the self-assessed grades correspond to the 
students’ actual skills, and how well the automatic system can pick up issues in the self-assessment.  
Based on an expert’s evaluation of the skills of two students, we conclude that although for large part 
the model works as intended, there are some cases where neither the self-assessment nor the computer 
verification seem to be accurate. 
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Introduction 
The ability to judge the quality of one’s own work is one of the core skills that should be developed 
during university studies. Self-assessment has been viewed as a valuable assessment process through 
which student can learn to understand the expectations, criteria and standards used in assessment, and 
further, to be able to regulate own learning and acquire skills for lifelong learning (Falchikov & Boud, 
1989; Kearney, Perkins, & Kennedy-Clark, 2016). However, academic community seem to be 
resistant to change the prevailing assessment practices focusing on testing and grading, and practices 
such as self-assessment are scarcely implemented at course level (Boud et al., 2018; Postareff, 
Virtanen, Katajavuori, & Lindblom-Ylänne, 2012).  

In this paper, we draw attention to assessment practices in university first-year mathematics by 
examining an implementation of student self-assessment processes into large class setting. During 
this process, students frequently evaluated the quality of their learning outcomes, received feedback 
on their performance, and finally decided their own grades according to particular criteria. The 
intended learning outcomes were made transparent through a rubric including both content 
knowledge and generic skills, such as writing mathematics. The digital environment gave opportunity 
for monitoring learning process and giving real-time formative feedback in line with previous 
research on online assessment (Ćukušić, Garača, & Jadrić, 2014; Gigandi, Morrow, & Davis, 2011; 
Ibabe & Jauregizar, 2010), and further, it formed a basis of assessment of the student’s progress.  The 
emphasis of self-assessment was in developing student capability in making evaluative judgements 
(Ajjawi, Tai, Dawson, & Boud, 2018) and building their metacognition skills (Mok, Lung, Cheng, 
Cheung, & Ng, 2006), so that the students’ ability to self-regulate their learning for current and future 
learning would improve. We fill the gap in research by showing how, in the case of summative self-
assessment, the problems aroused by large class setting were resolved by using digital and automatic 
verification and real-time feedback.    
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Self-assessment as a Tool for Learning 

Self-assessment can be defined as a process during which student evaluate their own achievements 
and judge about their own performance (Falchikov & Boud, 1989). The judgements students make 
are based on information and evidence about their own performance collected from various sources 
(Yan & Brown, 2017). In this paper, we refer to self-assessment as a process in which the students 
evaluate their own progress and performance and give justifications for the result of their evaluation 
according to teacher-given criteria showing intended learning outcomes. 

The use of self-assessment has been shown to improve student engagement and motivation (e.g. 
Andrade & Du, 2007; Mok et. al, 2006), self-efficacy (Kissling & O’Donnell, 2015) and academic 
performance (Ibabe & Jauregizar, 2010), while the ability to self-assess is reportedly intermingled 
with ability to self-regulate own learning (Panadero, Brown, & Strijbos, 2016) and with life-long 
learning skills (Kearney et al., 2016). Consequently, the literature encourages the use of self-
assessment for formative purposes. Research shows that in large class settings digital environments 
with effective formative online assessment can foster a learner-centred focus and engagement in 
learning (Gigandi et al. 2011; Ibabe & Jauregizar, 2010). Recent results show that online self-
assessment can also improve students’ academic success (Ćukušić et al. 2014). However, the debate 
concerning students generating their own grades by self-assessing their own work is more 
complicated and constantly questioned (Boud et al., 2018; Tejeiro et al., 2010). One of the main 
challenges regarding self-assessment for grading is the question of accuracy: How can we be sure 
that students’ grades are valid and reliable? 

The Question of Accuracy 

Many studies have found high correlations between self- and teacher-ratings (Falchikov & Boud, 
1989; Kearney et al., 2016). The results indicate that students are able to make reasonable accurate 
judgements if they are properly provided with training and background information to the process. 
Also, students vary in their capability to evaluate their performance e.g., high achievers tend to 
underestimate their performance whereas low achievers tend to overestimate it (Boud & Falchikov, 
1989; Boud et al., 2013; Kearney et al., 2016). However, the accuracy of student self-assessments 
can be improved through using criteria and standards (Andrade & Du, 2007), while students need to 
have multiple opportunities for practising self-assessment in relation to given criteria, with feedback 
to help calibrate the judgements (Hosein and Harle, 2018; Kearney et al., 2016). On the other hand, 
Boud, Lawson and Thompson (2013) argue that increase in accurate self-assessment is not 
immediately transferable, because standards and criteria are somewhat domain-specific. Hence, we 
suggest that in order to understand the expectations, criteria, and disciplinary standards of 
mathematics, and to develop capabilities to make accurate and realistic assessments on own learning 
processes and outcomes, it is required that self-assessment processes are implemented in first-year 
university mathematics. However, in large class setting, typical to that learning context, the challenge 
how to give evidence-based feedback for improving the accuracy needs to be resolved. 

