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Abstract 32 

Objectives 33 

To evaluate serum AMH levels in polycystic ovary syndrome (PCOS) and in its different 34 

phenotypes in relation to clinical, endocrine and metabolic parameters using a new automated 35 

VIDAS® method and to compare it with the Gen II method.  36 

Study design 37 

Multi-centre study including 319 PCOS women and 109 healthy controls.  38 

Results  39 

Serum AMH levels measured using VIDAS® were significantly higher in PCOS women than 40 

controls (p<0.001), and they correlated with those measured using the AMH Gen II method. 41 

An AMH cut-off value of 42.1pmol/L distinguished PCOS women from controls with 67% 42 

sensitivity and 83% specificity. The PCOS women with three Rotterdam criteria or 43 

hyperandrogenism displayed significantly higher AMH levels compared with those with two 44 

Rotterdam criteria or normoandrogenism. In PCOS, AMH levels correlated positively with 45 

luteinizing hormone (LH), androgen and sex hormone-binding globulin (SHBG) levels and 46 

negatively with BMI, abdominal obesity, follicle-stimulating hormone (FSH), fasting glucose 47 

and insulin, and insulin resistance.  48 

Conclusions 49 

AMH evaluated using the VIDAS® method distinguished PCOS patients from healthy 50 

controls relatively well, especially in those with more severe phenotypes. Further studies are 51 

needed to establish whether AMH measurements can distinguish PCOS patients with different 52 

metabolic risk factors. 53 
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Introduction 56 

Polycystic ovary syndrome (PCOS) is characterized by oligoamenorrhoea (OA), 57 

hyperandrogenism (HA) and polycystic ovary morphology (PCOM) on ultrasound (1,2). The 58 

diagnosis of the syndrome requires the presence of at least two of the three aforementioned 59 

criteria (3, 4). 60 

AMH is a member of the transforming growth factor-beta superfamily produced by the 61 

ovarian granulosa cells (5). The main physiological roles of AMH in the ovary are the 62 

prevention of primordial follicles recruitment and the modulation of FSH action in early 63 

follicular development (6,7). Serum AMH levels are correlated with the ovarian antral follicle 64 

count (AFC) in women with and without PCOS (8,9). As AMH levels are strongly correlated 65 

with both biochemical HA and AFC, studies have suggested that AMH levels could be used 66 

as a surrogate tool of PCOM in the diagnosis of PCOS (10,11). However, AMH assays lack 67 

an international standard, and concentrations and cut-off values are method dependent.  68 

The presence of relatively high AMH levels in the peripheral circulation suggests that 69 

circulating AMH may have also a function outside the reproductive system. Low AMH levels 70 

could be associated with cardiovascular disease and metabolic disorders (12) whereas 71 

elevated AMH levels seem to be related to PCOS severity (13,14,15,16,17,18). 72 

In a population study of Nordic Caucasian women, our first objective was to evaluate serum 73 

AMH levels and their diagnostic value in PCOS using the VIDAS® (bioMérieux SA, Marcy-74 

l’Etoile, France) kit. Our second aim was to examine the correlation of serum AMH levels 75 

measured with this kit with those obtained using the AMH Gen II enzyme-linked 76 

immunosorbent assay (ELISA) (Beckman Coulter, Inc., CA, USA). A formal comparison 77 

between VIDAS® and Gen II methods has not been published before, but both methods have 78 

been recently compared with Elecsys® (Roche Diagnostics) (19,20). 79 
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In addition, in PCOS patients, we investigated serum levels of AMH in different phenotypes 80 

of the syndrome, as well as the association of AMH levels with AFC, and with hormonal and 81 

metabolic parameters.  82 

Materials and methods 83 

Subjects 84 

The PCOS (n = 319) group had been originally recruited to a randomized controlled study 85 

investigating the efficacy of metformin in the treatment of anovulatory infertility (21). The 86 

inclusion and the exclusion criteria have been reported earlier (21).  87 

Hyperandrogenism (HA) was defined as clinical, defined as a Ferriman–Gallwey score>7 or 88 

biochemical, defined as a testosterone level ≥+2SD (i.e. ≥2.3nmol/L). The PCOS patients 89 

were divided further into four phenotypes according to the Rotterdam diagnosis criteria: 90 

