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The aim of this study was to develop methods for detecting the non-stationary periodic characteristics

of neonatal electroencephalographic (EEG) seizures by adapting estimates of the correlation both in

the time (spike correlation; SC) and time-frequency domain (time-frequency correlation; TFC). These

measures were incorporated into a seizure detection algorithm (SDA) based on a support vector machine

to detect periods of seizure and non-seizure. The performance of these non-stationary correlation mea-

sures was evaluated using EEG recordings from 79 term neonates annotated by three human experts.

The proposed measures were highly discriminative for seizure detection (median AUCSC: 0.933 IQR:

0.821-0.975, median AUCTFC: 0.883 IQR: 0.707-0.931). The resultant SDA applied to multi-channel

recordings had a median AUC of 0.988 (IQR: 0.931-0.998) when compared to consensus annotations,

outperformed two state-of-the-art SDAs (p<0.001) and was non-inferior to the human expert for 73/79

of neonates.

Keywords: electroencephalography; support vector machines; time-frequency distributions; neonatal
seizure detection; nonstationary signal processing.

1. Introduction

Seizures are a common emergency in the neona-

tal intensive care unit (NICU). They have been as-

sociated with increased damage to the developing

brain and, therefore, need to be reliably detected to

guide treatment and determine prognosis.1,2 Thus

far, visual interpretation of long-duration electroen-

cephalographic (EEG) recordings has been the gold

standard of seizure detection, as the majority of

seizures do not have clear clinical manifestations.3

As the interpretation of neonatal EEG is time con-
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suming and requires specialized expertise, it is not

always available on demand. This has driven the

development of numerous automated seizure detec-

tion algorithms (SDA) since 1992.4–11 Even though

the performance of these algorithms has improved,

researchers have yet to determine if their methods

reach the benchmark performance of annotation of

the EEG by the human expert. A benchmark that is

not absolute due to subjectivity between experts.12

In automated neonatal seizure detection, signal

transformations that emphasize periodicity are cru-

cial to efficiently and reliably distinguish the repet-

itive characteristics of seizure. Two traditional ap-

proaches have been widely applied to represent pe-

riodicity: the autocorrelation in the time domain

and the Fourier spectrum (FS) in the frequency

domain.4,5, 8 These approaches assume stationarity

within the EEG signal; assumptions that are not

valid as neonatal seizures exhibit non-stationarity

with a time-varying period of repetition.13–16 The

effectiveness of the autocorrelation function and the

FS to discriminate neonatal seizures from back-

ground EEG is, therefore, reduced. To overcome non-

stationarity, adaptive segmentation in the time do-

main, edge linking to align spectral peaks in the time-

frequency domain and time-frequency matched fil-

ters have been applied.7,8, 16,17

The aim of this paper is to improve neonatal

seizure detection using estimates of autocorrelation

that take into account the time-varying periodic-

ity of neonatal seizures. We propose two methods:

spike correlation (SC) and time-frequency correla-

tion (TFC). The SC is a maximum cross-correlation

with respect to time lag between adaptively ex-

tracted segments of the EEG signal, whereas the

TFC is a maximum cross-correlation between scale-

shifted time-slices of a time-frequency distribution

(TFD). The SC is adapted from the methods of

Navakatikyan et al. and Deburchgraeve et al.7,8

2. Data

The continuous, 18-channel, EEG measurements an-

alyzed in this study were recorded at the NICU of

the Children’s Hospital, Helsinki University Central

Hospital, Finland. Each EEG recording was initially

requested based on clinical suspicion of seizure dur-

ing routine care and the entire, unedited, recording

was included in our dataset. The data was recorded

from 79 full-term neonates using a NicoletOne vEEG

system (sampled at 256 Hz). The median postnatal

age of the neonates was 3 (IQR: 2-10) days. Eti-

ologies (in descending order of occurrence) include

hypoxic-ischaemic encephalopathy (HIE), stroke, in-

fection, and other brain abnormalities. For record-

ings, 19 electrodes were placed according to the in-

ternational 10-20 system with a bipolar montage em-

ployed for the analysis: Fp2-F4, F4-C4, C4-P4, P4-

O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4,

T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz

and Cz-Pz.18 On average, the length of each record-

ing was 85 min (range 52-257 min) and the combined

length of recordings approximately 112 hours. Data

collection was approved by the Institutional Ethics

Committee of the Helsinki University Hospital, Fin-

land.

The data was anonymized and then annotated

for the presence of seizure with 1s resolution inde-

pendently by three clinical experts. Each expert was

blinded to each other’s annotation and the clinical

condition of the neonate. The inter-observer agree-

ment (IOA) between experts, measured by Fleiss’

kappa, was 0.777 (95% CI: 0.659-0.830). In total, 39

patients had unanimously annotated seizures (342

consensus seizures, in total) and 22 patients were

unanimously annotated as having no seizure. Details

on the temporal characteristics of seizures annotated

by each expert are presented in Table 1.

