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Abstract

We study the dynamics of the multi-species Ricker model given by the map
T : Rn+ → Rn+ defined by

Ti(x) = xi exp(νi(1−
n∑
j=1

µijxj)), νi, µij > 0, i, j = 1, · · · , n.

It is known that under mild conditions (for small νi), T admits a carrying simplex
Σ, which is a globally attracting invariant hypersurface of codimension one. We
define an equivalence relation relative to local stability of fixed points on the
boundary of Σ on the space of all 3D Ricker models admitting a carrying simplex.
There are a total of 33 stable equivalence classes. We list them in terms of simple
inequalities on the parameters νi and µij , and draw the phase portrait on Σ
of each class. Classes 1 − 25 and 33 have trivial dynamics, i.e. every orbit
converges to some fixed point, and in particular, the unique positive fixed point
in class 33 is globally asymptotically stable. Within each of classes 26 to 31, there
exist Neimark-Sacker bifurcations, while in class 32 Neimark-Sacker bifurcations
cannot occur. Class 29 can admit Chenciner bifurcations, so two isolated closed
invariant curves can coexist on the carrying simplex in this class. Each map
in class 27 admits a heteroclinic cycle, i.e. a cyclic arrangement of saddle fixed
points and heteroclinic connections. As νi increases the carrying simplex will
break, and chaos can occur for large νi. We also numerically show that the 4D
Ricker map can admit a carrying simplex containing a chaotic attractor, which
is found in competitive mappings for the first time.
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1. Introduction

By Hirsch’s carrying simplex theory [24], it is known that every strongly
competitive and dissipative system of Kolmogorov ODEs for which the origin is
a repeller possesses a globally attracting invariant hypersurface Σ of codimension
one, such that every nontrivial orbit in the nonnegative cone Rn+ is asymptotic to
one in Σ. This result implies that n-dimensional strongly competitive continuous-
time systems behave like general (n − 1)-dimensional systems, and hence the
Poincaré-Bendixson theorem holds for the 3-dimensional case. Based on this
remarkable theory, many researchers have obtained a lot of results on nontrivial
dynamics for 3-dimensional continuous-time competitive systems, including the
existence and multiplicity of limit cycles [21, 22, 23, 28, 35, 39, 57, 58, 62]; the
existence of centers and heteroclinic cycles [8, 35, 62]; and ruling out periodic
orbits [8, 35, 54, 62]. Moreover, the readers can consult [2, 3, 5, 29, 30, 42, 61,
60, 59] for the geometrical properties of carrying simplices and their impact on
the dynamics.

The research on the existence of carrying simplex for discrete-time systems
began with Smith’s work [52] on the dynamical behavior of the Poincaré map
induced by time-periodic competitive Kolmogorov ODEs. Based on the early
work of Hirsch [24] and Smith [52], there have been many results on the existence
of carrying simplex for competitive mappings; see [56, 11, 25, 49, 4, 34, 33]. In
the recent article [33], Jiang and Niu provided a readily checked criterion that
guarantees the existence of carrying simplex for the continuously differentiable
map T : Rn+ → Rn+ of the type

T (x) = (T1(x), · · · , Tn(x)) = (x1G1(x), · · · , xnGn(x)), (1)

where Gi(x) > 0, i = 1, · · · , n, for all x ∈ Rn+. They applied this criterion to show
that all maps in a large family of continuously differentiable competitive maps
have a carrying simplex. Their result enriches the existing literature on discrete-
time competitive dynamical systems with a carrying simplex. For competitive
maps given in (1) that are not necessarily differentiable, see, e.g. [25, 49]. We
refer the readers to [33] for a review of the development of carrying simplex theory
for competitive mappings and the comparison among different criteria.

The importance of the existence of carrying simplex Σ stems from the fact
that Σ captures the relevant long-term dynamics. It contains all non-trivial fixed
points, periodic orbits, invariant closed curves and heteroclinic cycles, etc. In
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order to analyze the global dynamics of such discrete-time systems, it suffices
to investigate the dynamics on Σ. However, compared with the continuous-time
competitive systems, the research on discrete-time competitive systems via carry-
ing simplices is much less. In [49] Ruiz-Herrera provided an exclusion criterion for
discrete-time competitive models of two or three species via carrying simplices.
Jiang and Niu [32] deduced an index formula on the sum of the indices of all fixed
points on Σ for the three-dimensional map T of type (1):∑

θ∈Ev

I (θ, T ) + 2
∑
θ∈Es

I (θ, T ) + 4
∑
θ∈Ep

I (θ, T ) = 1. (2)

Here I (θ, T ) stands for the index of T at the fixed point θ, and Ev, Es, and Ep
are the sets of nontrivial axial, planar, and positive fixed points, respectively.
Based on the index formula (2), an alternative classification for 3-dimensional
(n = 3) Atkinson–Allen models was given in [32] and an alternative classification
for 3-dimensional Leslie–Gower models was also given in [33]. Neimark–Sacker
bifurcations were investigated within each class of these two types of models.
Neimark-Sacker bifurcation is the birth of an invariant closed curve from a fixed
point in discrete-time dynamical systems, and either all orbits are periodic, or
any orbit is dense on the invariant closed curve. Such an invariant closed curve
corresponds to either subharmonic or quasiperiodic solutions in continuous-time
systems. In [34], Jiang et al. studied the occurrence of heteroclinic cycles via
carrying simplices for competitive maps (1) and provided their stability criteria.

In his seminal paper [45], Ricker introduced the discrete-time model

xn+1 = T (xn) := xne
r(1−xn), n = 0, 1, 2, . . . (3)

to describe the time evolution of the density x of a single-species (fish) population.
It has been extensively studied, for instance by May and Oster [41] who showed
that every orbit converges to the positive fixed point for r ≤ 2, and it exhibits a
scenario of chaotic behavior for large values of r.

The model (3) can be extended to the case of N species for instance in the
following way assuming competition in the nursery only.

Let xi be the density of newborn juveniles of species i in the beginning of
a season and let zi(t) be the corresponding densities during the juvenile period.
We assume that the juvenile period is short (of length ε) and that the juveniles
compete intensively, that is, with large Lotka–Volterra competition coefficients
aij/ε. The dynamics of the juveniles is then given by the following initial value
problem:

d

dt
zi(t) = −zi(t)

n∑
j=1

aij
ε
zj(t), 0 < t < ε, zi(0) = xi. (4)
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Integrating (4) one obtains

zi(ε) = xie
−
∑n
j=1

aij
ε

∫ ε
0 zj(t)dt (5)

and letting ε ↓ 0 in (5) one obtains

zi(0+) = xie
−
∑n
j=1 aijxj . (6)

The quantity in (6) represents those of species i that survived the juvenile period.
We now further assume that of these a fraction Fi survives as adults to the
beginning of the next season when they give birth to on average βi offspring after
which they die. Denoting

R
(i)
0 = βiFi, (7)

νi = lnR
(i)
0 (8)

and
µij =

aij
νi

(9)

one obtains the following map that takes the population densities from the be-
ginning of one season to the beginning of the next one:

Ti(x) = xi exp(νi(1−
n∑
j=1

µijxj)), i = 1, · · · , n. (10)

The difference equation
xn+1 = T (xn) (11)

with T given by (10) is called the multi-species Ricker model and it is the object

of study in this paper. The number R
(i)
0 is the basic reproduction ratio (expected

life time production of offspring) of species i in a virgin environment (in the
absence of competition). We shall (slightly sloppily) call νi the intrinsic growth

rate of species i. If R
(i)
0 < 1 or, equivalently, νi < 0, species i will go extinct. We

shall therefore assume that νi > 0 for i = 1, 2, . . . , n. We shall also assume that
the competition coefficients µij > 0.

Note that the map (10) is of type (1).
In the case of two competing species (n = 2), the map (10) was analyzed in

detail by Smith [53], who showed that it has trivial dynamics provided ν1, ν2 < 1.
Roeger [46] studied the local dynamics of the positive fixed point and Neimark-
Sacker bifurcations for the special 3D maps (10) with ν1 = ν2 = ν3 when the
species compete in the rock-scissors-paper type. Hofbauer et al. [26] studied the
long term survival of n species in models governed by (10). Hirsch showed that
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under mild conditions the Ricker map (10) possesses a carrying simplex by using
his criterion (without a proof) provided in [25], which was proved rigorously by
Ruiz-Herrera [49]. Roughly speaking, the Ricker map (10) admits a carrying sim-
plex when the growth rates νi > 0 are small, that is, when the basic reproduction

ratios R
(i)
0 are only slightly greater than 1.

In this paper, we define an equivalence relation on the space of all 3D Ricker
maps (10) which admit a carrying simplex. Two such Ricker maps are said to
be equivalent relative to ∂Σ (the boundary of Σ) if their boundary fixed points
have the same locally dynamical property on Σ after a permutation of the indices
{1, 2, 3}. Then we classify all 3D Ricker maps (10) admitting a carrying simplex
by this equivalence, and derive a total of 33 stable equivalence classes. Thus
we can investigate the qualitative properties of the orbits, bifurcations and the
occurrence of heteroclinic cycles within each class. Classes 1 − 18 have trivial
dynamics, i.e. all nontrivial orbits converge to fixed points on ∂Σ. It is shown
that Neimark-Sacker bifurcations do not occur in classes 19 − 25 and class 32
while they do occur in classes 26 − 31. Therefore, there exist some maps from
classes 26 − 31 possessing closed invariant curves on Σ. Numerical experiments
show that the Ricker model can possess attracting quasiperiodic curves on the
carrying simplex. Class 29 can also admit Chenciner bifurcations, which imply
that two isolated closed invariant curves can coexist on the carrying simplex in
this class. Each map from class 27 always has a heteroclinic cycle, i.e. a cyclic
arrangement of saddle fixed points and heteroclinic connections. The stability
criteria on heteroclinic cycles are provided further. Cushing [9], Davydova et al.
[10] and Jiang et al. [34] also found this cyclical fluctuation phenomenon in many
other models. When both the positive fixed point and the heteroclinic cycle are
repelling for the map in class 27, numerical simulations show that there may also
exist an attracting invariant closed curve on the carrying simplex surrounding
the positive fixed point.

Unlike the Atkinson–Allen models and Leslie–Gower models, which always
admit a carrying simplex [33], the carrying simplex will break when the growth
rates νi are large for Ricker models. By specific examples we numerically show
that the carrying simplex disappears while chaotic attractors occur as the growth
rates increase. We also construct a 4D Ricker map to admit a carrying simplex
containing a chaotic attractor, which is first found for competitive mappings. This
also implies that for 4D or higher dimensional Ricker maps, chaotic attractors can
occur in the carrying simplex. Moreover, in this example, two routes to chaos are
detected; one is quasiperiod-doubling cascades leading to chaos, and the other is
cascades of homoclinic-doubling bifurcations leading to chaos. These phenomena
are also first found for competitive mappings which admit a carrying simplex.

The paper is organized as follows. Section 2 are some notations. In Section 3,
we recall the results on the existence of carrying simplex and the index formula.
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We provide conditions to guarantee that the Ricker map (10) admits a carrying
simplex, and prove that any 2D map admitting a carrying simplex has trivial
dynamics. In Section 4, we define an equivalence relation on the space of all
3D Ricker maps admitting a carrying simplex and derive a total of 33 stable
equivalence classes. The dynamics within each class is studied further. In section
(5), we study the routes to chaos and the relation between chaos and the carrying
simplex numerically. In the appendix, the 33 stable equivalence classes in terms
of simple inequalities on the parameters are listed in Table A.1. We also present
the corresponding phase portraits on their carrying simplices.