A:PCOM+HA+OA (n = 106), B:HA+OA (n = 18), C:HA+PCOM (n = 12) and D:OA+PCOM 91 

(n = 124) (3).  92 

The control subjects consisted of 96 healthy Caucasian women (18–39 years; BMI:19-93 

35kg/m2) recruited from the community by advertisements in local newspapers (22,23). All 94 

were non-smokers and none of them used any hormonal contraception or other hormonal 95 

preparations, had regular menstrual cycles, and none had hirsutism/hyperandrogenaemia or 96 

were using any medications.  97 

After an overnight fast, serum samples were obtained in the follicular phase 1–7 days after 98 

spontaneous menstruation (oligomenorrhoeic PCOS patients and controls) or at a convenient 99 

time (amenorrhoeic PCOS women) during 2004–2009 and were immediately frozen at -20°C. 100 

Laboratory and clinical measurements  101 
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AMH concentrations and serum levels of LH, FSH and estradiol (E2) were measured in the 102 

stored samples using the VIDAS® automated enzyme immunoassay with fluorescent 103 

detection (bioMérieux). The measuring range for AMH was 0.14–64.3pmol/L (0.02–104 

9.00ng/mL), and the intra-assay coefficient of variation was 5.15%. For concentrations over 105 

64.3pmol/L (9ng/mL), a dilution procedure was used. A detailed description of this new 106 

automated method has been published recently (21).  107 

In women with PCOS, the determinations of AMH had been also performed earlier with the 108 

AMH Gen II enzyme linked immunosorbent assay (Beckman Coulter).  109 

 110 

Waist and hip circumference, serum levels of glucose, insulin, testosterone and SHBG, and 111 

calculation of the free androgen index (FAI), homeostasis model assessment-estimated insulin 112 

resistance index (HOMA-IR) and the areas under the curve for incremental insulin and 113 

glucose were measured as reported earlier (21). 114 

 115 

Statistical analyses 116 

An independent sample Student’s t-test was used for continuous variables if their distributions 117 

were not skewed. Correlations between variables were analysed by Spearman’s correlation 118 

test. A receiver operating characteristic (ROC) curve analysis was used to determine the best 119 

cut-off point for AMH to distinguish PCOS women from controls. Intraclass correlation 120 

coefficient and its 95% confidence interval between AMH values measured with VIDAS® 121 

and Gen II method was calculated based on mean-rating (k=3), consistency, 2-way mixed-122 

effects model. Statistical analyses were performed using IBM SPSS Statistics 20.0 (SPSS, 123 

Inc., IBM Corp, New York, USA.). A p-value <0.05 was considered statistically significant. 124 

Results 125 
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Anthropometric, metabolic and hormonal parameters of the women with PCOS and the 126 

controls are presented in Table 1. 127 

 128 

Serum AMH concentrations in the PCOS patients and controls 129 

The serum levels of AMH were significantly higher in the PCOS women than in controls 130 

(66.1±47.4pmol/L vs. 30.7±17.4pmol/L, p<0.001, Figure 1a), and the levels correlated 131 

significantly with AFCs (r=0.58, p<0.001).  132 

The sensitivity and specificity of the serum concentration of AMH in distinguishing PCOS 133 

women from controls were evaluated using cut-off values according to the ROC curve. The 134 

best combined sensitivity (67%) and specificity (83%) was obtained using an AMH cut-off 135 

value of 42.1pmol/L with the VIDAS® kit (Figure 2a).  136 

Comparison of serum AMH concentrations between the VIDAS® and Gen II ELISA 137 

methods  138 

In the PCOS group, the mean AMH serum level was 66.1±47.4pmol/L with the VIDAS® and 139 