3. Methods

3.1. Evaluating periodicity in the EEG

According to international guidelines, the EEG man-

ifestation of neonatal seizures is defined as: ’clear ic-

tal events characterized by the appearance of sud-

den, repetitive, evolving stereotyped waveforms with

a definite beginning, middle, and end’.19 A key com-

ponent of neonatal seizure detection is, therefore, the

detection of evolving repetition or periodicity in the

EEG.

Periodicity within any signal, x(t), is defined as,

x(t) = x(t+ T ), (1)

where t is time and T is the period. This, how-

ever, is a strict definition of periodicity and in real

world conditions, where signals are quantized, sam-

pled and embedded in noise, impossible to satisfy. A

more lenient definition introduces an error term to
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Table 1. A summary of the seizures detected by each human expert. IQR denotes in-
terquartile range.

Expert 1 Expert 2 Expert 3

Neonates with seizures 46 45 53
Median (IQR) number of seizures 5 (2-12) 6 (2-13.5) 6 (3-10.5)
Seizures in total 402 429 548
Median (IQR) duration of seizures (s) 59.5 (24-138) 79 (35-137) 43 (20-114.5)
Median (IQR) seizure burden (min) 10.2 (4.3-23.7) 15.0 (6.6-30.3) 8.6 (2.1-22.5)

take into account real world conditions, resulting in

a definition of ’almost periodic’ as,20

|x(t)− x(t+ T )| < ε. (2)

In neonatal seizures and many other biologi-

cal signals, repetition is further complicated by a

time-varying, evolving or non-stationary characteris-

tic.21,22 This variation in time results from many fac-

tors including changes in physiological demand and

nonlinear effects that underpin the physiological ba-

sis of EEG generation. Time-variation in the period

can be embedded into the definition of ’almost peri-

odic’ as follows:

|x(t)− x(t+ T (t))| < ε, (3)

where T (t) is the time-varying period, which is the

reciprocal of the instantaneous frequency.16 This def-

inition is broad and some constraints must be placed

on T (t) for useful interpretation. For instance, the

frequency content of T (t) should not overlap the fre-

quency content of x(t) (similar to the application of

Bedrosian’s theorem to the Hilbert transform of a

signal).23

Neonatal EEG seizures display two specific

types of time-varying periodicity (see Fig. 1 for ex-

amples). The first, and most common, are seizures

that consist of a sequence of epileptic spikes where

the spike morphology does not change significantly

over time,

x(t) = w(t)

N−1∑
n=0

δ(t− tn), (4)

where tn is a time shift. In this case, T (t) will

be discrete and only needs to be defined for the du-

ration of the waveform prototype, w(t), defining the

morphology of the epileptic spike. This function, typ-

ically, has a form e−t sin(t−2).21,22

The second type defines a seizure, where the fun-

damental waveform is shifted in time and scale:

x(t) =

M−1∑
m=0

am sin
(
2πm

∫ t

0

T (τ)−1dτ + φm
)
, (5)

where τ is also time, φ is a phase constant, am
and m define the harmonic relationship in the signal,

T (τ) is the time-varying period and continuous.23
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Figure 1. Manifestations of time-varying periodicity in
neonatal seizures. A) Time and time-scale shifted version
of a simulated waveform prototype. B) Time shifts in the
period of a neonatal seizure C) Time shifts in the pe-
riod and scale shifts in the underlying spike waveform in
neonatal seizure. // delineates a break in time.
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3.2. Correlation in time and
time-frequency domain

The estimation of T (t) from a signal is, therefore,

fundamental in detecting time-varying periodicity.

There are multiple methods for extracting T (t) from

a signal,15,16,24 but the estimation of T (t) does not,

however, result in useful detection statistics as T (t)

estimated from non-seizure EEG (a filtered 1/f pro-

cess) can overlap with seizure.25

A more useful detection statistic is based on the

estimate of ε in Eq. (3) and it is these measures that

we use as the basis of our SDA. A key representation

for estimating both T and ε from a stationary signal

is the autocorrelation function:

Rx(τ) = E[x(t)x(t+ τ)], (6)

where T = maxτ{Rx(τ)}, τ > τ0 defines the pe-

riod and Rx(T ) is a surrogate measure of ε. This

method uses comparisons between the signal and

time-shifted versions of itself to determine time in-

stances of maximum similarity which correspond to

the signal period. A limitation on τ is required due to

correlations within the fundamental waveform and is

typically constrained to be greater than τ0 which is

the minimum value of τ where Rx(τ) < 0, τ > 0.26

This limit is not considered when evaluating the

cross-correlation.