2. Notation

Throughout this paper, we reserve the symbol n for the dimension of the
euclidean space Rn and the symbol N for the set {1, · · · , n}. We will denote
by {e{1}, · · · , e{n}} the usual basis for Rn. The usual nonnegative cone will be
denoted by Rn+ := {x ∈ Rn : xi ≥ 0,∀i ∈ N}. The interior of Rn+ is the open cone

Ṙn+ := {x ∈ Rn+ : xi > 0, ∀i ∈ N} and the boundary of Rn+ is ∂Rn+ := Rn+\Ṙn+. We
write Z+ for the set of nonnegative integers. Let HJ = {x ∈ Rn : xj = 0 for j /∈
J}, H+

J = HJ ∩ Rn+, and Ḣ+
J = {x ∈ H+

J : xj > 0 for j ∈ J}, where ∅ 6= J ⊆ N .
We denote by H+

{i} the ith positive coordinate axis and by πi = {x ∈ Rn+ : xi = 0}
the ith coordinate plane. The symbol 0 stands for both the origin of Rn and the
real number 0.

Given two points x, z in Rn, we write x ≤ z if z − x ∈ Rn+, x < z if z − x ∈
Rn+ \{0}, and x� z if z−x ∈ Ṙn+. The reverse relations are denoted by ≥, >,�,
respectively.

Let X ⊂ Rn. For a map T : X → X, we denote the positive orbit (trajectory)
emanating from y ∈ X for T by the set {y(j) : j ∈ Z+}, where y(j) = T j(y) with
y(0) = y. A set V ⊂ X is positively invariant under T , if T (V ) ⊂ V and invariant
if T (V ) = V . A fixed point y of T is a point y ∈ X such that T (y) = y. We call
z ∈ X a k-periodic point of T if there exists some positive integer k > 1, such that
T k(z) = z and Tm(z) 6= z for any positive integer m < k. The k-periodic orbit of
the k-periodic point z, {z, z(1), z(2), . . . , z(k − 1)}, is often called periodic orbit
for short. A quasiperiodic curve is a simple closed invariant curve with every
orbit being dense.

Given a k × k square matrix A, we write A ≥ 0 if A is a nonnegative matrix
(i.e., all its entries are nonnegative) and A > 0 if A is a positive matrix (i.e., all
its entries are positive). The spectral radius of A, denoted by ρ(A), is defined to
be the maximum of the norms of its eigenvalues. Given ∅ 6= J ⊆ N , we denote
by AJ the submatrix of A with rows and columns from J . We shall ambiguously
use I to denote the identity matrix and the identity mapping.
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A map T : Rn+ → Rn+ is competitive (or retrotone) in a subset W ⊂ Rn+ if for
all x, z ∈W with Tx < Tz one has that xi < zi provided zi > 0.

A carrying simplex for the map T is a subset Σ of Rn+ \{0} with the following
properties:

(P1) Σ is compact, invariant and unordered;

(P2) Σ is homeomorphic via radial projection to the (n−1)-dimensional standard
probability simplex ∆n−1 = {x ∈ Rn+ :

∑
i xi = 1};

(P3) for any x ∈ Rn+\{0}, there exists some z ∈ Σ such that lim
j→∞

|T j(x)−T j(z)| =
0;

(P4) T (Σ) = Σ, and T : Σ 7→ Σ is a homeomorphism.

We denote the boundary of the carrying simplex Σ relative to Rn+ by ∂Σ =

Σ ∩ ∂Rn+ and the interior of Σ relative to Rn+ by Σ̇ = Σ \ ∂Σ.
Assume that

νi < µii/
n∑
j=1

µij , i = 1, · · · , n, or νi < 1/(
n∑
j=1

µij
µjj

), i = 1, · · · , n. (12)

We denote the set of all maps taking Rn+ into itself by T (Rn+) and the set of
all Ricker maps on Rn+ which satisfy (12) by CRC(n). In symbols:

CRC(n) := {T ∈ T (Rn
+) : Ti(x) = xi exp(νi(1−

n∑
j=1

µijxj)), νi, µij > 0, (12) holds, i, j ∈ N}.

Let U be the n× n matrix with entries µij , and E(T ) be the set of the fixed
points of T ∈ CRC(n), i.e. E(T ) = {x ∈ Rn+ : T (x) = x}.

Definition 2.1. Let T, T̂ ∈ CRC(n). T and T̂ are said to be equivalent relative to
∂Σ if there exists a permutation σ of N , such that T has a nontrivial fixed point
qJ ∈ E(T )∩ Ḣ+

J if and only if T̂ has a nontrivial fixed point q̂σ(J) ∈ E(T̂ )∩ Ḣ+
σ(J),

and further qJ has the the same hyperbolicity and local dynamics as q̂σ(J) for any
∅ 6= J $ N .

Definition 2.2. A map T ∈ CRC(n) is said to be stable relative to ∂Σ if all the
fixed points on ∂Σ are hyperbolic. We say that an equivalence class is stable if
each mapping in it is stable relative to ∂Σ.

3. Preliminaries

From now on we assume that T (x) = (x1G1(x), · · · , xnGn(x)) : Rn+ → Rn+ is
a C1 map with Gi(x) > 0 for all x ∈ Rn+. Note that this implies that Ti(x) > 0
if and only if xi > 0 and, in particular, that T−1({0}) = {0}.
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3.1. The existence of carrying simplex

For the map T , Hirsch developed a theory on the existence of a carrying sim-
plex in [25], where the conclusions were only stated, but not proved. By applying
his result to the Ricker map, he proved that the Ricker map (10) admits a car-
rying simplex if the parameters satisfy (12). The statement of Hirsch’s Theorem
in [25] was rigorously proved by Ruiz-Herrera [49] under similar assumptions to
Hirsch’s. However, here we use the readily checked criterion provided by Jiang
and Niu [33] to check that the Ricker map (10) admits a carrying simplex under
the condition (12), which is easier to verify in application. So we first recall the
criterion provided in [33] on the existence of a carrying simplex for the map T .

Theorem 3.1 (Existence Criterion of Carrying Simplex [33]). Suppose that

Υ1) ∂Gi(x)/∂xj < 0 holds for any x ∈ Rn+ and i, j ∈ N ;

Υ2) ∀i ∈ N , T |H+
{i}

: H+
{i} → H+

{i} has a fixed point q{i} = qie{i} with qi > 0;

Υ3) ∀x ∈ [0, q] \ {0}, Gi(x) +
∑

j∈κ(x) xj
∂Gi(x)
∂xj

> 0 holds for any i ∈ κ(x) (or

Gi(x) +
∑

j∈κ(x) xi
∂Gi(x)
∂xj

> 0 holds for any i ∈ κ(x)), where κ(x) = {j :

xj > 0} is the support of x and q =
∑
q{i} = (q1, · · · , qn).

Then T possesses a carrying simplex Σ.

Condition Υ1) means that Gi(y) < Gi(x) for all i ∈ N provided x < y. This
follows from

Gi(y)−Gi(x) =

∫ 1

0
DGi(xs)(y − x)ds,

where xs = x + s(y − x) with s ∈ [0, 1]. Together with Υ2), Υ1) implies
Gi(0) > Gi(q{i}) = 1 for all i ∈ N , so 0 is a hyperbolic repeller for T . Υ3)
implies that detDT (x) > 0 for all x ∈ [0, q], and together with Υ1) it guarantees
(DT (x)κ(x))

−1 > 0 for all x ∈ [0, q] \ {0} by the proof of Theorem 3.1 in [33].
Therefore, T is competitive and one-to-one in [0, q] by Proposition 4.1 in [49].

It is easy to check that the Ricker map (10) satisfies Υ3) in Theorem 3.1 if
condition (12) holds, so each map T ∈ CRC(n) satisfies the conditions Υ1)–Υ3)
in Theorem 3.1. Therefore, every Ricker map in CRC(n) is competitive in [0, q],
and moreover, we have the following.

Proposition 3.1. Every map T ∈ CRC(n) admits a carrying simplex Σ.

Theorem 3.2. Consider the two-dimensional map T (x1, x2) = (x1G1(x), x2G2(x))
taking R2

+ into R2
+. If T admits a carrying simplex Σ, then it has trivial dynam-

ics, i.e. every nontrivial orbit converges to some fixed point on Σ.
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Proof. Note that T (Σ) = Σ. Consider the homeomorphism T |Σ : Σ → Σ, where
T |Σ is the restriction of T on Σ. Since Σ is homeomorphic to ∆1 = {x ∈ R2

+ :
x1 + x2 = 1}, there exists a homeomorphism h taking [0, 1] onto Σ. Thus,

f = h−1 ◦ T |Σ ◦ h : [0, 1]→ [0, 1]

is a homeomorphism which is topologically conjugate to T |Σ and 0, 1 are its two
fixed points. It follows that f is a strictly increasing function. Take x ∈ [0, 1]. If x
is not fixed, i.e. f(x) 6= x, then without loss of generality, assume that x < f(x).
So, we obtain that

0 < x < f(x) < · · · < fk−1(x) < fk(x) < · · · < 1.

Therefore, there exists some fixed point α ∈ [0, 1] such that fk(x)→ α as k →∞.
At this moment, we have proved that each orbit of T |Σ converges to some fixed
point on Σ. Then together with the property (P3) of Σ, one can obtain the
result.

Corollary 3.1. Any two-dimensional map (1) satisfying the conditions Υ1)−Υ3)
in Theorem 3.1 has trivial dynamics. In particular, every map T ∈ CRC(2) has
trivial dynamics.

Remark 3.1. Since the carrying simplex is codimension-one, a 1D map admit-
ting a carrying simplex is equivalent to the fact that it possesses a positive fixed
point attracting all nontrivial points. Theorem 3.2 and Corollary 3.1 imply that
such 2D maps also have trivial dynamics, in which chaos even periodic motions
cannot appear. Such trivial dynamics for 2D discrete-time competitive systems
defined on [0, q] was also analyzed by an alternative way in [53].

Roughly speaking, Proposition 3.1 states that the Ricker map (10) admits a
carrying simplex when the growth rates νi > 0 are small. Indeed, when some
νi is sufficiently big, even the dynamics of species i in the absence of the others
becomes chaotic, and hence the carrying simplex will break, because ∂Σ contains
any carrying simplex of each subsystem restricted to the boundary and the carrying
simplex ∂Σ∩H+

{i} is a fixed point for the 1D map T |H+
{i}

which implies that every

orbit on H+
{i} cannot be chaotic. In section 5, we numerically show that the

carrying simplex breaks while chaos occurs as the growth rates increase by specific
examples in detail. Moreover, for 4D or higher dimensional systems, strange
attractors do occur in the carrying simplex, i.e. the carrying simplex may contain
some strange attractors.

3.2. The index formula on the carrying simplex

Let F = T − I. Let x be a fixed point of T , that is, a zero of F . The index
of T at x is denoted by I (x, T ) and the degree of F at x is denoted by V (x, F ).
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If detDF (x) 6= 0, we have

I (x, T ) = V (x,−F ) = (−1)nsgn(detDF (x)) = (−1)nV (x, F ).