58.9±33.9pmol/L with the AMH Gen II method. Intraclass correlation coefficient value 140 

(0.927 (95% confidence interval 0.909 – 0.941)) indicated an excellent level of reliability.  141 

Serum AMH concentrations according to PCOS phenotypes 142 

PCOS women with the phenotype A had significantly higher serum AMH and testosterone 143 

levels as compared with those of PCOS women who fulfilled only two of the Rotterdam 144 

criteria (phenotypes B/C/D) (Table 1, Figure 1b). In addition, PCOS women with phenotype 145 

A (91.7±61.9pmol/L) had significantly higher serum AMH levels than those with phenotype 146 

B (43.6±17.4pmol/L, p<0.001) or D (61.0±33.3pmol/L, p<0.001). An AMH cut-off value of 147 
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49.0pmol/L showed sensitivity of 79% and specificity of 92% in distinguishing PCOS women 148 

with the phenotype A from controls (Figure 2b).  149 

Serum levels of AMH and E2 and the BMI values were significantly higher in 150 

hyperandrogenic (A/B/C) PCOS phenotypes as compared with the normoandrogenic (D) 151 

phenotype (Table 1, Figure 1c). An AMH cut-off value of 49.0pmol/L displayed a sensitivity 152 

of 71% and a specificity of 92% in distinguishing hyperandrogenic PCOS women from 153 

controls (Figure 2c) and a cut-off value of 42.4pmol/L had a sensitivity of 66% and specificity 154 

of 83% in distinguishing phenotype D (normoandrogenic phenotype) from controls. 155 

Serum AMH concentrations and hormonal and metabolic parameters 156 

In the PCOS group, there was a statistically significant positive correlation between AMH and 157 

AFC (r=0.58,p<0.001), SHBG (r=0.18,p=0.002), testosterone (r=0.49,p<0.001), FAI 158 

(r=0.20,p<0.001) and LH (r=0.32,p<0.001) and a statistically significant negative correlation 159 

between AMH and BMI (r=-0.26,p<0.001), waist circumference (r=-0.23,p<0.001), waist-160 

hip-ratio (r=-0.13,p=0.028), fasting glucose (r=-0.12,p=0.039), fasting insulin (r=-161 

0.27,p<0.001), AUC insulin (r=-0.14,p=0.017), HOMA-IR (r=-0.26,p<0.001) and FSH (r=-162 

0.13,p=0.026).  163 

The serum AMH levels of normal weight PCOS women (BMI<25kg/m2) were significantly 164 

higher than those of overweight PCOS women (BMI>25kg/m2: 75.7±54.1pmol/L vs. 165 

58.1±39.0pmol/L, p=0.001) or obese PCOS women (BMI >30kg/m2: 52.1±35.0pmol/L, 166 

p<0.001).  167 

 168 

 169 

 170 
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Discussion 171 

In this study, we report higher AMH levels for PCOS women compared to controls and 172 

several AMH cut-off values for PCOS phenotypes to distinguish them from controls. 173 

Moreover, in women with PCOS, serum AMH levels correlated positively with SHBG, 174 

androgen and LH levels and negatively with obesity, fasting glucose and insulin, and insulin 175 

resistance.  176 

The results obtained in the present study using the VIDAS® method are in line with those of 177 

previous studies, showing higher mean serum AMH levels in women with PCOS than in 178 

controls and a significant correlation between AMH and AFC (16,24,25,26,27,28,29). 179 