The expectation operator in the definition of

Rx(τ) can be defined as average across time under

the assumption of ergodicity and is replaced with a

sample mean for discrete time limited signals result-

ing in a biased estimate of Rx(τ). Rx(τ) can also

be normalized to the signal variance. The autocorre-

lation function was the basis of the initial neonatal

seizure detection algorithm of Liu et al.4

For non-stationary signals, a time-varying form

of Rx(τ) should be applied. This would result in an

estimate of T (t) and a surrogate measure of ε de-

fined as Rx(t, T (t)). In this study, we used adaptive

segmentation and time-frequency distributions to es-

timate Rx(t, τ).

3.2.1. Time domain

Adaptive segmentation has been previously applied

in neonatal seizure detection.7,8 Here, we modify the

algorithm of Deburgraeve et al. to provide an imple-

mentation for discrete signal epochs.a Segmentation

is employed to separate single epileptic spikes. The

time lag of maximum correlation between successive

segments provides the estimate of period and the nor-

malized correlation provides the surrogate measure

of ε.

The adaptive segmentation is based on the non-

linear energy operator (NLEO),

ψ{x(n)} = x(n− l)x(n− p)− x(n− q)x(n− s), (7)

where x(n) represents discrete EEG signal at

sample n, and l, p, q and s are discrete time shifts.28

We used l = 1, p = 2, q = 0, and s = 3 and ap-

plied a moving average filter of 7 samples (110 ms).

This smoothed NLEO (SNLEO) was then segmented

using an adaptive threshold. The optimal threshold

was defined as the initial threshold value resulting

in largest range of no change to the number of de-

tected bursts (see Fig. 2A3). The search range was

10-90 % quantile of the SNLEO. The correlation of

spikes (SC) was used to define a feature for seizure

detection as follows:

SCi,j = max
m

Rxixj (m) (8)

Rxixj
(m; i, j) =

E[xi(n)xj(n+m)]

σxi
σxj

(9)

where xi and yj are segments of the EEG signal

(i = [2, ..., S−6], j = [i+1, ...i+5]), S represents the

number of spikes detected in an epoch and σ is the

standard deviation of the EEG segment. We use the

mean of the SC across EEG segments as a feature

for seizure detection. The process of estimating the

SC is illustrated in Fig. 2A.

3.2.2. Time-frequency domain

Time-frequency distributions (TFD) provide a rep-

resentation of signal energy over time and frequency,

and have been used extensively in neonatal seizure

detection.14,16,17 Cross-correlation is performed be-

tween spectra at different times. In this case, the

correlation is performed with respect to changes in

frequency scale which preserves any harmonic rela-

tionships – relationships that were not taken into ac-

count in other time-frequency methods.16 The scale

aWe have presented elements of the SC algorithm in27
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Figure 2. Methods for estimating ε from signals with time-varying periodicity. A) SC is estimated by adaptively seg-
menting the EEG signal (A1), using the smoothed NLEO (A2) with an adaptive threshold (A3). The resultant segments
of EEG (A4) are then correlated with each other over varying time-shifts and the matrix of maximum correlations (A5)
is then summarized to derive a feature. In this example, the mean of SC is 0.96, whereas using the stationary correlation
results in a value of 0.36. B) TFC is estimated by comparing time slices of a TFD of the pre-whitened EEG epoch (B2).
TFD time-slices (B3) are correlated with scale-shifted versions of future time-slices (B4) to form a matrix of maximum
correlations (B5). In this example, the median of TFC is 0.73, whereas using frequency shifts rather than scale shifts
results in a value of 0.38.

of maximum correlation at each time of the TFD

can be used to estimate the instantaneous frequency,

which is related to the time-varying period T (t), and

the maximum correlation value is a surrogate mea-

sure of ε.

The most common TFD, the Wigner-Ville Dis-
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tribution (WVD), is defined as,

Wz(t, f) =

∫
Pz(t, τ)e−j2πfτdτ, (10)

Pz(t, τ) = z(t+
τ

2
)z∗(t− τ

2
), (11)

where z(t) is an analytic signal and the super-

script ∗ denotes the complex conjugate. The WVD

is usually convolved (∗∗) with a 2D filter γ(t, f) re-

sulting in a smoothed WVD:

ρz(t, f) = Wz(t, f)∗∗tf γ(t, f). (12)

In this study, we applied a 2D Hamming window

(2.4s in duration and a bandwidth of 1.6Hz). The

WVD was then sub-sampled via summation over

rectangular regions (32 in time and 4 in frequency)

to decrease computation time. We use a smoothed

WVD as it has been shown to have good performance

when representing neonatal EEG.29

The TFD was estimated from the pre-whitened

EEG. The whitening filter has a power law response

similar to the NLEO at the lower EEG frequency

bands.30 Pre-whitening the spectrum enhances the

differences between non-seizure and seizure signals,

especially in the high frequency part of the spec-

trum.16 This filtering process was implemented by

deconvolving,

h(k) =

{
1, k = 0

(α2 + k − 1)(hk−1

k ), k = [2, ..., N ]
(13)

from the signal, where N is length of the signal

and α = 2H+1 (H = 2−Df and Df is estimated us-

ing Higuchi’s estimate of the fractal dimension).31,32

We computed the time-frequency correlation

(TFC) as

TFCi,j = max
α

Rρ(β; i, j) (14)