Assume n = 3. We call the fixed point x of the map T : R3
+ → R3

+ an axial
fixed point if it is on some coordinate axis; a planar fixed point if it lies in the
interior of some coordinate plane; and a positive fixed point if it is in Ṙ3

+. Denote
the set of all nontrivial axial, planar, and positive fixed points by Ev, Es, and Ep,
respectively. For the reader’s convenience, we recall the index formula in [32].

Lemma 3.1 (Theorem 3.2 in [32]). Suppose that T : R3
+ → R3

+ is given by (1)
and satisfies ∂Gi/∂xj < 0 for any x ∈ R3

+. Assume further that T possesses
a carrying simplex Σ and the continuous-time system ẋ = F (x) = T (x) − x is
dissipative with the origin 0 being a repeller. If T has only finitely many fixed
points on Σ and 1 is not an eigenvalue of any of their Jacobian matrices, then∑

θ∈Ev

I (θ, T ) + 2
∑
θ∈Es

I (θ, T ) + 4
∑
θ∈Ep

I (θ, T ) = 1.

Now we consider the map T ∈ CRC(3). Suppose that all fixed points of
T are isolated. Besides the trivial fixed point 0, T has three axial fixed points
q{1} = (1/µ11, 0, 0), q{2} = (0, 1/µ22, 0), q{3} = (0, 0, 1/µ33). In the interior of πi,
there may exist a planar fixed point v{i} satisfying

µjixi + µjjxj + µjkxk = 1, xi = 0, i 6= j 6= k 6= i. (13)

T may also admit a positive fixed point p in Ṙ3
+ which satisfies

µi1x1 + µi2x2 + µi3x3 = 1, i = 1, 2, 3. (14)

Note that the planar fixed point and positive fixed point satisfy linear equations
(13) and (14), respectively, so the planar fixed point in each coordinate plane or
the positive fixed point is unique if they exist. We set I (v{i}, T ) = 0 (I (p, T ) =
0), if the planar (positive) fixed point v{i} (p) does not exist. The following
corollary follows from the above analysis and Lemma 3.1 immediately.

Corollary 3.2. Consider T ∈ CRC(3). If the fixed points are isolated and 1 is
not an eigenvalue of each of Jacobian matrices at the fixed points on Σ, then we
have

3∑
i=1

(I (q{i}, T ) + 2I (v{i}, T )) + 4I (p, T ) = 1.
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Remark 3.2. Let T ∈ CRC(n). If T admits a unique positive fixed point p =
(p1, · · · , pn), i.e.,

(Uxτ )i = 1, i = 1, · · · , n (15)

has a unique positive solution, then 1 is not an eigenvalue of DT (p) = I −
diag[piνi]U , where diag[piνi] denotes the diagonal matrix with the diagonal entries
piνi. Otherwise, 0 is an eigenvalue of the matrix diag[piνi]U , and hence detU =
0. Then (15) has either no solution, or infinitely many solutions, a contradiction.
Therefore, the index of p is either 1 or −1. Note that (Upτ )i = 1, so the sum of
the ith row of the positive matrix M := diag[νi]Udiag[pi] is νi < 1 (see (12)). It
then follows from Perron-Frobenius theorem that 0 < ρ(M) < 1 is an eigenvalue
of M and the magnitudes of the other eigenvalues are all less than 1. Set λ∗ :=
1− ρ(M). Since diag[piνi]U and M have the same eigenvalues, 0 < λ∗ < 1 is a
real eigenvalue of DT (p) whose associated eigenvector is strictly positive and all
the other eigenvalues possess real parts greater than 0 and less than 2.

4. Dynamics of Ricker maps

In this section, we analyze the dynamics of the map T ∈ CRC(3):

Ti(x) = xi(exp(νi(1− µi1x1 − µi2x2 − µi3x3))), i = 1, 2, 3. (16)

Recall that each T ∈ CRC(3) admits a 2-dimensional carrying simplex Σ which
is homeomorphic to ∆2. Each coordinate plane πi is invariant under T , and the
restriction of T to it is a 2-dimensional map T |πi ∈ CRC(2), which admits a one-
dimensional carrying simplex, so ∂Σ is composed of the one-dimensional carrying
simplices of the restricted maps T |πi .

4.1. Classification of the 2-dimensional maps

In this subsection, we study the map T ∈ CRC(2):

Ti(x) = xi(exp(νi(1− µi1x1 − µi2x2))), i = 1, 2, (17)

which takes R2
+ into itself. T admits a one-dimensional carrying simplex Σ which

is homeomorphic to ∆1, and Corollary 3.1 implies that any map T ∈ CRC(2) has
trivial dynamics. A detailed analysis of the dynamics is given below.

Besides the trivial fixed point 0 which is a hyperbolic repeller, T admits two
axial fixed points q{1} : (1/µ11, 0), q{2} : (0, 1/µ22). The fixed point q{i} is just
the intersection of the line Si = {x ∈ R2

+ : µiixi + µijxj = 1, i 6= j} and the

xi-coordinate axis. If S1 and S2 intersect in Ṙ2
+, then there also exists a positive

fixed point p at the intersection of S1 and S2.

11



The basic reproduction ratio of species j in an environment set by species i is

Rij = R
(j)
0 e−νjµjiq{i} = e

νj

(
1−

µji
µii

)
(18)

Clearly, Rij > 1 (Rij < 1) if and only if γij := µii − µji > 0 (γij < 0).
Set R2

+ \ Si = Ui ∪ Bi, where Ui and Bi are the unbounded and bounded
disjoint components of R2

+ \ Si, respectively. Then q{i} ∈ Uj (Bj) if and only if
Rij < 1 (> 1).

The following is an immediate result by Corollary 3.1; see also [53] for a
similar analysis.

Lemma 4.1. Let T ∈ CRC(2).

(a) If R12 < 1, R21 > 1, then the positive fixed point p does not exist and q{1}
attracts all points not on the x2-axis.

(b) If R12 > 1, R21 < 1, then the positive fixed point p does not exist and q{2}
attracts all points not on the x1-axis.

(c) If R12, R21 > 1, then T has a hyperbolic positive fixed point p attracting all
points in Ṙ2

+.

(d) If R12, R21 < 1, then T has a positive fixed point p which is a hyperbolic
saddle. Moreover, every nontrivial orbit tends to one of the asymptotically
stable nodes q{1} or q{2} or to the saddle p.

Remark 4.1. The statements of Lemma 4.1 have clear biological interpretations,
which we present here.

(i) If Rij > 1, then species j can invade species i while it cannot invade if
Rij < 1.

(ii) If species j can invade species i but not vice versa, then species i is driven
to extinction, whilst species j remains extant.

(iii) In the case of mutual invadabilty, that is, if both species can invade the
other, then there will be coexistence in the form of an asymptotically stable
positive fixed point.

(iv) If neither species can invade (mutual noninvadability), there is no coexis-
tence: One of the species will oust the other. The surviving species depends
on the initial conditions. (Convergence to the positive saddle happens only
for initial conditions in a set of measure zero and is hence impossible in
nature).

The situations mentioned above are of particular interest when the two populations
1 and 2 are not different species, but different traits (resident and mutant) of
the same species. To begin with, the resident (i = 1) is at the fixed point q{1}
and then the mutant q{2} is introduced in small quantities. Case (i) R12 > 1

12



gives the condition for successful invasion. Case (ii) describes trait substitution.
Case (iii) is an example of protected dimorphism. For a discussion of these
notions and their consequences for evolutionary dynamics we refer the reader to
[14, 15, 16, 17].

Corollary 4.1. There are a total of 3 stable equivalence classes in CRC(2). The
three dynamical scenarios are presented in Fig. 1.

Figure 1: The dynamics in Σ replaced by ∆1. A closed dot • stands for a fixed point which
attracts on Σ, and an open dot ◦ stands for the one which repels on Σ. Each Σ denotes an
equivalence class. The first class corresponds to case (a) or (b) in Lemma 4.1; the second class
corresponds to case (c) in Lemma 4.1; the third class corresponds to case (d) in Lemma 4.1.

Remark 4.2. Suppose that T ∈ CRC(2) is stable relative to ∂Σ and possesses a
positive fixed point p. Then detU 6= 0, and the positive fixed point p is unique.
Moreover, p attracts on Σ if and only if detU > 0 (Lemma 4.1(c)) and repels on
Σ if and only if detU < 0 (Lemma 4.1(d)).

Biologically, detU > 0 means that both species can invade, while detU < 0
means that none of them can (Remark 4.1(i)).

For other related results on the dynamics of the 2D Ricker map (17), see, for
example, [1, 6, 7, 31, 40, 50, 51].

4.2. Classification of the 3-dimensional maps

Now we analyze the 3-dimensional map (16). Hereafter, denote by Si the plane
{x ∈ R3

+ : µiixi + µijxj + µikxk = 1, i, j, k are distinct}. Let R3
+ \ Si = Ui ∪ Bi,

where Ui and Bi are the unbounded and bounded disjoint components of R3
+ \Si,

respectively.
Note that the trivial fixed point 0 is a hyperbolic repeller since the eigenvalues

of DT (0) are R
(i)
0 = eνi > 1, i = 1, 2, 3. Recall that q{1} = (1/µ11, 0, 0), q{2} =

(0, 1/µ22, 0), q{3} = (0, 0, 1/µ33) are three axial fixed points of T . If Si, Sj and
πk intersect in R3

+, then T has a fixed point v{k}. T admits a positive fixed point

p if and only if Si, Sj and Sk intersect in Ṙ3
+. Let

γij := µii − µji, βij =
µjj − µij

µiiµjj − µijµji
(19)

for i, j = 1, 2, 3 and i 6= j.
By the invariance of πi and the analysis of the 2-dimensional case in §4.1,

the classification program, statements, proofs in [32] carry over to CRC(3) in a
straightforward way, so we do not re-do it unless the need for special details.

13



Lemma 4.2. If γij > 0 (< 0) then q{i} repels (attracts) along ∂Σ ∩ πk, where
i, j, k are distinct. Furthermore, if γij , γik > 0 (< 0) then the fixed point q{i} is a
repeller (an attractor) on Σ; if γijγik < 0, then the fixed point q{i} is a saddle on
Σ; and q{i} is hyperbolic if and only if γijγik 6= 0.

Lemma 4.3. If γjkγkj > 0 then T admits a fixed point v{i} in the interior of
the coordinate plane πi, where i, j, k are distinct. Moreover, if γjk, γkj < 0 (> 0)
then v{i} repels (attracts) along ∂Σ.

Lemma 4.4. Suppose that the planar fixed point v{i} exists. Then (Uvτ{i})i <

1 (> 1) implies that v{i} locally repels (attracts) in Σ̇. Moreover, v{i} is hyperbolic
if and only if (Uvτ{i})i 6= 1.

Remark 4.3. It is easy to check that

(Uvτ{k})k < 1 (> 1)⇔ µkiβij + µkjβji < 1 (> 1)⇔ v{k} ∈ Bk (Uk).

