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ABSTRACT 

 

In this study, bistatic interferometric Synthetic Aperture 

Radar (InSAR) data acquired by the TanDEM-X mission 

were used for automated classification of sea ice over the 

Baltic Sea, in the Bothnic Bay. A scene acquired in March of 

2012 was used in the study. Backscatter-intensity, coherence-

magnitude and InSAR-phase, as well as their different 

combinations, were used as informative features in several 

classification approaches. In order to achieve the best 

discrimination between open water and several sea ice types 

(new ice, thin smooth ice, close ice, very close ice, ridged ice, 

heavily ridged ice and ship-track), Random Forests (RF) and 

Maximum likelihood (ML) classifiers were employed. The 

best overall accuracies were achieved using combination of 

backscatter-intensity & InSAR-phase and backscatter-

intensity & coherence-magnitude, and were 76.86% and 

75.81% with RF and ML classifiers, respectively. Overall, the 

combination of backscatter-intensity & InSAR-phase with 

RF classifier was suggested due to the highest overall 

accuracy (OA) and smaller computing time in comparison to 

ML. In contrast to several earlier studies, we were able to 

discriminate water and the thin smooth ice.  

 

Index Terms— Remote sensing, sea ice classification, 

random forests, Maximum likelihood, TanDEM-X. 

 

1. INTRODUCTION 

 

Synthetic Aperture Radar (SAR) data were used to monitor 

ice covered maritime regions for more than three decades. 

SAR data are independent of cloud coverage, and sunlight 

conditions [1]. SAR satellites are able to cover almost whole 

Earth within short periods while airborne and shipborne data 

have limitations regarding coverage and weather condition 

[2]. Sea ice classification is a critical topic that was 

investigated for many years. Majority of ice classification 

studies were done with C-band SAR data [3-5], and only few 

studies were done with X-band data. The reason is that 

spaceborne X-band SAR data were not readily available until 

recently [1,6].  

In the Baltic Sea, winter navigation is the main motivation for 

ice classification research. Finnish Meteorological Institute 

(FMI) provide daily ice charts for sea ice condition. FMI uses 

SAR satellites, especially operating at C-band, e.g., Radar 

Satellite-2 (RADARSAT-2) and, Sentinel-1 [7]. These 

sensors have good resolution, although extracting more 

information about detailed ice properties, ice ridges and 

heavily deformed ice requires sensors with higher resolution 

available from such missions as TanDEM-X. Another 

advantage of X-band SAR over C-band is higher sensitivity 

toward surface conditions [1,8]. Presently, the FMI service 

uses trained experts for sea ice classification and ice chart 

production. However, this method is time consuming and 

expensive. Furthermore, the same SAR data interpreted by 

different experts can, and often does, lead to somewhat 

different end results. Automatic sea ice classification has 

potential to solve these problems to considerable extent. To 

date, there are some demonstrations of automated ice 

classification using backscatter-intensity data [5,7]. Previous 

works [1,9,10] have concluded that using only the 

backscatter-intensity is not sufficient to automatically 

classify ice types due to similar backscatter-intensity values 

between classes. Studies focusing on interferometric SAR 

(InSAR) properties of sea ice [11,12,13] have demonstrated 

that coherence-magnitude data provides auxiliary 

information about sea ice characteristics and ice dynamics. In 

this study, we investigate the effect of using various 

SAR/InSAR features (backscatter-intensity, coherence-

magnitude and InSAR-phase) and their combinations for 

improving automatic sea ice classification at X-band, and try 

to establish an optimal workflow for automatic classification 

using data from the first spaceborne bistatic InSAR mission, 

TanDEM-X. To date, there was only one study [6] focusing 

on sea ice type classification from TanDEM-X data using the 

mean backscatter-intensity and coherence-magnitude values. 