Rρ(β; i, j) =
E[ρ(i, k)ρ(j, kβ )]

σρiσρj
(15)

where i = [1, ..., N − 4], j = [i + 1, ...i + 3] and

N represents the number of time-slices. β is limited

to an equivalent frequency shift of ±1.25 Hz.15 To

generate the scaled time-slices ρ(j, kβ ), we applied in-

terpolation with Hermite splines. We use the median

of the TFC across time slices as a feature for seizure

detection. The process of estimating the TFC is il-

lustrated in Fig. 2B.

3.3. Overview of the SDA

Neonatal seizures are difficult to detect and no single

feature has shown sufficient discrimination between

seizure and non-seizure.16,33 We, therefore, selected

19 additional features, a priori, to supplement the

SC and TFC measures and combined them to form

a detection statistic. Features related to the mean SC

include the standard deviation of the SC, the mean,

standard deviation and skewness of the SNLEO and

the number, duration, inter-spike interval, and the

mean maximum SNLEO value of detected spikes. We

included a measure of SNLEO regularity calculated

as the standard deviation of all non-overlapping 2s

epochs within 32s of SNLEO output. Features re-

lated to the median TFC include relative spectral

power, power, measurements of the total harmonic

distortion (power in the fundamental, power in the

first three harmonics and the maximum value of

the power spectral density). We also include a time-

varying estimate of the total harmonic distortion de-

fined as,

∑N−1
n=0 max(ρ(n,m))∑N−1
n=0

∑M−1
m=0 ρ(n,m)

(16)

where n is discrete time, m is discrete frequency

and ρ is the discrete smoothed WVD. This measure

is conceptually similar to the feature used outlined

in.16 Finally, we include a measure of the mean EEG

amplitude envelope. Short descriptions of each fea-

ture are presented in Appendix A Table A.1.

The subsequent SDA is as follows: each chan-

nel of neonatal EEG is high-pass filtered with an

optimized cutoff frequency (0.5 Hz or 1 Hz, details

in Appendix A Table A.2) and a 50 Hz notch fil-

ter. The EEG is re-sampled from 256 Hz to 64 Hz

and segmented into epochs of 32s in duration, with a

28s overlap (4s time shift). We have shown that this

longer epoch slightly improves the ability of features

to discriminate between seizure and nonseizure.27

Features are then estimated from each epoch and

combined using a support vector machine (SVM).

The sequence of SVM outputs is calculated from

the full EEG recording and each channel is post-

processed with a moving average filter of 3 sam-

ples (12 s) in length. Multi-channel outputs are then

transformed into a single decision value using a max-

imum operator, which is further processed with a

median filter of 3 samples (12 s). The duration of
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moving average and median filters was selected a

priori to minimize the influence of a single outly-

ing data point and maximise time resolution. The fi-

nal decision is computed by applying a threshold to

the post-processed SVM output and applying a col-

lar (extending the detection forwards in time). The

collar duration was applied to cater for overlap in

the epoch segmentation and optimised for each al-

gorithm (the collar duration that maximised SDA

performance was selected with a search range of 1-

32s). The optimal collar for the proposed SDA was

23s.

3.4. Training, testing and performance
evaluation

Training and testing of the proposed SDA were

performed within a leave-one-patient-out cross val-

idation. In this case, EEG data from 78 patients

were included in training set and 1 patient was left

out for testing. This process was repeated until ev-

ery patient had been tested, resulting in 79 trained

SVMs. The training set contained in average 543

consensus seizure and 5882 consensus non-seizure

epochs per patient (in total 20373 seizure epochs

and 458796 non-seizure epochs for each training iter-

ation). The SVM was implemented using the fitcsvm

function in Matlab (version R2017a) with hyperpa-

rameter optimization (C and σ; Bayesian optimi-

sation within an internal 5-fold cross validation).

Hyperparameters and support vectors were, there-

fore, selected using only training data. For the pro-

posed SDA, the median (IQR) of the box constraints

were 102.325 (101.323−2.777) and kernel scales were

101.116 (100.828−1.243). Features were normalised at

each training iteration to z-scores.

In order to determine if the individual fea-

tures provide a useful level of discrimination between

seizure and nonseizure, their ability as an SDA was

evaluated using the area under the receiver operator

characteristics (AUC) summarised across patients.34

We apply post-processing stages to each feature for

fair comparison with subsequent multi-feature, SVM

based detectors.