The DISA model 
This study is part of a research project centred around an assessment model called DISA (Digital 
Self-assessment). In the model, students assess their own learning outcomes throughout the course 



 

 

by using a detailed rubric articulating the subgoals of the ultimate intended learning outcomes. 
Learning goals and criteria are clearly identified, and through self-assessment activities the students 
are actively engaged with them. Evidence of learning is elicited during the course, and students 
receive feedback for their self-assessment from an automatic digital system. 

The feedback is generated in the following way. Every course task has been linked with the learning 
objectives it is supporting. This enables the automatic system to compute, based on the student’s 
coursework, an index from 0 to 1 for each learning objective. This index estimates how well the 
student has acquired the learning objective. From these indices, the system then computes tentative 
grades in each course topic. These tentative grades are compared to the student’s self-assessed grades, 
and the student is advised either to consider a higher or a lower grade for themselves. 

In addition, self-assessment is used for summative purpose in the end of the course, as the students 
self-assess and justify how well they have achieved the intended learning outcomes, and proceed in 
deciding their own course grade based on the self-assessment. In order to prevent abuse of the self-
assessment process, the system described above is used to verify the validity of the course grades. If 
the self-assessed topic grades differ too much from the computed ones, the student’s final course 
grade is disputed. Earlier results imply that the model supports students in using deep learning 
approach, and encourages them to study for themselves, not for an exam (Nieminen, Rämö, Häsä, & 
Tuohilampi, 2017). 

Aim of the Study 
This study aims at gaining a better understanding of the use of self-assessment as an integral part of 
assessment in a large first-year university mathematics course. In the course context, self-assessment 
is used to give students an opportunity to think metacognitively about their learning. We hypothesise 
that student active engagement into self-assessment processes is enhanced if these processes are 
valued in grading, but then, the question of accuracy needs to be resolved. This question is two-fold: 
firstly, we are interested in the validity of the student grades, in other words, whether they reflect true 
learning, both in content knowledge and domain-specific generic skills such as writing mathematics. 
Secondly, we need to examine the reliability of the automatic verification system: can it spot the cases 
where self-assessment is inaccurate? The research questions in this study are: 

1. How do the students’ evaluations of their own skills compare with evaluations performed by 
the automatic verification system? 

2. How does an expert judge the student’s acquired skills in cases where the automatic 
verification disagrees with student’s self-assessment? 

Method 
This study uses data collected from students taking a first year mathematics course at a major 
research-intensive university in Finland. The second author was the lecturer for the course. The course 
was a proof-based linear algebra course dealing with finite-dimensional vector spaces, and it lasted 
for seven weeks (half a term). During the course, students were given weekly problems to solve, part 
of which were assessed and given feedback on. Some of the tasks were assessed by the tutors, some 
by an automatic assessment system called Stack (Sangwin, 2013). Some tasks were also peer-
reviewed. 



 

 

The course was not graded with a final exam, but grading was done by self-assessment using the 
DISA model. The self-assessment was based on a detailed learning objectives matrix prepared by the 
teacher. The learning objectives were divided into 10 topics: six content-specific and four generic 
skills topics, and the students were asked to give themselves a grade from 0–5 in each of these topics, 
0 meaning fail. They were also asked to write down reasons for choosing that grade. In the end of the 
course, students chose their own final grade. They were left to decide by themselves how to combine 
the grades from the different topics. The DISA system was used to verify the final self-assessment. 

It is worth noting that, in the Finnish context, although the teacher is responsible for the course grades, 
these can be awarded by any means the teacher chooses. There is little fear of distorting the grades, 
as the final grade of a first-year mathematics course carries very little weight in the final outcome of 
a student’s study programme. Also, all courses and exams can be usually retaken as many times as 
the student wishes. 

The participants of this study were 158 students who took the linear algebra course described above, 
gave themselves their own grades using the DISA model, and gave consent for using their data. Most 
of the students were majoring in either mathematics, mathematics education or some other field 
related to mathematics such as computer science, physics or chemistry. Most students were first year 
students, but the cohort included also older participants, up to post-doctoral level. 