A map T ∈ CRC(3) is stable relative to ∂Σ if and only if γij 6= 0 and µkiβij +
µkjβji 6= 1, i.e., (Uvτ{k})k 6= 1 (if v{k} exists). Suppose that T is stable relative to

∂Σ. If T admits a positive fixed point p which satisfies (14), then p is the unique
positive fixed point. Otherwise, assume that T has two different positive fixed
points p and p̃. Now ps := sp+ (1− s)p̃ is a solution of (14) for any s ≥ 0. Let
s̄ := sup{s > 0 : ps ∈ Σ}. Then ps̄ ∈ ∂Σ is a fixed point, which is not hyperbolic,
contradicting that T is stable relative to ∂Σ.

Proposition 4.1. Suppose that T ∈ CRC(3) is stable relative to ∂Σ. Then we
have the formula

3∑
i=1

(I (q{i}, T ) + 2I (v{i}, T )) + 4I (p, T ) = 1. (20)

Proposition 4.2. Assume that T ∈ CRC(3) is stable relative to ∂Σ. Then
I (q{i}, T ) = 1 (I (v{i}, T ) = 1) if q{i} (v{i}) is a repeller or an attractor on Σ
and I (q{i}, T ) = −1 (I (v{i}, T ) = −1) if q{i} (v{i}) is a saddle on Σ. Moreover,
the positive fixed point p exists if and only if I (p, T ) 6= 0.

Remark 4.4. For a map T ∈ CRC(3) which is stable relative to ∂Σ, Propositions
4.1-4.2 imply that the existence of the positive fixed point p and its index can be
determined by the local dynamics of boundary fixed points. By Remark 3.2, the
index of p is either 1 or −1 or 0 (if it does not exist). Moreover, I (q{i}, T ) =
sgn(γijγik); if v{k} exists, i.e. γijγji > 0, then I (v{k}, T ) = sgn(γij(µkiβij +
µkjβji − 1)).

Theorem 4.1. There are a total of 33 stable equivalence classes in CRC(3).
14



It is a straightforward combinatorial task on the non-zero values of sgn(γij) and
sgn(µkiβij +µkjβji−1) (if v{k} exists) to classify the stable equivalence classes by
Remark 4.3, which is based on the index formula (20) and a geometric analysis of
the positions of the planes Sj . We list the 33 stable equivalence classes in Table
A.1, which can be obtained by the following three steps. Given µij , νi > 0 such
that (12) holds.

Step 1 The non-zero values of sgn(γij) constitute 26 possibilities which reduce to
16 possibilities modulo permutation of the indices.

Step 2 Under the given values of sgn(γij) one can determine the existence or nonex-
istence of the fixed points v{k}. Then applying formula (20) to each of the
16 possibilities obtained in Step 1, we count 57 possibilities for the indices
of all the fixed points on the corresponding Σ, which reduce to 45 possi-
bilities modulo permutation of the indices. According to Remark 4.4, the
index of v{k} determines the non-zero value of sgn(µkiβij +µkjβji− 1), and
hence the position of v{k} relative to Sk.

Step 3 By the position of q{i} relative to Sj (i 6= j) and the position of v{k} relative
to Sk, which are all inequalities on µij , one can rule out 12 nonexistent cases.
Then we derive the total of 33 stable equivalence classes and together with
condition (12) we obtain the parameter conditions for each class.

The phase portrait on the carrying simplex for each of the 33 stable equiva-
lence classes in CRC(3) is presented in Table A.1. The corresponding parameter
conditions of a representative element with a concrete example for each class are
also given. Any map in CRC(3) which is stable relative to ∂Σ belongs to one
of the classes in Table A.1 (modulo permutation of the indices). The maps in
classes 1− 18 have no positive fixed point because I (p, T ) = 0 by the indices of
boundary fixed points and formula (20). We show in §4.3 that all these classes
have trivial dynamics, i.e. every orbit of each map in these classes tends to some
fixed point on ∂Σ, and present the whole dynamics on Σ further. Nontrivial dy-
namics (e.g. Neimark-Sacker bifurcations) can only occur in the other 15 classes
which all have a unique positive fixed point p, where I (p, T ) = −1 for classes
19− 25, and I (p, T ) = 1 for classes 26− 33.

Remark 4.5. Given µij , ν̄i > 0 satisfying (12), µij , νi also satisfy (12) for any
0 < νi ≤ ν̄i, so the map (16) with the parameters µij , νi is still in CRC(3) and
belongs to the same stable class as the one with the parameters µij , ν̄i.

4.3. Dynamics on the carrying simplex

In this subsection, we consider the detailed dynamics on the carrying simplex
for each stable equivalence class in CRC(3). Since each map from any of classes
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1 to 18 in Table A.1 does not have a positive fixed point, together with Ruiz-
Herrera’s exclusion criterion [49, Theorem 2.2], we obtain the following trivial
dynamics immediately.

Theorem 4.2. Each map from any of classes 1 − 18 has trivial dynamics, i.e.
every nontrivial orbit converges to some fixed point on ∂Σ.

Now we focus on the classes 19 to 33. Note that each map in them has a
unique positive fixed point p = (p1, p2, p3) with DT (p) = I − diag[piνi]U .

Lemma 4.5. For each map in classes 19 − 25, we have I (p, T ) = −1 and
detU < 0; while for each map in classes 26 − 33, we have I (p, T ) = 1 and
detU > 0.

Proposition 4.3. The positive fixed point p is a repeller on Σ in class 32, and
hence this class cannot admit Neimark-Sacker bifurcations.

The proofs of Lemma 4.5 and Proposition 4.3 are repetitions of the corresponding
proofs of Lemma 4.9 and Proposition 4.5 in [33] just by replacing the matrix
diag[pi/ci]B there by diag[piνi]U .

Theorem 4.3. The positive fixed point p is a saddle on Σ in classes 19 − 25,
and every nontrivial orbit converges to some fixed point on the boundary of the
carrying simplex, except those on the stable manifold of p.

Theorem 4.3 follows from Theorem 3.1 in [44], and moreover, the results in [43]
imply that the stable manifold and unstable manifold of the saddle p are simple
curves; see Table A.1 for the phase portraits of these classes.

Theorem 4.4. The positive fixed point p is globally asymptotically stable in Ṙ3
+

for each map in class 33.

Theorem 4.4 follows from Theorem 2.1 in [20], and the phase portrait on the
carrying simplex for class 33 is shown in Table A.1.

Lemma 4.6. For each Ricker map T given by (16) having a unique positive fixed
point p in R3

+, there exists a Ricker map T̂ given by (16) with the unique positive
fixed point p̂ = (1, 1, 1) topologically equivalent to T .

Proof. Set zi(t) = xi(t)/pi, i = 1, 2, 3, where {x(t) : t ∈ Z+} is the positive
trajectory emanating from x(0) = (x1, x2, x3) for T . Thus,

zi(t+ 1) = 1
pi
xi(t) exp(νi(1−

∑3
j=1 µijxj(t)))

= zi(t) exp(νi(1−
∑3

j=1 µijpjzj(t)))

= zi(t) exp(νi(1− (Udiag[pj ]z(t)
τ )i))

:= zi(t) exp(νi(1− (Ûz(t)τ )i)),
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where Û = Udiag[pj ]. Hence {z(t) : t ∈ Z+} is the positive trajectory emanating
from z(0) = (x1/p1, x2/p2, x3/p3) for T̂ = (T̂1, T̂2, T̂3) with T̂i(z) := zi exp(νi(1−
(Ûzτ )i)), i = 1, 2, 3. It follows from (Upτ )i = 1 that (Û p̂τ )i = 1, where p̂ =
(1, 1, 1), i.e., (1, 1, 1) is the unique positive fixed point of T̂ . It is clear that T̂ and
T are topologically equivalent.

By Lemma 4.6, we may assume that the fixed point p of T is at (1, 1, 1)
provided it exists. At this moment, the parameters µij of T satisfy that

∑
j µij =

1, i = 1, 2, 3, i.e., the sum of the ith row of U = (µij)3×3 is one. Let p = (1, 1, 1).
Then DT (p) = I − diag[νi]U . Hereafter, we always assume that n = 3, and
µij > 0 satisfying detU > 0 and

∑
j µij = 1, i = 1, 2, 3. Consider the map

T ∈ CRC(3) with the parameters µij , νi. Let A = DT (p) = I − diag[νi]U .

Lemma 4.7. Under the above assumptions, we have

(a) If detU{i,j} < 0, then for νk > 0 sufficiently small, the matrix A has two
eigenvalues with magnitudes greater than 1, where i, j, k are distinct.

(b) If detU{i,j} > 0, then for νk > 0 sufficiently small, the matrix A has two
eigenvalues with magnitudes less than 1, where i, j, k are distinct.

Proof. Set M := diag[νi]U . Then for definiteness, let i = 1, j = 2, k = 3.
(a) By detU{1,2} < 0, one has detM{1,2} < 0. For ν3 = 0, the entries in the

third row of M are 0, so M has a negative eigenvalue and a positive eigenvalue
besides 0. Since the eigenvalues of M depend continuously on the entries of M ,
and hence on ν3, thus for ν3 > 0 sufficiently small, M has an eigenvalue with
negative real part. Recall that detU > 0, so detM > 0, which implies that M
has two eigenvalues with negative real parts. Therefore, A has two eigenvalues
with real parts greater than 1, i.e, A has two eigenvalues with magnitudes greater
than 1.

(b) By detU{1,2} > 0, one has detM{1,2} > 0. So, M has two positive
eigenvalues besides 0 for ν3 = 0 because M{1,2} is a positive matrix. It follows
from 1 = µi1 +µi2 +µi3 that the sum of the ith row of M is νi which is less than
1. Then the Perron-Frobenius theorem ensures that both of the two positive
eigenvalues are less than 1. Thus A has two eigenvalues with magnitudes less
than 1 for ν3 = 0, and hence for ν3 > 0 sufficiently small.

Lemma 4.8. Under the above assumptions, if detU{i,j}, i < j, are not all of
the same sign (i.e., at least one is positive and one is negative), then for any
v̄1, v̄2, v̄3 > 0, there exist 0 < νi < ν̄i, i = 1, 2, 3, so that the map T with the
parameters µij , νi belongs to CRC(3) and the matrix A possesses a pair of complex
conjugate eigenvalues of modulus 1 which do not equal ±1,±i, (−1±

√
3i)/2, where

i stands for the imaginary unit.
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Proof. Without loss of generality, assume that detU{1,2} > 0,detU{1,3} < 0.
First choose 0 < ν1 = u1 < ν̄1, 0 < ν2 = u0 < ν̄2, 0 < ν3 = v0 < ν̄3 such
that (12) holds. Since detU{1,2} > 0, it follows from Lemma 4.7 that there
exists 0 < ν3 = u3 < v0 sufficiently small such that A has two eigenvalues with
magnitudes less than 1. Now fix ν1 = u1 and ν3 = u3. Since detU{1,3} < 0,
Lemma 4.7 ensures that A has two eigenvalues with magnitudes greater than 1
for 0 < ν2 = ū0 < u0 sufficiently small. Thus, as ν2 varies from u0 to ū0, at
least one of the eigenvalues of A varies continuously from having magnitude less
than 1 to magnitude greater than 1, and necessarily crosses the unit circle in the
complex plane. Since detU 6= 0, 1 is not an eigenvalue of A. On the other hand,
by Remark 3.2 one knows that all the eigenvalues of A have positive real parts.
So −1,±i, (−1 ±

√
3i)/2 are not eigenvalues of A; and moreover, there exists a

0 < u2 ≤ u0 such that A has a pair of complex conjugate eigenvalues of modulus
1 as ν2 = u2. By Remark 4.5, one can choose ν1 = u1, ν2 = u2, ν3 = u3 such that
the conclusion holds.