The performance of SDAs were assessed by com-

paring the output to the consensus annotations of

human experts using temporal and event based mea-

sures: AUC, and seizure detection rate (SDR) at false

detections or false positives per hour (FD/h) of 0 and

1.5,35 These values were summarized across patients

with consensus seizures (n=39). To include all pa-

tients into analysis, AUCs were also calculated using

a concatenated annotation (all annotations linked to-

gether to form a single annotation approximately 112

h in length). The characteristics of missed seizures

and false seizure detections were analysed.34

The algorithm was also compared to the annota-

tions of the human experts using measures of IOA to

determine its sufficiency. We define a sufficient SDA

as an algorithm that generates an annotation of the

EEG that is non-inferior to the human expert tak-

ing into account the subjectivity of human annota-

tion. It is evaluated using bootstrap estimates of the

differences in Fleiss’ kappa (κ) between an ’all hu-

man’ annotation (three human experts) and a com-

posite ’human/SDA’ annotation (two human experts

and the SDA).36 Fleiss’ kappa statistic is an estimate

of percentage agreement between the annotation of

more than 2 observers that takes into account the

possibility of chance agreement due to the distribu-

tion of the data. It is normalised whereby 0 is poor

agreement and 1 is perfect agreement. In order to

measure SDA sufficiency, we first perform a random

sampling (with replacement) of annotations where a

patient was considered as a sample. Fleiss kappa was

calculated on the concatenated annotations of the

’human/SDA’ sample and subtracted from the ’all

human’ kappa value resulting in ∆κ. One thousand

random samplings were performed to generate a dis-

tribution of ∆κ from which the confidence interval

could be estimated. The process was performed on

all possible combinations of human experts and SDA

(three combinations). If the 95% confidence interval

of this distribution spanned zero, it was assumed that

the SDA annotation was no different from the anno-

tation of the human expert.

The performance of the SDA was also compared

to the algorithm of Deburchgraeve et al. (SDADB)

and to the algorithm of Temko et al. (SDAT).8,10 We

do not use the authors implementation of these algo-

rithms as they are not publicly available. Rather, we

use our own implementations based on the original

publications trained on our own datasets where pos-

sible. As the algorithm of SDADB in its original form

is not amenable to training, we also implemented a

modified version of this algorithm (SDAmDB) where

pertinent aspects of SDADB are extracted as stan-

dalone features that can be trained to form a contin-

uous decision output. In order to ensure valid com-
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parisons we apply the same post-processing stages

including optimized collars within each SDA imple-

mentation. Details on these implementations can be

found in Appendix A.

For SDADB, the AUC was approximated us-

ing Hermite splines. SDAs were compared using the

Wilcoxon signed rank test on the consensus AUC

(across seizure patients; n = 39) and the 95% CI

of AUC differences estimated on the concatenated

recording using a bootstrap (n=79). P-values less

than 0.05 and CIs that did not span zero were

deemed to result from significant differences between

SDAs.

4. Results

4.1. Single feature performance

Single feature AUCs are presented in Table 2 for the

10 best performing features from all SDAs. The mean

of SC, the standard deviation of SC, as well as the

median of TFC and the time-frequency total har-

monic distortion are within the best performing fea-

tures out of 85 trialled features.

Table 2. The top ten best performing seizure de-
tection algorithms based on a single EEG feature.
AUC is the area under the receiver operator char-
acteristic with consensus annotation as the gold
standard. Superscripts denote the multi-feature al-
gorithm, in which the feature is included: a - the
proposed algorithm, b - the SDAmDB and c - the
SDAT. SC is spike correlation, TFC is time-fre-
qyency correlation, BP is band power, and THDTF
is the time-frequency, total harmonic distortion.

Feature Mean Median(IQR)

Mean of SCa,b 0.877 0.933 (0.821-0.975)
Spectral Power (log)a,c 0.862 0.899 (0.775-0.958)

Median TFCa,b 0.823 0.883 (0.707-0.931)
Amplitude Envelopea 0.778 0.749 (0.650-0.933)
Std of SCa 0.774 0.767 (0.679-0.898)
Relative BP (6-8Hz)c 0.770 0.777 (0.680-0.859)
Shannon Entropyc 0.767 0.751 (0.622-0.919)
THDaTF 0.765 0.760 (0.617-0.905)
Relative BP (7-9Hz)c 0.760 0.776 (0.646-0.849)

Wavelet Power 4-8 Hzb 0.759 0.722 (0.619-0.912)

4.2. Algorithm performance on full
recording

The AUC of the proposed algorithm was significantly

higher than SDADB, SDAmDB and SDAT (see Table

3, Fig. 3). SDADB had a significantly lower AUC than

SDAmDB and SDAT (p< 0.001), while SDAT sig-

nificantly outperformed SDAmDB (p< 0.01). A one-

point AUC estimate of each SDA resulted in me-

dian AUCs of 0.921 (IQR: 0.709-0.986), 0.772 (IQR:

0.610-0.941) and 0.833 (IQR: 0.609-0.961), for the

proposed SDA, SDAmDB and SDAT, respectively.