Their method was applied over few types of sea ice such as 

fast ice, thin smooth ice, pancake ice and water. In this study, 
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we expand the scope and apply two state-of-the-art 

classification algorithms, Random Forests (RF) and 

Maximum likelihood (ML) on more types of sea ice (new ice, 

thin smooth ice, close ice, very close ice, ridged ice, heavily 

ridged ice and ship-track) by using more features and their 

combinations, and compare RF and ML classification 

algorithms. The objectives of the current study are: 

(i) To determine optimal combination of SAR/InSAR image 

features and their relative performance, for discriminating 

different sea ice classes using X-band InSAR data; 

(ii) To determine the optimal classification approach.  

 

2. MATERIALS AND METHODS 

 

2.1. Test site and InSAR  

The TanDEM-X SAR data were acquired near the Hailuoto 

Island in the north of the Baltic Sea on 30th March 2012. 

TanDEM-X coregistrated Single Look Slant Range Complex 

(CoSSC) product was used in the current study for ice type 

characterization. The scene included backscatter-intensity, 

coherence-magnitude and InSAR-phase were in stripmap 

mode, had bistatic operational mode and polarization HH 

were available. As high incidence angle imagery were 

suggested by Laanemae [6] for water/ice classification, the 

highest incidence available angle, 43.417 degrees was used 

in this study. A 7×7 boxcar filter was applied over SAR 

features, then the land area was removed by applying land 

masking. Image stretching was applied over image features 

for dynamic range equalization. This procedure re-distributes 

values of an image features over a wider or narrower range of 

values in output features. 

 

2.2. Reference classification map 

In the Baltic Sea, ice charts are prepared by the FMI experts. 

The ice charts provide a daily source of information on the 

ice conditions. The charts are based on visual interpretation 

of SAR imagery as the principal source of information [7]. 

Experts also use visible and thermal infrared imagery from 

Moderate Resolution Imaging Spectroradiometer (MODIS), 

in-situ observations, sea ice reports from icebreakers, and sea 

ice models in the production of the ice charts. TanDEM-X 

features are backscatter-intensity, coherence- magnitude and 

InSAR-phase. These features have not been used in ice chart 

preparation. These features help experts to make more 

accurate ice charts and also distinguish ice ridges, heavily 

deformed ice and new ice formation. In this study, TanDEM-

X features were used by sea ice expert in producing the 

reference map (Figure 1). 

  

2.3. Training and classifications (RF and ML) 

To improve classification performance, careful selection of 

training data is crucial [14]. In this study, the training plots 

were selected from reference map made by sea ice expert. Our 

reference map included eight types of sea ice (although one 

of them is water). In overall, six rectangular plots were 

selected per any class (three plots for training and three others 

for validation). Thus, a total of 24 (8*3=24) rectangular 

training plots were used. As our image features included huge 

number of pixels, it was necessary to choose a robust, 

effective classifier for sea ice classification. RF classifier has 

proven its power in handling classification with a big data of 

high dimensional feature spaces [15]. There are several free 

software tools offering RF implementation. In this study, 

Orfeo ToolBox (OTB) was used. Number of trees in the 

forest and the maximum depth of the tree were 100 and 5, 

respectively. Another popular supervised classification 

approach routinely used in remote sensing applications is 

Maximum Likelihod (ML). Implementation provided by the 

Sentinel Application Platform (SNAP) of ESA was used to 

perform the supervised ML pixel-based image classification. 

 

 
Fig. 1. Reference classification map produced by sea ice expert for 

March 20, 2012. Six plots were depicted from any classes (three 

training plots and three validation plots). Close ice class was 

enlarged in upper left corner of image, and also training and 

validation plots are shown on it. 
 

2.4. Using stratified sampling design for validation 

Accuracy assessment methodology includes three 

components, the response design, sampling design, and 

analysis. As the intention is to present results per each class 

in equally, the stratified sampling method was applied for 

validation. Three rectangular plots per every class were 

chosen randomly. Also, the majority voting in a ball shaped 

neighborhood with radius three was applied for filtering the 

classification results. 