We narrow our study to two of the ten learning objective topics of the course: (1) “Matrices” (content-
specific) and (2) “Reading and writing mathematics” (generic skill). These two topics were chosen 
since both are among the most central topics of the course and there were relatively many tasks linked 
to them. Also, we wanted to compare self-assessments on a content-specific topic with those on a 
generic skill. Henceforth, these topics are abbreviated as [M] and [RW]. Examples of learning 
objectives pertaining to these topics are given in Table 1. 

Topic Skills corresponding 
to grades 1-2 

Skills corresponding to 
grades 3-4 

Skills corresponding to 
grade 5 

Matrices 
[M] 

I can perform basic 
matrix operations and 
know what zero and 
identity matrices are 

I can check, using the 
definition of an inverse, 
whether two given matrices 
are each other’s inverses 

I can apply matrix 
multiplication and 
properties of matrices in 
modelling practical 
problems 

Reading 
and writing 
[RW] 

I use course's notation 
in my answers 

I write complete, intelligible 
sentences that are readable 
to others 

I can write proofs for claims 
that concern abstract or 
general objects 

Table 1: Part of the learning objectives matrix of the course. In total, there were 10 topics and 10–15 
learning objectives in each topic 

To answer Research question 1, we compared the grades students gave themselves on the two topics 
in the final self-assessment with the results of the automatic verification of that self-assessment. The 
computations were done with R version 3.5.0. For Research question 2, coursework and final self-



 

 

assessment of two students whose self-assessment was poorly in line with the automatic verification 
were chosen for closer inspection. In this manuscript, we call them Student A and Student B. The two 
students’ anonymised answers to all of the written tasks as well as their Stack exercise points were 
analysed by the second author. This author was also the teacher of the course and can be regarded as 
an expert in the subject. When the expert was grading the students, she did not know how the students 
had assessed themselves. The expert read every written solution the student had submitted, and 
evaluated which learning objects in topics [M] and [RW] the student had reached.  

Every time the expert could see the student mastering a learning object, she made a note in the 
learning objectives matrix. After that, there were learning objectives for mastering of which the 
student had not provided any evidence in the written solutions. The expert then looked at the Stack 
exercises that were linked to these learning objectives to see how many points the student had received 
from them. She used the information in determining whether the student had reached the remaining 
learning objectives. When the expert had considered each learning objective, she awarded the student 
a grade in both topics by looking from the learning objectives matrix which grade the reached learning 
objectives corresponded to. In borderline cases, the expert used her expertise as a mathematician and 
teacher of the course. For the topic “Reading and writing mathematics”, the expert could only evaluate 
the student’s skills in writing as there were no tasks that were linked to reading skills. 

Results 
Research question 1: comparison of self-assessed grades with automatic verification 

The distributions of the self-assessed grades in the two topics [M] (Matrices) and [RW] (Reading and 
writing mathematics) are shown in Table 2. We see that the students gave the grades 3 and 4 more 
often for [RW] than for [M], but the top grade 5 was more common in [M] than in [RW]. 

Grade 1 2 3 4 5 

[M] 3 10 25 47 73 

[RW] 2 10 37 58 51 

Table 2: Frequencies of each grade in the two topics. 

The computer verification system computed tentative grades for the two topics for each student. The 
distribution of differences between the computed grade and student self-assessed grade are reported 
in Table 3. 

Difference -5 -4 -3 -2 -1 0 1 2 

[M] 1 1 5 20 26 86 19 0 

[RW] 0 2 6 15 20 75 34 6 

Table 3: Frequencies of the differences: computed grade minus self-assessed grade in the two topics. 

In [M], there are 86 matches, 53 cases in which the self-assessed grade was higher than the computed 
grade (negative difference), and only 19 cases in which the self-assessed grade was lower (positive 
difference). In [RW], there are 75 matches, 43 cases in which the self-assessed grade was higher, and 



 

 

40 cases in which the self-assessed grade was lower. In both topics, between 81-83 % of self-assessed 
grades lie within 1 grade point from the computed grade. 

Research question 2: Expert opinion in conflicted cases 

Student A’s self-assessed grades were lower than the computed ones. For both topics, the self-
assessed grade was 4 and computed grade 5. The expert’s evaluation agreed with the computed 
grades. The expert observed that Student A had done almost all tasks during the course. Even though 
not all the answers were correct, all the learning objectives in topic [M] were fulfilled. Students were 
asked to make corrections to some tasks, and student A had always resubmitted solutions written in 
good mathematical style. The student’s explanations were concise and readable, and the student was 
able to construct proofs concerning abstract mathematical objects. Based on this, the expert’s grade 
for topic [RW] was 5. 