Given µij > 0, 0 < νi < 1 such that detU > 0 and
∑3

j=1 µij = 1, i, j = 1, 2, 3.

Let Û = diag[ν1, 1, ν3]U := (µ̂ij)3×3, ν2 = s, and M s = diag[1, s, 1]Û . Denote by
f(z, s) = det(M s − zI) the characteristic polynomial of M s. Let As = I −M s.
Assume that As has a pair of complex conjugate eigenvalues of modulus 1 at
0 < s = s0 < 1 which do not equal ±1,±i, (−1 ±

√
3i)/2. Now for any s in

a small neighborhood V of s0, As has a pair of complex conjugate eigenvalues
w(s), w(s) with |w(s0)| = 1. We let w(s) = u(s) + iv(s) for s ∈ V .

Lemma 4.9. Under the above assumptions, d|w(s)|
ds |s=s0 6= 0.

Proof. Noticing that
tr(M s) = µ̂11 + sµ̂22 + µ̂33,

detM s
{1,2} = s det Û{1,2},

detM s
{1,3} = det Û{1,3},

detM s
{2,3} = sdet Û{2,3},

detM s = s det Û ,

the proof is a copy of that of Lemma 4.14 in [33] by replacing s
c2(s) to be s.

Theorem 4.5. Given µij , ν̄i > 0 such that detU > 0,
∑3

j=1 µij = 1 and (12)

holds, i, j = 1, 2, 3. Consider the map T [ν] ∈ CRC(3) given by (16) with the
parameters µij and 0 < νi < ν̄i. If detU{i,j}, i < j, i, j = 1, 2, 3, are not all
of the same sign, then there exists some ν̂ = (ν̂1, ν̂2, ν̂3) with 0 < ν̂i < ν̄i such
that the Jacobian matrix DT [ν̂](p) has a pair of complex conjugate eigenvalues
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of modulus 1 which do not equal ±1,±i, (−1 ±
√

3i)/2, where p = (1, 1, 1) is
the unique positive fixed point. Furthermore, the restriction of T [ν] to the two
dimensional center manifold at the critical parameter value ν̂ can be transformed
to the complex Poincaré normal form

ω 7→ (1 + β)eiθ(β)ω + d(β)ω|ω|2 +O(|ω|4), ω ∈ C, (21)

where ω is a complex variable and d(β) is a complex function.

Proof. Let A[ν] := DT [ν](p) = I − diag[νi]U . It follows from Lemma 4.8 that
there exist 0 < ν̂i < ν̄i, i = 1, 2, 3, such that A[ν̂] has a pair of complex conjugate
eigenvalues with modulus 1 which do not equal ±1,±i, (−1±

√
3i)/2.

Fix ν1 = ν̂1 and ν3 = ν̂3. Set ν2 = s, and write A[s] := A[ν]. Let s0 = ν̂2.
Then A[s] admits a pair of complex conjugate eigenvalues with modulus 1 at
0 < s = s0 < 1. Thus A[s] has a pair of complex conjugate eigenvalues w(s), w(s)
with |w(s0)| = 1 for s ∈ V , where V is a small neighborhood of s0. By Lemma

4.9, one has d|w(s)|
ds |s=s0 6= 0. Then the result can be proved in quite the same

manner as the Theorem 4.3 in [33], so we omit it.

Let L1(0) := Re(e−iθ0d(0)), which is the first Lyapunov coefficient (see [38]).
Using Theorem 4.5 and Theorem 4.6 in [37], we have the following.

Theorem 4.6. Assume that the hypotheses of Theorem 4.5 hold. If L1(0) 6= 0,
then the family of maps {T [ν] : 0 < νi < ν̄i, i = 1, 2, 3} admits a Neimark-Sacker
bifurcation. Moreover, if L1(0) < 0, a stable closed invariant curve bifurcates
from the fixed point p while an unstable closed invariant curve bifurcates from the
fixed point p if L1(0) > 0.

The biological interpretation of the condition detU{i,j} < 0 in Lemmas 4.7−4.8
and Theorems 4.5−4.6 is that at least one of the species i and j can resist inva-
sion by the other in the absence of species k, whilst detU{i,j} > 0 means that at
most one of the species i and j can resist invasion by the other in the absence
of species k. Therefore, the biological meaning of the condition detU{i,j}, i < j,
being not all of the same sign (say detU{i,j} < 0 and detU{i,k} > 0) is that at
least one of the species i and j can resist invasion by the other in the absence
of species k, whilst at most one of the species i and k can resist invasion by the
other in the absence of species j.

Proposition 4.4. Neimark-Sacker bifurcations can occur within each of classes
26− 31.

Proof. In each of classes 26− 31, there exist mappings satisfying the hypotheses
of Theorem 4.6; see Example 4.1 for definiteness. Noticing that the family of
maps {T [ν] : 0 < νi < ν̄i, i = 1, 2, 3} is contained in the same stable class by
Remark 4.5, the result follows from Theorem 4.6 immediately.
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Example 4.1. Let

U [26] =


1
2

1
4

1
4

1
8

1
8

3
4

1
3

1
6

1
2

 , U [27] =


3
7

3
7

1
7

3
14

3
14

4
7

4
7

1
7

2
7

 , U [28] =


14
39

8
13

1
39

7
13

4
13

2
13

28
39

8
39

1
13

 ,

U [29] =


36
85

33
85

16
85

18
85

66
85

1
85

6
85

77
85

2
85

 , U [30] =


1
24

7
8

1
12

1
16

7
16

1
2

1
12

7
12

1
3

 , U [31] =


9
19

2
19

8
19

9
38

12
19

5
38

6
19

8
19

5
19

 ,

and p = (1, 1, 1). Set ν̄
[i]
j > 0 which satisfies (12), j = 1, 2, 3, i = 26, · · · , 31.

Consider the map T [i,ν] ∈ CRC(3) with the parameters U [i] and 0 < ν
[i]
j < ν̄

[i]
j .

Obviously, T [i,ν] is in class i, and detU
[i]
{j,k}, j < k, are not all of the same sign,

i = 26, · · · , 31. Furthermore, we have the following results by Theorem 4.6.

1. Set i = 26. Let ν1 = s, ν2 = 1/9, ν3 = 1/3, and ν = (ν1, ν2, ν3). It is easy
to see that νi satisfy (12) when 0 < s < 1/3, and hence the family of maps
{T [i,ν] : 0 < s < 1/3} is contained in class 26. It is not difficult to check that for

s = − 489
2717 + 9

√
71083

10868 , DT [i,ν](p) has a pair of complex conjugate eigenvalues with

modulus 1 which do not equal ±1,±i, (−1±
√

3i)/2. Furthermore, by calculating
we obtain the first Lyapunov coefficient L1(0) = −8.003 × 10−4 < 0. Since
the Lyapunov coefficient is a rather lengthy expression, the approximate value
was computed as a rational by using MATLAB [38, 18]. Thus, by Theorem 4.6
there is a supercritical Neimark-Sacker bifurcation in class 26, i.e., a stable closed
invariant curve bifurcates from the fixed point p; see Fig. 2.
2. Set i = 27. Let ν1 = 2/7, ν2 = s, ν3 = 1/7, and ν = (ν1, ν2, ν3). It is easy to
see that νi satisfy (12) when 0 < s < 1/7, and hence the family of maps {T [i,ν] :

0 < s < 1/7} is contained in class 27. As s = −25695
16976 + 49

√
296929

16976 , DT [i,ν](p)
has a pair of complex conjugate eigenvalues with modulus 1 which do not equal
±1,±i, (−1±

√
3i)/2. The first Lyapunov coefficient is L1(0) = 1.04× 10−3 > 0.

So, class 27 can admit subcritical Neimark-Sacker bifurcations, i.e., there may
exist unstable closed invariant curves in this class.
3. For i = 28, we let ν1 = 1/3, ν2 = s, ν3 = 1/14, and ν = (ν1, ν2, ν3). It is easy to
see that νi satisfy (12) when 0 < s < 2/7, and hence the family of maps {T [i,ν] :

0 < s < 2/7} is contained in class 28. When s = −10377985
58635896 + 39

√
72964092217
58635896 ,

DT [i,ν](p) has a pair of complex conjugate eigenvalues with modulus 1 which do
not equal ±1,±i, (−1 ±

√
3i)/2. The first Lyapunov coefficient L1(0) = 3.697 ×

10−5 > 0. Thus, by Theorem 4.6 there is a subcritical Neimark-Sacker bifurcation
in class 28, i.e., an unstable closed invariant curve bifurcates from the fixed point
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Figure 2: The trajectory emanating from x0 = (0.8, 0.8, 1) for the map T ∈ CRC(3) with the
parameters U26 given in Example 4.1 and ν1 = 0.04, ν2 = 1

9
, ν3 = 1

3
tends to an attracting

closed invariant curve, i = 1, 2, 3.

p.
4. For i = 29, we let ν1 = 7/17, ν2 = s, ν3 = 1/43, and ν = (ν1, ν2, ν3). It is
easy to see that νi satisfy (12) when 0 < s < 13/17, and hence the family of
maps {T [i,ν] : 0 < s < 13/17} is contained in class 29. When s = − 22152020138

173689341859 +
170
√

17064477965620957
173689341859 , DT [i,ν](p) has a pair of complex conjugate eigenvalues with

modulus 1 which do not equal±1,±i, (−1±
√

3i)/2. The first Lyapunov coefficient
L1(0) = 1.843 × 10−7 > 0. So, class 29 can admit subcritical Neimark-Sacker
bifurcations, i.e., there may exist unstable closed invariant curves in this class.
5. For i = 30, we set ν1 = 1/25, ν2 = s, ν3 = 1/4, and ν = (ν1, ν2, ν3). It is easy
to see that νi satisfy (12) when 0 < s < 3/8, and hence the family of maps {T [i,ν] :

0 < s < 3/8} is contained in class 30. As s = − 786572
8573383 + 48

√
278933069

8573383 , DT [i,ν](p)
has a pair of complex conjugate eigenvalues with modulus 1 which do not equal
±1,±i, (−1 ±

√
3i)/2. The first Lyapunov coefficient L1(0) = 1.138 × 10−5 > 0.

So, class 30 can admit subcritical Neimark-Sacker bifurcations, i.e., there may
exist unstable closed invariant curves in this class.
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6. For i = 31, we set ν1 = 3/7, ν2 = s, ν3 = 1/4, and ν = (ν1, ν2, ν3). It is easy to
see that νi satisfy (12) when 0 < s < 3/5, and hence the family of maps {T [i,ν] :

0 < s < 3/5} is contained in class 31. As s = − 3841937
14371150+ 19

√
42841117729
14371150 , DT [i,ν](p)

has a pair of complex conjugate eigenvalues with modulus 1 which do not equal
±1,±i, (−1±

√
3i)/2. The first Lyapunov coefficient L1(0) = −5.691× 10−4 < 0.

By Theorem 4.6 we know that there is a supercritical Neimark-Sacker bifurcation
in class 31, i.e., a stable closed invariant curve bifurcates from the fixed point p;
see Fig. 3.
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Figure 3: The trajectory emanating from x0 = (0.4, 1, 0.4) for the map T ∈ CRC(3) with the
parameters U31 given in Example 4.1 and ν1 = 3

7
, ν2 = 0.006, ν3 = 1

4
tends to an attracting

closed invariant curve, i = 1, 2, 3.