 

3. RESULTS 

 

Based on 14 classification experiments, confusion matrices 

were calculated for seven types of single and combinations of 

features including backscatter-intensity, coherence-

magnitude, InSAR-phase, backscatter-intensity & coherence-

magnitude, backscatter Intensity & InSAR-phase, coherence-

magnitude & InSAR-phase, and backscatter-intensity & 

coherence-magnitude & InSAR phase features in RF and ML 

classifiers. The best overall accuracies (OAs) were achieved 

using combination of backscatter-intensity & InSAR-phase 



and backscatter-intensity & coherence-magnitude, and were 

76.86% and 75.81% with RF and ML classifiers, 

respectively. We summarized the user accuracies (UAs) of all 

input features and their combinations in Tables 1 and 2 for 

RF and ML classifiers. Figure 2 shows produced 

classification map of sea ice classes with the highest overall 

accuracy.  

 
Table 1: UA in RF classifier for each open water and sea ice classes, 

single features and their combinations (B = Backscatter-intensity, C 

= Coherence-magnitude, I= InSAR-phase). 

RF(UA) B C I B-C B-I C-I B-C-I 

Open-

water 100 100 100 100 100 100 100 

Ridged-ice 63.61 24.3 0 39.88 0 0.19 0 

Close-ice 8.93 80.29 36.56 83.88 95.5 93.91 96.13 

Very-
close-ice 96.9 56.02 0 96.84 94.38 0 92.74 

Ship-track 12.25 19.65 68.83 1.15 68.83 63.89 3.28 

Thin-

smooth-ice 70.4 95.62 99.29 80.21 91.76 100 92.99 

Heavily-
ridged-ice 49.13 4.54 0 61.03 100 97.4 72.07 

New-ice 100 100 100 100 100 100 100 

 

 

Table 2: UA in ML classifier for each water and sea ice classes, 

single features and their combinations (B = Backscatter-intensity, C 

= Coherence-magnitude, I= InSAR-phase). 

ML(UA) B C I B-C B-I C-I B-C-I 

Open-water 100 100 100 100 100 100 100 

Ridged-ice 82.25 68.89 0 80.4 0.57 0 3.05 

Close-ice 18.06 81.74 74.27 88.21 95.31 95.5 97.02 

Very-close-
ice 76.37 41.98 0 36.95 92.51 4.91 13.09 

Ship-track 12.91 68.66 68.83 45.8 63.32 47.28 44.49 

Thin-smooth-

ice 55.69 46.23 73.55 69 85.46 100 93.87 

Heavily-

ridged-ice 45.23 0 0 25.54 100 93.93 100 

New-ice 100 100 100 100 100 100 100 

 

 
Fig. 2. Final RF classification map (backscatter-intensity & InSAR-

phase combination with RF classification). 

4. DISCUSSION 

 

4.1. Relative performance of different SAR features and 

their combinations in RF and ML classifiers 

 

Accuracy assessment was performed for the different 

combinations of features. OAs for produced maps in RF-

experiments indicated that combinations of backscatter-

intensity & InSAR-phase combination had the best OA by 

amount 76.86%, although backscatter-intensity & coherence-

magnitude and coherence-magnitude & InSAR-phase 

combinations were listed in second and third orders by 

70.11% and 67.53% respectively. The computation time for 

RF classification step was almost two minutes per any image 

feature and it increased a bit by using two or three features 

combination. OAs in ML-experiments indicated that 

backscatter-intensity & coherence-magnitude and 

backscatter-intensity & InSAR-phase combinations had the 

highest OAs by amounts 75.81% and 75.63% respectively. 

Coherence-magnitude feature had the third highest OA with 

73.52% in ML-experiments. The computation time for ML 

classification was more than three minutes per any image 

feature and it increased a bit by using two or three features 

combination. 

 Based on Tables 1 & 2, open water and new ice areas were 

very well classified in classification experiments, with 100% 

UA. InSAR-phase feature and its combination by other 

features were not able to classify ridged ice (almost 0%). UAs 

of close ice were better when features were combined. 