Student B’s self-assessed grades were greater than the computed ones. For topic [M], the self-assessed 
grade was 5 and the computed grade 3. The expert’s evaluation yielded grade 4, that is, something in 
between. For [RW], the self-assessed grade was 3 and the computed grade 1. The expert’s evaluation 
agreed with the self-assessed one. The expert observed that Student B had submitted only a fraction 
of the course tasks. However, the expert was able to evaluate from the solutions that Student B 
accomplished almost all learning objectives in [M]. Some of Student B’s skills were shown in the 
intermediate steps of tasks that were not directly linked to topic [M]. For example, the student 
determined whether given vectors are linearly independent by forming a system of linear equations 
and calculating the determinant of the coefficient matrix. This showed that the student knew how 
invertibility of matrices is connected to the number of solutions of a system of linear equations even 
though the topic of the task was linear independence. Student B had not corrected any solutions when 
encouraged to. According to the expert, the student reached partially all the learning objectives in 
[RW], but did not fully master any of them, not even the ones corresponding to grade 1. For example, 
the student mixed up equivalence arrows with equality signs, wrote long, confused sentences and 
used “if–then” structures inside a proof in the place of assumptions and conclusions. However, the 
overall structures of the proofs were correct. Based on this, the expert’s interpretation was that the 
student’s grade for [RW] was 3. 

Discussion 
In this study, a new model of determining course grades via self-assessment was examined with a 
focus on the accuracy of the self-assessed grades. The students gave themselves grades in all course 
topics, and these grades were automatically verified by comparing them against the course work the 
students had done. We analysed the results of the verified self-assessment in two topics, one content-
specific topic (matrices) and one subject-related generic skill (reading and writing mathematics). 

The students’ self-assessment agreed well with the automatic verification. Most discrepancies are 
within one grade point, which can be explained by the coarseness of the grading scale: the “real” skill 
level is often between two grade points and must be forced to one or the other direction. This is true 
for any assessor, be it student, computer or teacher. The high agreement is not surprising, as previous 
studies have shown that explicit criteria and standards support self-assessment, as does frequent 
practice and feedback (Andrade & Du, 2007; Kearney et al., 2016). It remains to be studied how great 



 

 

an effect the feedback that the students received for their self-assessment exercises had on their final 
self-assessment. 

The students gave fairly good grades to themselves in both examined topics. For reading and writing 
mathematics, the grades were more concentrated around the second-best grade, whereas for matrices, 
the top grade was clearly the most common grade. Perhaps it was easier for the students to understand 
the learning objectives as well as recognise their achievements in the mathematical topic, and without 
clear evidence for mastery, they were hesitant to award themselves the best grade in a generic skill. 
Our results could be understood in the view of previous results (Falchikov & Boud, 1989) showing 
that in science courses, self-assessment was more accurate that in other fields.  

We examined more closely two students whose self-examined and computed grades differed. In the 
first case, self-evaluated grades were below the computed ones. The expert’s evaluation agreed with 
the computed grade. The student was a high achiever, and from previous studies we know that such 
students tend to underestimate their performance (Boud et al., 2013; Kearney et al., 2016). In the 
second case, the self-evaluated grades were above the computed ones. The expert’s evaluation was 
between the two for the mathematical topic and agreed with the self-assessed grade for the generic 
skill. In this case, the student had skipped many tasks which made it difficult for the automatic system 
to estimate the grade fairly. Also, the expert noted that the student seemed to have some skills from 
all grade categories in the learning objectives matrix, but not to have fully reached any. This kind of 
case would be very difficult for the automatic verification system to estimate correctly. 

The study used a method in which an expert evaluated students’ skills based on all the work they had 
done on the course, evaluating against the intended learning outcomes, not by grading individual 
tasks. The method suffered from some of the maladies related to teacher evaluation, such as time 
restriction and personal bias. The accuracy of teacher-grading is not an issue to be taken as obvious 
truth (Brown, 1997). One should also note that neither the expert nor the automatic system were able 
to evaluate students’ reading skills even though they were included in the self-assessed grades. 

This study opened a new way to critically examine a self-assessment model as a viable option for 
grading students. We did not find any fundamental problem with reliability. However, at least in one 
of the studied cases, the verification system did not estimate the student’s skills very well. A larger 
sample needs to be studied in order to find out whether such issues are common. Also, we need to 
study students’ written justifications for their grades in order to better understand what is involved 
when the self-assessment process does not go as intended. 
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