Remark 4.6. Roeger [46] studied the Neimark-Sacker bifurcations for the special
3D Ricker maps (10) with ν1 = ν2 = ν3 and µij satisfying the conditions of class
27 in Table A.1, and it was shown that non-degenerate Neimark-Sacker bifurca-
tions can occur in this case. Example 4.1 shows that non-degenerate Neimark-
Sacker bifurcations can also occur when ν1, ν2, ν3 are not identical. Moreover,
for 3D Ricker maps (10), non-degenerate Neimark-Sacker bifurcations can occur
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even when µij satisfy the conditions of classes 26 and 28–31 in Table A.1.

Consider a sufficiently smooth map Φ(x, β) : Rn×R2 → Rn, where x ∈ Rn, β ∈
R2. Assume that Φ has a fixed point x = 0 at β = 0 for which the Neimark-
Sacker bifurcation conditions hold. ThusDΦ(0, 0) has a pair of conjugate complex
eigenvalues lying on the unit circle. Assume further that Φ satisfies some other
non-degeneracy conditions such that the restriction of Φ to the two dimensional
center manifold at the critical parameter value β = 0 can be transformed to the
normal form in polar coordinates (%, θ) (see [37] for more details):{

% 7→ %+ µ1%+ µ2%
3 + L2(µ)%5 + · · · ,

θ 7→ θ + ϑ(µ) + υ(µ, %)%2 + · · · ,

where µ = (µ1, µ2) and the dots denote terms of higher order in % and θ. Trun-
cating the higher order terms gives the map{

% 7→ %+ µ1%+ µ2%
3 + L2(µ)%5,

θ 7→ θ + ϑ(µ) + υ(µ, %)%2.
(22)

% = 0 corresponds to the fixed point of the system and any positive fixed point of
the %-map in (22) corresponds to a closed invariant curve in phase space. µ1 = 0
corresponds to the Neimark-Sacker bifurcation curve, for which a pair of conju-
gate complex eigenvalues lie on the unit circle, and µ2 is the corresponding first
Lyapunov coefficient when µ1 = 0. For µ2 < 0, a supercritical Hopf bifurcation
occurs at µ1 = 0, whereas for µ2 > 0 a subcritical Hopf bifurcation occurs at
µ1 = 0. For µ2 = 0 the Neimark-Sacker bifurcation becomes degenerate, which
is called the Chenciner bifurcation (see Kuznetsov [37] and Gaunersdorfer et al.
[13]). The Chenciner bifurcation occurs at µ1 = 0 for which a pair of conju-
gate complex eigenvalues lie on the unit circle and the first Lyapunov coefficient
µ2 = 0. An extra non-degeneracy condition for the Chenciner bifurcation is
L2(0) 6= 0. Here we show some details by assuming that L2(0) < 0. Without loss
of generality, assume that L2(0) = −1.

%∗ is positive fixed point of the %-map in (22) iff it is a positive solution to
the equation µ1 + µ2%

2 − %4 = 0, i.e.,

(%2 − µ2

2
)2 =

µ2
2

4
+ µ1. (23)

When µ1 > 0 there is exactly one positive solution for equation(23). For µ1 < 0,

equation (23) has no solution when
µ22
4 + µ1 < 0, while equation (23) has two

distinct positive solutions when
µ22
4 + µ1 > 0, µ1 < 0 and µ2 > 0 (in this case,

the outer closed invariant curve is stable, while the inner one is unstable). For µ

lying on the curve Tc := {µ :
µ22
4 + µ1 = 0, µ2 > 0}, equation (23) has two equal
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Figure 4: Bifurcation diagram of the Chenciner bifurcation in the (µ1, µ2)-plane for the case
L2(0) < 0. The origin is the Chenciner bifurcation point. The vertical dashed line µ1 = 0 is the
Neimark-Sacker bifurcation curve. In the region I below the curve Tc, there is only one fixed
point which is stable; in the region II (µ1 > 0), there is a unique closed invariant curve which is
stable; in the region III between the curve Tc and the positive µ2-axis, a stable closed invariant
curve (outer) and an unstable closed invariant curve (inner) coexist; on the solid curve Tc, these
two circles coincide.

positive solutions (in this case, the unstable and stable closed invariant curves
approach each other). See Fig. 4 for a sketch of this bifurcation diagram. For
L2(0) > 0, it can be treated similarly, and in this case, the outer closed invariant
curve is unstable, while the inner one is stable.

The Chenciner bifurcation is a two-parameter bifurcation phenomenon of a
fixed point. Although the normal form computations for Chenciner bifurcations
are straightforward, in practical models they can be very complicated. Based on
the numerical methods provided in [18], we give an example by using MATLAB
[38, 19] to show that the Ricker map (16) in class 29 can admit Chenciner bi-
furcations, so in this class, two isolated closed invariant curves can coexist. See
Example 4.2.
Example 4.2. Consider the parameters U [29] given in Example 4.1. Let ν3 = 1

43 ,
0 < ν1 <

7
17 , 0 < ν2 <

13
17 , and ν = (ν1, ν2, ν3). By numerical calculation, we

find that the two-parameter map T [29,ν] with the coefficients U [29] and ν has
a Chenciner bifurcation point at p = (1, 1, 1) when ν1 = 0.034559 and ν2 =
0.000368. The normal form coefficient L2(0) = −1.1233 × 10−6 < 0, so a large
stable closed invariant curve surrounding a small unstable closed invariant curve
can occur in class 29.

Suppose that the 3-dimensional map T has a carrying simplex Σ, which is
24



homeomorphic to ∆2. Suppose further that q{1} = (q1, 0, 0), q{2} = (0, q2, 0) and
q{3} = (0, 0, q3) are its three axial fixed points lying on the vertices of Σ. If each
q{i} is a saddle, and ∂Σ∩ πi is the saddle connection between q{j} and q{k}, then
T admits a heteroclinic cycle of May-Leonard type: q{1} → q{2} → q{3} → q{1}
(or the arrows reserved), which is just the boundary of Σ. For this case, we can
obtain the stability of the heteroclinic cycle ∂Σ by the result in [34].

Lemma 4.10 (Theorem 3 in [34]). Suppose that ∂Σ is a heteroclinic cycle above.
Then the heteroclinic cycle ∂Σ repels (attracts) if

3∏
i=1

lnGi(q{i−1}) +
3∏
i=1

lnGi(q{i+1}) > 0 (< 0),

where i ∈ {1, 2, 3} is considered cyclic.

Note that for any map T in class 27, each axial fixed point q{i} is a sad-
dle on Σ, and ∂Σ ∩ πi is the heteroclinic connection between q{j} and q{k},
where i, j, k are distinct. So ∂Σ forms a heteroclinic cycle of May-Leonard type:
q{1} → q{2} → q{3} → q{1} (or the arrows reserved), i.e., any map T in class
27 possesses a heteroclinic cycle (see Table A.1 (27)). By Lemma 4.10 one can
obtain Proposition 4.5 immediately; see also [26] for a similar result.

Set wij = νj(1− µji/µii), where i 6= j. Let ϑ = w12w23w31 + w21w13w32.

Proposition 4.5. Assume that T ∈ CRC(3) is in class 27. If ϑ < 0 (> 0), then
the heteroclinic cycle ∂Σ of T attracts (repels).
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1.5

2

4

2.5

1.5 31 20.5 100

Figure 5: The trajectories emanating from x0 = (4, 0.03, 0.03), x0 = (4, 0.1, 0.1) and x0 =
(4, 0.2, 0.2) for the map T ∈ CRC(3) in Example 4.3 lead away from ∂Σ and tend to the positive
fixed point p.
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Example 4.3. Let U =


1
4

7
12

1
6

1
12

1
2

5
12

1
3

1
3

1
3

 and ν1 = 1
5 , ν2 = 1

5 , ν3 = 1
5 . Consider

the map T ∈ CRC(3) with the parameters U and νi, i = 1, 2, 3. It is easy to
check that T belongs to class 27 with ϑ > 0. It then follows from Proposition 4.5
that the heteroclinic cycle ∂Σ repels for T and see also the numerical experiment
in Fig. 5.

Let Û =


1 2 1

2

1
2 1 2

2 1
2 1

 and ν̂1 = 1
7 , ν̂2 = 1

7 , ν̂3 = 1
7 . Consider the map

T̂ ∈ CRC(3) with the parameters Û and ν̂i, i = 1, 2, 3. It is easy to check that
T̂ belongs to class 27 with ϑ < 0. It then follows from Proposition 4.5 that the
heteroclinic cycle ∂Σ attracts for T̂ and see also the numerical experiment in Fig.
6.
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Figure 6: The trajectories emanating from x0 = (0.8667, 0.8667, 1), x0 = (0.9, 0.9, 1), x0 =
(0.9333, 0.9333, 1) and x0 = (1, 1, 1) for the map T̂ ∈ CRC(3) in Example 4.3 approach to ∂Σ.

Remark 4.7. Consider the competitive continuous-time Lotka-Volterra system

dxi
dt

= xi(νi(1−
3∑
j=1

µijxj)), νi, µij > 0, i, j = 1, 2, 3. (24)

System (24) admits a heteroclinic cycle: q{1} → q{2} → q{3} → q{1} when the
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parameters satisfy

γ12 > 0, γ13 < 0, γ21 < 0, γ23 > 0, γ31 > 0, γ32 < 0, (25)

i.e. when the Ricker map (16) admits one; see class 27 in Table A.1. According
to [27], we know that for system (24) ∂Σ attracts if ϑ < 0, while repels if ϑ > 0,
where ϑ is defined above. By Proposition 4.5, one can see that the criteria on the
stability of heteroclinic cycles for the Lotka-Volterra system (24) and Ricker map
(16) are the same; see also [34].

Let U =


3
7

2
7

1
7

3
14

3
14

4
7

1
2

1
7

2
7

 and ν1 = 1
10 , ν2 = 1

7 , ν3 = 1
7 . Note that (12) and (25)

hold for such µij and νi. Consider the Ricker map (16) and system (24) with the
parameters µij and νi, respectively, i = 1, 2, 3. Then the Ricker map (16) (resp.
the Lotka-Volterra system (24)) admits a heteroclinic cycle ∂Σ (resp. ∂Σ̂, where
Σ̂ is the carrying simplex for (24); see [62]). It is easy to check that ϑ > 0. So
the heteroclinic cycles ∂Σ, ∂Σ̂ repels for (16) and (24), respectively. Besides,
p = (70

61 ,
84
61 ,

49
61) is a repelling positive fixed point for both (16) and (24). Then

according to Poincaré-Bendixson theorem, there is a limit cycle Γ contained in
the interior of Σ̂ surrounding p for Lotka-Volterra system (24); see Fig. 7 for
the numerical experiment. However, Poincaré-Bendixson theorem does not hold

(a) The trajectory (b) The motion of each component

Figure 7: The orbit emanating from x0 = (0.81, 1.15, 1.32) for system (24) with parameters µij
and νi given in Remark 4.7 tends to a limit cycle, where the blue point on the cycle is x0.

for discrete-time systems. So we do numerical experiments and find that there
exists an attracting closed invariant curve in this domain; see Fig. 8. Thus, we
conclude the following conjecture.
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(a) The orbit with x0 = (1, 0.0667, 0.0667)
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(b) The orbit with x0 = (1, 0.1, 0.1)

Figure 8: The orbits emanating from x0 = (1, 0.0667, 0.0667) and x0 = (1, 0.1, 0.1) for the Ricker
map (16) with parameters µij and νi given in Remark 4.7 tend to an invariant closed curve.