These values are directly comparable to the AUC

values for SDADB in Table 3. At a threshold that

maximised the IOA between the SDA and the human

experts on the concatenated annotations, the pro-

posed SDA had a median sensitivity of 0.761 (IQR:

0.399-0.961; n=39), a median specificity of 0.992

(IQR: 0.960-1.000; n=79), a median positive predic-

tive value of 0.720 (IQR: 0.283-0.911; n=39) and

a median negative predictive value of 0.972 (IQR:

0.852-1.000; n=79).

The annotations of SDAs were significantly dif-

ferent from that of the human expert (incorporat-

ing SDA annotations as an additional expert signifi-

cantly reduces κ, Table 4). The proposed SDA, how-

ever, achieved the benchmark of IOA between human

experts if 6 of the worst performing neonates were

removed. In contrast, SDAT, SDAmDB, and SDADB

reached the benchmark when 60, 65, and 74 patients

were removed, respectively (Table 4).
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Figure 3. SDA performance against human consensus
(n=39, neonates with seizure): sensitivity as a function
of 1-specificity, averaged over seizure patients.

The proposed SDA does not perfectly align with

the consensus annotation of the human experts.

There were 342 consensus seizures detected in 39

neonates. The proposed SDA detected 228 of these

seizures in 36 neonates with 30 false detections oc-
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Table 3. SDA performance compared to human consensus. Average AUCs and SDRs are computed on consen-
sus seizure patients only (n=39) for consensus seizures of at least 10 seconds. For SDADB, median SDR is 60.0
% (IQR: 0.6-95.3, n=39) and median FD/h 0 (IQR: 0-1.772, n=79). The p-values are from a Wilcoxon signed
rank test between an SDA and the proposed SDA (n=39), the ∆ AUC 95% CI is the difference between the
AUCcc of an SDA and the proposed SDA estimated using a bootstrap (n=79). AUCcc denotes AUC computed
on concatenated recordings.

Algorithm Proposed SDA SDADB SDAmDB SDAT

Median AUC (IQR) 0.988 (0.931-0.998) 0.683 (0.500-0.818) 0.943 (0.851-0.988) 0.961 (0.869-0.990)
Mean AUC 0.957 0.660 0.886 0.923
AUCcc 0.955 0.767 0.862 0.901
Mean SDR (FD/h∼0) 79.8 % - 65.9 % 72.2 %
Mean SDR (FD/h∼1) 86.6 % - 73.5 % 78.4 %
p-values - <0.001 <0.001 <0.001
∆AUC 95% CI - 0.128-0.283 0.042-0.149 0.028-0.081

curring in 11 neonates. The detected seizures were

apparent on a median of 5 channels (IQR: 2-9), with

false detections apparent on a median of 1 channel

(IQR: 1-2). The distribution of seizure detections and

false seizure detections across channels is shown in

Fig. 4B. Examples of seizures that were correctly de-

tected, seizures that were missed and false seizure de-

tections are shown in Fig. 5. Missed seizures tended

to have a low amplitude and false detections tended

to contain distinct delta activity and appear on a

lower number of specific channels. Detection accu-

racy was also dependent on seizure duration (see Fig.

4A).

5. Discussion

Our results suggest that measures of non-stationary

correlation provide superior discrimination between

seizure and non-seizure in the neonatal EEG, com-

pared to over 50 other EEG features. This implies

that there is still room for the development of fea-

tures for neonatal seizure detection. Incorporating

these features into an SDA resulted in superior de-

tection performance in contrast to two state-of-the-

art methods on a database of approximately 1 h

recordings from 79 term neonates with mixed eti-

ologies. The output annotation of the proposed SDA

achieved the benchmark of IOA between human ex-

perts with a subset of 73 neonates from the cohort.

The proposed measures of non-stationary corre-

lation provide an estimate of the error term (ε) from

a definition of time-varying periodicity. This param-

eter of periodicity is more useful for discriminating

between seizure and non-seizure than high precision

estimates of the time-varying period. The proposed

measures do not rely on internally set thresholds

and output a continuous, bounded variable. As such,

these measures are highly suited to modern classi-

fiers which can be trained on data sets of labeled

EEG. Out of these two measures, the SC outperforms

TFC for seizure detection when assessed individu-

ally. This suggests a predominance of seizure types

with discrete changes in period, resulting from lim-

ited spatial dynamics in the underlying seizure. At

the biophysical level, it is commonly assumed that

waveform shapes relate to different spatio-temporal

configurations between the cortical source and the

recording electrode (or their paired derivation). For

instance, the transition from sharp to smooth wave-

forms relates to the spread from a focal to wider cor-

tical area, or to shifting of the focus away from the

recording electrode. The complexity of translation

between cortical event and EEG waveform precludes

accurate explanation, however, clinical studies sup-

port the idea that a wide range of spatio-temporal

seizure configurations should be targeted by an ideal

SDA.37,38

The proposed SDA significantly outperformed

our implementations of two state-of-the-art algo-

rithms when applied to our data set.8,10 Performance

of SDADB was likely compromised by the use of many

fixed thresholds within the algorithm.8 Reformulat-

ing the algorithm so that these thresholds could

be trained on our data (SDAmDB) significantly im-

proved performance. Our present findings are, never-

theless, compatible with an idea that SDAmDB, con-

tains too few features, while SDAT includes many

features that do not add value for seizure detection.