Heavily ridged ice was not classified by separate coherence-

magnitude and InSAR-phase features in classification 

experiments although it was well classified by using 

backscatter-intensity & InSAR-phase and backscatter-

intensity & coherence-magnitude & InSAR-phase 

combinations in ML experiments and backscatter-intensity & 

InSAR-phase combination in RF experiments. Unlike heavily 

ridged ice, thin smooth ice was almost completely classified 

by using separated coherence-magnitude and InSAR-phase 

features in RF classifier; but their UAs in ML-experiments 

were much lower than RF-experiments. Thin smooth ice was 

extremely well (up to 100% UA) classified using coherence-

magnitude & InSAR-phase combination in classification 

experiments. The ship-track did not have high UAs in RF and 

ML classification experiments. Our algorithms were partly 

successful in detecting the ship-track feature, but the 

properties of the type of brash ice can be found also in 

naturally formed ice regimes clearly representing something 

else than ship-tracks. Therefore we suggest other methods for 

discriminating ship tracks from the rest of the ice, e.g. by 

segmentation and shape feature detection [16]. Backscatter-

intensity was a robust feature in very close ice classification. 

Very close ice had the highest UA in RF by using only 

backscatter-intensity feature, it was also high in ML classifier 

as well, although the highest one in ML experiments was 

backscatter-intensity & InSAR-phase combination. Based on 

the discussion, we can conclude that backscatter-intensity & 



InSAR-phase and backscatter-intensity & coherence-

magnitude combinations in RF and ML classification 

experiments were the best choices respectively. However, our 

recommendation is using RF classification approach based on 

combined backscatter-intensity & InSAR-phase due to 

following reasons: 1) the highest OA among all RF and ML 

experiments, 2) the processing and run time was quicker 

compared to ML. 

 

4.2. Comparison with previous studies 

 

Laanemae et al. [6] classified water and sea ice types over 

coastal sea in the Gulf of Riga based on the threshold values 

of the backscatter-intensity and coherence-magnitude 

properties for fast ice, thin smooth ice, pancake ice and water. 

Calculations were performed by using pair HH-Monostatic-

VV-Monostatic data for coherence-magnitude calculation 

and HH-Monostatic data for intensity calculations. Figure 1 

in [6] and previous studies [17] show that discrimination 

between water and thin smooth was very difficult but in our 

study, water and thin smooth ice were well discriminated due 

to using bistatic Tandem-X imaging mode. Temporal 

baseline of bistatic Tandem-X imaging mode is zero and 

wind speed would not be able to make decorrelation.  
 

5. CONCLUSION 

 

In this study, different features (such as backscatter-intensity, 

coherence-magnitude and InSAR-phase) and their 

combinations (backscatter-intensity & coherence-magnitude, 

backscatter Intensity & InSAR-phase, coherence-magnitude 

& InSAR-phase, and backscatter-intensity & coherence-

magnitude & InSAR phase) were used for discriminating 

different sea ice classes (ridged ice, close ice, very close ice, 

ship-track, thin smooth ice, heavily ridged ice and new ice) 

and open water. Two supervised classifiers, RF and ML, were 

applied.  The best results were provided by combined 

backscatter-intensity & InSAR-phase (OA of 76.86% when 

RF was applied) and combined backscatter-intensity & 

coherence-magnitude (OA of 75.81% with ML approach). 

RF algorithm turned out to be a preferable algorithm due to 

short runtime, higher overall and user accuracies. This study 

is a first approach to use backscatter-intensity, coherence-

magnitude and InSAR-phase features simultaneously in sea 

ice classification. Also comparison RF and ML classifiers 

over feature combinations is another novelty of this paper. 

Discrimination of water and thin smooth ice was difficult in 

previous studies [6, 17] although this problem was solved in 

our study due to using bistatic imaging mode. Our further 

research experiments over this test site are described in [18]. 
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