Conjecture. For the Ricker map T ∈ CRC(3) which is in class 27, there exists
an attracting (repelling) invariant closed curve contained in Σ̇ \ {p} if both the
heteroclinic cycle ∂Σ and p are repelling (attracting).

5. The occurrence of chaos

In this section, we study the possible routes to chaos for Ricker maps (10).
Specifically, we show that the carrying simplex disappears as the growth rates
increase while chaos occurs by concrete examples. A 4D Ricker map which pos-
sesses a carrying simplex containing a chaotic attractor is also given.

5.1. Carrying simplex breaks and chaos appears

We first recall the 1D Ricker map

T (x) = xer(1−x), (26)

where x ≥ 0 and r > 0. For 0 < r ≤ 2, the positive fixed point x = 1 is
globally attracting, i.e. x = 1 is the carrying simplex, while for r > 2, carrying
simplex breaks. Indeed, noticing that T ′(1) = 1−r, a period-doubling bifurcation
occurs at r = 2 and a cascade of further period-doubling bifurcations appear as
r increases, yielding 2-periodic points, 4-periodic points, 8-periodic points, . . .,
until about r ≈ 2.6924, where the dynamics becomes chaotic; see [41] for more
details. To follow these dynamic scenarios, we generate a Bifurcation Diagram
for 0 < r ≤ 4.5 as shown in Fig. 9, where the choice of initial value is x0 = 1.2.

Consider the 2D Ricker map T given by

T1(x1, x2) = x1(exp(r(1− x1 − 1
8x2))),

T2(x1, x2) = x2(exp(1
2(1− 1

2x1 − x2))),
(27)
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Figure 9: The bifurcation diagram of the Ricker map (26).

where (x1, x2) ∈ R2
+ and r > 0. System (27) has three boundary fixed points:

0, q{1} = (1, 0), q{2} = (0, 1) which are all unstable for any r > 0, and a unique

positive fixed point p = (14
15 ,

8
15). When r < 8

9 , the condition (12) holds, so

system (27) admits a carrying simplex, and p is globally attracting on Ṙ2
+. Since

the carrying simplex for the 1D Ricker map (26) breaks when r > 2, it also
disappears for system (27) when r > 2. Indeed, any kind of nontrivial dynamics
breaks the carrying simplex for 2D system (27). Our aim here is to study the
evolution of the attractor as r > 2 varies for system (27).

The results of numerical investigation are reported here. When r = 104
49 , p

has an eigenvalue −1, and a period-doubling bifurcation occurs. An attracting
2-periodic orbit is detected at r = 2.2; see Table 1(a). As r is increased, these
periodic points also undergo period-doubling bifurcations followed by a cascade
of further period-doubling bifurcations; see Table 1(b)-(c) for the 4-periodic orbit
and 8-periodic orbit. Such period-doubling cascades eventually lead to chaos at
r ≈ 2.875; see Table 1(d)-(e) and (g)-(h) for these chaotic attractors. Note that
as r increases, there are still some ranges such that periodic orbits appear again,
and at r = 3.35, a 3-periodic orbit is detected; see Table 3(f).

Table 1: Evolution of the attractor for system (27) as r in-
creases from 2.2 to 4. The initial value used is x0 = (0.3, 1.1).
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See also [31] for a detailed study of bifurcations of periodic points for 2D
Ricker models (17) of symmetric competition.

Consider the 3D Ricker map T given by

T1(x1, x2, x3) = x1(exp(r(1− x1 − 1
8x2 − 1

2x3))),

T2(x1, x2, x3) = x2(exp(1
3(1− 1

2x1 − x2 − 1
2x3))),

T3(x1, x2, x3) = x3(exp(1
4(1− 1

2x1 − 1
4x2 − x3))),

(28)

where (x1, x2, x3) ∈ R3
+ and r > 0.

There are seven boundary fixed points: 0, q{1} = (1, 0, 0), q{2} = (0, 1, 0),

q{3} = (0, 0, 1), v{1} = (0, 4
7 ,

6
7), v{2} = (2

3 , 0,
2
3), v{3} = (14

15 ,
8
15 , 0), which are all

unstable for any r > 0, and a unique positive fixed point p = (2
3 ,

8
21 ,

4
7). When

r < 8
13 the condition (12) holds, so system (28) admits a carrying simplex, which

belongs to stable class 33; see Table A.1(33). Recall also that the carrying simplex
for the 1D Ricker map (26) disappears when r > 2, it also breaks for system (28)
when r > 2. As r increases, cascades of period-doubling bifurcations can also
occur which lead to chaos.

At r = 876
299 , p undergos a period-doubling bifurcation followed by a cascade

of period-doubling bifurcations. See Table 2(a)-(b) for the 2-periodic orbit and
4-periodic orbit. The period-doubling cascades lead to chaos at about r = 4.02;
see Table 2(c), (e) and (f) for the chaotic attractors. As r increases, periodic
orbits also appear and at r = 4.75, a 3-periodic orbit is detected; see Table 3(d).
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Table 2: Evolution of the attractor for system (28) as r
increases from 2.95 to 5.2. The initial value used is x0 =
(0.3, 1.1, 0.3).
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5.2. Chaotic attractor in the carrying simplex

In this subsection, we construct an example to show that chaos can occur in
the carrying simplex. In this example, we numerically find that there are two
routes to chaos, that is

− quasiperiod-doubling cascades lead to chaos;

− cascades of homoclinic-doubling bifurcations lead to chaos.

Quasiperiod-doubling bifurcation in our context is referred to the phenomenon
that a quasiperiodic curve rounding twice bifurcates from the original one. We
call the bifurcated quasiperiodic curve a 2-quasiperiodic curve. The phenomena,
quasiperiod-doubling cascades leading to chaos, have been observed in [12, 55].
Homoclinic-doubling bifurcation in this context is referred to the phenomenon
that a homoclinic connection rounding twice bifurcates from the original one;
see [36] and references therein for the definition and historical background in
continuous-time systems. Also, we call the bifurcated homoclinic connection a
2-homoclinic connection.

Consider the one-parameter family of 4D Ricker maps defined on R4
+:

T1(x) = x1 exp(0.178(1− 1.821x1 − 0.898x2 − 0.774x3 − 3.452x4)),

T2(x) = x2 exp(0.222(1− 0.912x1 − 2.289x2 − 0.0032x3 − 6.641x4)),

T3(x) = x3 exp(0.105(1− 2.321x1 − 0.994x2 − 1.507x3 − 0.0669x4)),

T4(x) = x4 exp(r(1− 0.0425x1 − 3.541x2 − 1.691x3 − 2.342x4)),

(29)

where x = (x1, x2, x3, x4) ∈ R4
+ and r > 0. It is easy to check that system

(29) has nine boundary fixed points: the trivial fixed point 0; four axial fixed
points q{1}, q{2}, q{3}, q{4} with q{i} lying on xi-axis; three planar fixed points
v{1,2}, v{2,3}, v{2,4} with v{i,j} lying on the positive cone of the (xi, xj) plane; a

fixed point w{2} on the interior of π2, which are all unstable, and a unique positive
fixed point p ≈ (0.204956, 0.076478, 0.293204, 0.095932).

When 0 < r < 0.3074, condition (12) holds, and hence system (29) admits a
carrying simplex Σ. All nontrivial fixed points are on Σ, and the boundary fixed
points are on ∂Σ.

At r ≈ 0.016974, the positive fixed point undergoes a supercritical Neimark-
Sacker bifurcation with first Lyapunov coefficient L1(0) = −0.03156 < 0, which
was computed as a rational by using MATLAB [18, 19]. So, a stable closed
invariant curve arises for r > 0.016974. We now study the evolution of the
attractor on Σ for increasing r over the range 0.016974 < r < 0.3074.

A quasiperiodic curve is detected when r = 0.03 (Table 3(a)). The quasiperi-
odic curve increases in size as r is increased, until about r = 0.0364, where a
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quasiperiod-doubling cascade begins; see Table 3(b)-(d) for the 2-quasiperiodic
curve, 4-quasiperiodic curve and 8-quasiperiodic curve. Such quasiperiod-doubling
cascades eventually lead to chaos; see Table 3(e)-(g) for the chaotic attractors,
which are very like the Rössler attractor in the continuous-time system [48]. Note
that as r increases, there are still some ranges such that quasiperiodic curves ap-
pear again, and at r = 0.0483, a 3-quasiperiodic curve occurs (Table 3(h)). When
r > 0.049, the chaotic attractor persists, and becomes a almost filled-in chaotic
attractor at r = 0.061; see Table 3(i)-(j).

Table 3: Evolution of the attractor in the carrying simplex for
system (29) as r increases from 0.03 to 0.061. Quasiperiodic
doubling cascades lead to chaos. The initial value used is
x0 = (0.4, 0.3, 0.4, 0.5).
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However, the story is not over. Another interesting finding is that the chaotic
attractor disappears when r = 0.112, while a homoclinic connection occurs in-
stead (Table 4(a)). A cascade of homoclinic-doubling bifurcation begins at about
r = 0.114 (see Table 4(b)-(c) for the 2-homoclinic connection and 8-homoclinic
connection), and leads to chaos finally (Table 4(d)-(e)). But then a homoclinic-
halving cascade can also occur when r > 0.131, and the attractor turns into a
homoclinic connection for 0.155 < r < 0.307 (see Table 4(f)).

Table 4: Evolution of the attractor in the carrying simplex
for system (29) as r increases from 0.112 to 0.156. Cascades
of homoclinic-doubling bifurcations occur. The initial value
used is x0 = (0.4, 0.3, 0.4, 0.5).
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6. Discussion

The Ricker map (10) possesses a carrying simplex when the growth rates

νi > 0 are small, that is, when the basic reproduction ratios R
(i)
0 are close to 1.

The carrying simplex captures the relevant long-term dynamics. Any 2D Rikcer
model admitting a carrying simplex has trivial dynamics, that is, every orbit
converges to some fixed point. An equivalence relation on the space CRC(3)
of all 3D Ricker models (10) admitting a carrying simplex is defined, i.e., two
such models are said to be equivalent if all the boundary fixed points have the
same local dynamics on the carrying simplices after a permutation of the indices
{1, 2, 3}. There are a total of 33 stable equivalence classes in CRC(3).