Although we are confident that the implementations
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Table 4. Differences of automated annotations to human annotation evaluated using inter-observer agree-
ment. For each SDA, one of the three annotators was replaced by the SDA annotation, resulting in three
combinations. The table presents ∆κ values with the 95% confidence intervals in brackets. The average
agreement between all iterations of two human annotators and an algorithm (Mean κ) are also presented.
Cohort size defines the number of patients with which the IOA benchmark is achieved, after discarding the
patients with the lowest agreement for each SDA.

Left Out Expert Proposed SDA SDADB SDAmDB SDAT

1 0.121 (0.054-0.205) 0.290 (0.218-0.367) 0.202 (0.124-0.300) 0.172 (0.101-0.254)
2 0.095 (0.022-0.190) 0.263 (0.190-0.343) 0.182 (0.099-0.287) 0.143 (0.068-0.238)
3 0.131 (0.065-0.211) 0.294 (0.221-0.372) 0.211 (0.139-0.301) 0.176 (0.107-0.256)

Mean κ 0.646 0.268 0.554 0.590

Cohort size 73 (92%) 5 (6%) 14 (18%) 19 (24%)
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Figure 4. The effect of temporal and spatial distributions on the performance of the proposed seizure detection algorithm.
A) The distribution of seizure detection rate (SDR) with seizure duration. B) The distribution of detections across EEG
channels. All detections were assessed at the optimal patient independent threshold, N denotes the number of patients,
FD is false seizure detections and TD is true seizure detections.

of these algorithms are accurate to the limits of what

can be extracted from the published reports, it is

important to note that prior SDAs have not been

made openly available to allow for direct compari-

son at the code level. It should also be noted that

these algorithms have been improved with continued

research.11,39

The overall performance metrics reported for

the proposed algorithm are similar to those reported

in other recent studies.39,40 Our AUCs may be, nev-

ertheless, overestimated, as we evaluated SDA per-

formance on the consensus annotation only. Tradi-

tional performance measures (AUC, SDR and FD/h)

are feasible when comparing an SDA output to a

gold standard. In the case of neonatal seizure detec-

tion, however, the gold standard is subjective and

other measures are required to determine whether a

SDA is sufficient. Improved measures have been de-

veloped that deal with variability in the annotations

of the human expert,41 however, these methods of

assessment lack the capacity to determine the suf-

ficiency of an SDA. This raises the question, given

the subjectivity of the annotation of the human ex-

pert, what value of sensitivity/specificity or seizure

detection rate/false detection rate is required to de-

termine if an SDA annotation is non-inferior to the

human expert (human equivalent). The IOA mea-

sures presented in this study constitute an innova-

tive way of determining the performance of an SDA

where the ultimate goal is to generate an annota-

tion of the neonatal EEG that is indistinguishable

from the human expert. They are conceptually sim-
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Figure 5. Examples of EEG seizure detection. A) true seizure detections, B) false seizure detections and C) missed
seizures. Each trace was from a different neonate and the vertical line at the beginning of each trace denotes the voltage
scale. Voltage scales were varied to highlight the morphology of the EEG waveform from different neonates. Note the
preponderance of delta waves and Fz-Cz in false detections, and the low amplitude of missed seizures.

ilar to the noninferiority analysis of Scheuer et al.42

The advantages of our method is that it is based on

a single univariate metric rather than multiple bi-

variate metrics which means that our analysis is not

complicated by multiple values and the potential co-

variance between variables. It is important to also

note that while the methods of analysis are valid, a

consensus on the level of confidence required, the size

of the dataset and the reviewers used has yet to be

reached.43

The recordings of our study were of short du-

ration and taken at times when there was clinical

suspicion of seizures. This results in a significantly

higher hourly seizure burden (occurrence over time)
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compared to typical long term EEG recordings, the