Specifically, in classes 1 − 18, every nontrivial orbit converges to some fixed
point on ∂Σ; in classes 19−25, each map has a unique positive fixed point p which
is a saddle on Σ, and every nontrivial orbit converges to some fixed point on ∂Σ,
except those on the stable manifold of p; in class 33, the unique positive fixed
point is globally asymptotically stable. The global dynamics of the maps from
classes 1−25 and 33 can be completely determined by the local dynamics of fixed
points on ∂Σ. However, within each of classes 26−31, there exist Neimark-Sacker
bifurcations, and hence closed invariant curves can occur on the carrying simplex
in these classes. Numerical experiments show that the 3D Ricker model possesses
asymptotically attracting isolated quasiperiodic curves. Neimark-Sacker bifurca-
tions do not occur in class 32. Class 29 can admit Chenciner bifurcations, so
this class can admit two isolated closed invariant curves on the carrying simplex.
Each map in class 27 has a heteroclinic cycle, i.e. a cyclic arrangement of saddle
fixed points and heteroclinic connections. The competition coefficients in this
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class can be seen to correspond to the biological environment where in purely
pairwise competition 1 beats 2, 2 beats 3, and 3 beats 1. It is this intransitivi-
ty in the pairwise competition which leads to such cyclic behavior. We further
provide the criteria on the stability of heteroclinic cycles and construct systems
which admit heteroclinic cycle attractors, i.e. the systems exhibit a general class
of orbits which cycle from being composed almost wholly of species 1, to almost
wholly 2, to almost wholly 3, back to almost wholly 1 etc ([47]).

One main advantage of our method is that we can give the classification of
the dynamics via the boundary dynamics. The classification by the equivalence
relative to the boundary dynamics (see Definition 2.1) for CRC(3) is also suitable
for CRC(4) and higher dimensional Ricker maps. Since the dynamics has been
studied for CRC(3), the boundary dynamics for each Ricker map in CRC(4)
is known now. Therefore, it is possible to classify CRC(4) by the equivalence
relation defined in Definition 2.1, and further to classify the higher dimensional
Ricker maps. However, since we do not have an index formula like (20) for
higher dimensional Ricker maps (n ≥ 4), the classification program is much more
complex than the 3D case, which is left as a future project.

It should be pointed out that when some νi is sufficiently large, the carry-
ing simplex indeed breaks, and chaotic dynamics can appear. When some νi
is sufficiently big, even the dynamics of species i becomes chaotic, and hence
the carrying simplex breaks. For Ricker maps (10), at least three cascades of
bifurcations can lead to chaos:

− cascades of period-doubling bifurcations lead to chaos;

− cascades of quasiperiod-doubling bifurcations lead to chaos;

− cascades of homoclinic-doubling bifurcations lead to chaos.

Cascades of period-doubling bifurcations may break the carrying simplex, while
the other two cascades of bifurcations which lead to chaotic dynamics eventually,
can occur in the carrying simplex. Such phenomena are numerically shown in
detail by concrete examples; see Section 5.1 and Section 5.2.

It is worth noting that there are several problems remain open. We propose
some as follows.

• Enlightened by Example 4.2, it is also an interesting problem to study how
many closed invariant curves can coexist on the carrying simplex for 3D
Ricker models.

• Whether the 3D Ricker model can possess a center on Σ or not is also
unknown.
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• Though there exist 4D Ricker models which admit a carrying simplex con-
taining strange attractors, whether there exists a carrying simplex which
contains a chaotic attractor for 3D Ricker models is unknown.
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Appendix A. The stable equivalence classes in CRC(3)

Table A.1: The 33 equivalence classes in CRC(3), where

γij := µii − µji, βij =
µjj−µij

µiiµjj−µijµji
for i, j = 1, 2, 3 and i 6= j, and each Σ is given by a repre-
sentative map of that class. A fixed point is represented by a
closed dot • if it attracts on Σ, by an open dot ◦ if it repels
on Σ, and by the intersection of its hyperbolic manifolds if it
is a saddle on Σ.

Class Parameter conditions Element Phase Portrait

1
γ12 < 0, γ13 < 0, γ21 > 0,

γ23 > 0, γ31 > 0, γ32 < 0

U =

1 1
2

1
2

2 1 2
2 1

2
1


ν1 = 1

3
, ν2 = 1

6

ν3 = 1
7

2
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 < 0

(ii) u31β12 + u32β21 < 1

U =

1 3 1
3

3 1 3
3 1

3
1


ν1 = 1

5
, ν2 = 1

8
,

ν3 = 1
5
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Table A.1: (continued)

Class Parameter conditions Element Phase Portrait

3
(i) γ12 < 0, γ13 < 0, γ21 > 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

U =

1 1
2

1
2

2 1 2
2 2 1


ν1 = 1

3
, ν2 = 1

6
,

ν3 = 1
6

4

(i) γ12 > 0, γ13 < 0, γ21 > 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 > 1

U =

1 1
2

1
2

1
2

1 2
2 2 1


ν1 = 1

3
, ν2 = 1

7
,

ν3 = 1
6

5
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 < 0, γ32 > 0

(ii) u31β12 + u32β21 > 1

U =

1 1
2

2
1
2

1 1
2

1
2

2 1


ν1 = 1

7
, ν2 = 1

3
,

ν3 = 1
7

6
(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

U =

1 2 2
1
2

1 1
2

1
2

1
2

1


ν1 = 1

6
, ν2 = 1

3
,

ν3 = 1
3

7
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 < 0

(ii) u31β12 + u32β21 < 1

U =

1 1
3

3
1
3

1 3
1
3

1
3

1


ν1 = 1

5
, ν2 = 1

5
,

ν3 = 1
5

8

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 < 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 < 1

U =

1 1
3

4
3

2
3

1 4
3

1
3

4
3

1


ν1 = 1

3
, ν2 = 1

4
,

ν3 = 1
3

9

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

(iii) u31β12 + u32β21 < 1

U =

1 1
3

3
1
3

1 1
3

1
3

1
3

1


ν1 = 1

5
, ν2 = 2

5
,

ν3 = 2
5
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Table A.1: (continued)

Class Parameter conditions Element Phase Portrait

10

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 > 1

U =

1 1
4

5
4

1
4

1 1
4

3
4

3
4

1


ν1 = 1

5
, ν2 = 1

3
,

ν3 = 1
5

11

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u21β13 + u23β31 < 1

(iv) u31β12 + u32β21 > 1

U =

1 1
3

1
3

1
3

1 4
3

2
3

3 1


ν1 = 2

5
, ν2 = 1

3
,

ν3 = 1
5

12

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 > 0, γ32 > 0

(ii) u12β23 + u13β32 < 1

(iii) u21β13 + u23β31 < 1

(iv) u31β12 + u32β21 > 1

U =

1 1
4

1
4

1
4

1 1
4

3
4

3
4

1


ν1 = 1

5
, ν2 = 1

3
,

ν3 = 1
3

13
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 > 0

(ii) u31β12 + u32β21 > 1

U =

 1
3

3 1
1
2

1 2
1 3 3


ν1 = 1

14
, ν2 = 1

7
,

ν3 = 1
7

14

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

(iii) u31β12 + u32β21 > 1

U =

1 2 1
2

2 1 1
2

4 1
2

1


ν1 = 1

7
, ν2 = 1

7
,

ν3 = 1
11

15

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 > 1

U =

1 2 1
2

2 1 2
2 2 1


ν1 = 1

7
, ν2 = 1

6
,

ν3 = 1
6
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Table A.1: (continued)

Class Parameter conditions Element Phase Portrait

16

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 > 1

(iii) u31β12 + u32β21 < 1

U =

1 3 1
3

3 1 3
3
2

3
2

1


ν1 = 1

5
, ν2 = 1

8
,

ν3 = 1
5

17

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

(iii) u21β13 + u23β31 > 1

(iv) u31β12 + u32β21 < 1

U =

1 2 2
4 1 1

2

2 1
2

1


ν1 = 1

6
, ν2 = 1

11
,

ν3 = 1
7

18

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 < 0, γ32 < 0

(ii) u12β23 + u13β32 > 1

(iii) u21β13 + u23β31 > 1

(iv) u31β12 + u32β21 < 1

U =

1 3 3
3 1 3
3
2

3
2

1


ν1 = 1

8
, ν2 = 1

8
,

ν3 = 1
5

19
(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 < 0, γ31 < 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

U =

1 3
2

3
2

1
3

1 3
1
3

3 1


ν1 = 1

5
, ν2 = 1

5
,

ν3 = 1
5

20

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 < 1

U =

1 5
3

1
3

3 1 4
3

4
3

4
3

1


ν1 = 1

4
, ν2 = 1

8
,

ν3 = 1
4

21

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

(iii) u21β13 + u23β31 < 1

(iv) u31β12 + u32β21 < 1

U =

1 2 2
2 1 1

2

2 1
2

1


ν1 = 1

6
, ν2 = 1

7
,

ν3 = 1
7
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Table A.1: (continued)

Class Parameter conditions Element Phase Portrait

22

(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u21β13 + u23β31 > 1

U =

1 2 1
2

1
2

1 2
1
2

2 1


ν1 = 1

7
, ν2 = 1

7
,

ν3 = 1
7

23
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 < 0

(ii) u31β12 + u32β21 > 1

U =

1 1
4

4
1
4

1 4
3
4

3
4

1


ν1 = 1

6
, ν2 = 1

6
,

ν3 = 1
5

24

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 > 1

(iii) u31β12 + u32β21 > 1

U =

1 1
4

25
4

1
4

1 1
4

3
4

5
8

1


ν1 = 1

8
, ν2 = 1

3
,

ν3 = 1
3

25

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 < 1

(iii) u21β13 + u23β31 > 1

(iv) u31β12 + u32β21 > 1

U =

1 1
2

1
2

1
2

1 2
1
2

2 1


ν1 = 1

3
, ν2 = 1

7
,

ν3 = 1
7

26

(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 > 1

(iii) u21β13 + u23β31 < 1

U =

1 4 3
4

1
4

1 5
4

3
4

5
4

1


ν1 = 1

6
, ν2 = 1

5
,

ν3 = 1
4

27
γ12 > 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 < 0

U =

1 2 1
2

1
2

1 2
2 1

2
1


ν1 = 1

7
, ν2 = 1

7
,

ν3 = 1
7

28
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 < 0

(ii) u31β12 + u32β21 > 1

U =

1 3
2

3
4

2 1 2
4 1

2
1


ν1 = 1

4
, ν2 = 1

6
,

ν3 = 1
11
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Table A.1: (continued)

Class Parameter conditions Element Phase Portrait

29
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 < 0, γ32 > 0

(ii) u31β12 + u32β21 < 1

U =

1 1
2

2
1
2

1 1
2

1
6

7
6

1


ν1 = 1

7
, ν2 = 1

3
,

ν3 = 2
7

30

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 < 0

(ii) u12β23 + u13β32 > 1

(iii) u31β12 + u32β21 > 1

U =

1 4 1
2

2 1 2
2 2 1


ν1 = 1

11
, ν2 = 1

6
,

ν3 = 1
6

31

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 > 0

(ii) u12β23 + u13β32 < 1

(iii) u31β12 + u32β21 < 1

U =

1 1
4

5
4

5
8

1 5
8

1
4

3
4

1


ν1 = 1

5
, ν2 = 1

3
,

ν3 = 1
3

32

(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 < 0, γ32 < 0

(ii) u12β23 + u13β32 > 1

(iii) u21β13 + u23β31 > 1

(iv) u31β12 + u32β21 > 1

U =

1 2 2
2 1 2
2 2 1


ν1 = 1

6
, ν2 = 1

6
,

ν3 = 1
6

33

(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 > 0, γ32 > 0

(ii) u12β23 + u13β32 < 1

(iii) u21β13 + u23β31 < 1

(iv) u31β12 + u32β21 < 1

U =

1 1
2

1
2

1
2

1 1
2

1
2

1
2

1


ν1 = 1

3
, ν2 = 1

3
,

ν3 = 1
3
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