likely common user scenario for future SDA imple-

mentations. This is not ideal as there will be limited

examples of the many artefacts that can contami-

nate long duration recordings (potential false detec-

tions), no examples of natural changes in the EEG

recording environment over the longer term and lim-

ited granulation of event based measures (resulting

in minimal changes in SDR over a range of false de-

tections from 0 or 1). There may be, nevertheless,

some advantages when using short duration record-

ings. There will be a more amenable balance be-

tween seizure and nonseizure data which is useful

for training and performance evaluation and there

is limited opportunity for long periods of relatively

benign EEG patterns to improve measures of speci-

ficity (decrease false detections per hour). While the

recording durations are relatively low, the number of

neonates is high and comparable to published data

sets.7,9 This suggests that our data set provides a

valuable and representative sample as inter-subject

variability is higher than intra-subject variability in

neonatal seizures. The clear advantage of our data

set is that it employs the annotations of multiple ex-

perts which permits our analysis of sufficiency based

on IOA. The open evaluation of data sets, annota-

tions and code remains a problem in the development

of neonatal SDAs. We, therefore, make our data, an-

notations and code publicly available at Zenodo and

GitHub.44–46

6. Conclusions

We have developed a neonatal SDA based on a set of

21 features combined by a kernel SVM. The feature

set contains novel features for indirectly estimating ε

from a definition of time-varying periodicity. We have

also developed a novel method of assessing SDA suffi-

ciency based on measures of IOA. The proposed SDA

outperforms our implementation of leading methods

with an AUC across all concatenated EEG record-

ings of 0.955. We have, furthermore, demonstrated

two important findings 1) there is still potential for

the development of features for neonatal SDAs with

an emphasis on time-varying methods and 2) assess-

ments against the benchmark of human subjectiv-

ity is the only way to determine the sufficiency of

an SDA. Potential improvements to the algorithm

include revisiting features used in adult SDAs, in-

corporating features that can discriminate between

seizure and slow repetitive activity such as respi-

ration artefact or delta waves and the use of opti-

mal montages or channel adaptive post-processing

stages.47–49 Prospective validation of the proposed

algorithm is also required to determine the general-

isability of the proposed SDA and the dataset it was

trained on as well as its clinical utility.
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Appendix A

Features

The Table A.1 shortly describes all features used

in the proposed SDA. These features consist of

the SNLEO features (utilizing adaptive segmenta-

tion with the smoothed non-linear energy opera-

tor), frequency spectrum features (computed from

the Welch’s power estimate and short-time Fourier

transform), the median of time-frequency correla-

tions from the TFD and amplitude envelope.

Algorithm implementations

In this paper, we implemented two versions of the

method of Deburchgraeve et al.:8 1) the original al-

gorithm according to the first publication, SDADB

and 2) a modified and discretized version, SDAmDB.

This modified SDADB algorithm is a reformulated

version of the original algorithm that can be trained

on our data set.8 We reformulated the algorithm so

as to be able to extract features which were neces-

sary to adopt a version of the SDADB, that would

be comparable to common epoch-by-epoch based al-

gorithms. Extracted features that corresponded to
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Table A.1. Short descriptions of features in the proposed algorithm, first the features
for which optimal high-pass filter cutoff frequency was 1 Hz and second 0.5Hz.

Features Short description

Cutoff 1 Hz
Skewness Skewness of the SNLEO ouput
Regularity Std of skewness of 2s sub-windows of the SNLEO
Spike number Number of spikes in an epoch
Spike width Median width of spikes
Spike gap Median inter-spike interval in
Mean of SC Mean correlation between spikes
Std of SC Std of correlation between spikes
Mean SNLEO Mean of the SNLEO
Std SNLEO Std of the SNLEO
Spikiness Mean of spike peaks over background
Median of TFC Median correlation between scaled time-slices of TFD
Amplitude envelope Mean of the amplitude envelope
Spectral power (log) Natural logarithm of the spectral power between 0.5-30 Hz

Cutoff 0.5 Hz
THD1 Power in the first three harmonics divided by sum of the PSD
THD2 Power in the fundamental divided by the sum of the PSD
THD3 Logarithm of the the power in the fundamental
Relative delta power 0.5-4 Hz
Relative theta power 4-8 Hz
Relative alpha power 8-12 Hz
Relative beta power 12-30 Hz
THDTF Sum of max TFD of each slice divided by sum of the TFD

important components of the original algorithm are

listed in Table A.3.

Table A.2. Filters and epoch lengths. SDAmDB

and SDAT also applied a notch filter at 50 Hz.

SDADB SDAmDB SDAT

Sampling frequency (Hz) 256 64 32
High-pass cutoff (Hz) 0.3 1 0.5
Low-pass cutoff (Hz) 30 32 8
Epoch length (s) - 32 8
Optimal collar length (s) 28 28 7

We also implemented the algorithm of Temko

et al. (SDAT) for comparison on our data; the fea-

tures of the SDAT can be found in.10 For the SVM

training of these algorithms, the median optimal hy-

perparameters, box constraint and kernel scale pa-

rameters were selected as 102.437 (IQR: 101.184−2.979;

SDAmDB) and 100.481 (IQR: 100.257−0.591; SDAT).
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