Importantly, the differences in serum AMH values between PCOS women and controls were 180 

significant even though the women in the control group were slightly younger than the 181 

women with PCOS. The best cut-off value (42.1pmol/L) to distinguish PCOS patients from 182 

controls was similar to that reported in some studies (30,31) but lower than that found in some 183 

other studies (28,29), with 67% sensitivity and 83% specificity. Importantly, serum AMH 184 

levels determined by the VIDAS® method were strongly and positively correlated with those 185 

measured earlier using the AMH Gen II method. Some of the samples in the present study had 186 

been frozen for a mean time of ten years before measurements with VIDAS assay, pointing to 187 

good reliability of the method and stability of the samples.  188 

In PCOS women there was a positive correlation between serum levels of AMH and those of 189 

testosterone, LH and FAI, in line with the results of previous studies 190 

(27,29,32,33,34,35,36,37) and pointing to an interaction between AMH, LH and androgen 191 

secretion. Such an interaction may contribute to the pathogenesis of PCOS (38), as 192 

demonstrated by a previous study, which reported increased gonadotropin-releasing hormone 193 

(GnRH)-dependent pulsatility and LH surges through GnRH- neurone AMH receptor 194 
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activation in mice (39). In the present study, hyperandrogenic PCOS phenotypes displayed 195 

significantly higher AMH levels as compared with those in normoandrogenic phenotypes. 196 

Moreover, the phenotype A (full-blown syndrome) expressed higher levels than the 197 

phenotypes including only two Rotterdam criteria. Again, these findings are in agreement 198 

with that of previous studies, which showed that women with more severe PCOS 199 

manifestations exhibited elevated serum AMH levels (13,14,15,16,17,18). Of note, AMH was 200 

able to distinguish hyperandrogenic and phenotype A PCOS patients from controls with the 201 

best sensitivity and specificity. Whether hyperandrogenism itself induces enhanced AMH 202 

production remains unresolved and could not be clarified in the present study design. 203 

Women with PCOS are known to present with an altered metabolic profile, characterized by 204 

abdominal obesity, insulin resistance, metabolic syndrome and an elevated risk of type 2-205 

diabetes (40,41,42). In the present study, in accordance with the findings of some (37,43) but 206 

not all (38,44) studies, we found negative correlations between serum AMH levels, BMI and 207 

several metabolic risk factors. Moreover, in the PCOS group, AMH levels were significantly 208 

higher in women of normal weight as compared with those of overweight women 209 

(BMI>25kg/m2), and the difference was even greater when we compared the normal weight 210 

and obese group (BMI>30kg/m2). Interestingly, low AMH levels have been associated with 211 

an elevated risk of metabolic syndrome in PCOS (45) and with an increased risk of 212 

cardiovascular disease in non-PCOS women (12). The negative correlations between AMH 213 

and metabolic parameters could be driven by obesity, as the significance disappeared in a 214 

multivariate regression analysis including BMI (37,43). On the other hand, in another study, 215 

the hyperandrogenic phenotypes of PCOS with the highest AMH concentrations display the 216 

most unfavourable metabolic profile (46). Likewise, in the present study, the group with full-217 

blown PCOS had higher serum levels of AMH and testosterone, and greater FAI values as 218 

compared with the group fulfilling only two Rotterdam criteria. However, there were no 219 
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differences in anthropometric or metabolic parameters between these groups. Further studies 220 

are therefore needed to clarify the nature of the complex relationship between AMH levels, 221 

hyperandrogenism and metabolic risk factors in humans. 222 

Strengths and limitations 223 

The strengths of this study are the homogenous study population, which included only Nordic 224 

Caucasian women and the well-defined patient and control groups. As for limitations of the 225 

study, the control group and some of the PCOS phenotypic subgroups included a relatively 226 

low number of participants. In addition, as we did not measure AMH levels in the control 227 

group using the AMH Gen II, we were not able to compare the sensitivity and specificity of 228 

the two methods to distinguish PCOS from controls. Furthermore, the study population was 229 

not population based but consisted of women who had visited an infertility clinic. These 230 

women probably had more severe PCOS. Given, that the control group did not include 231 

women with any PCOS symptoms, namely isolated hyperandrogenism or oligoamenorrhea, 232 

this could result into higher differences in the serum levels of AMH between the two study 233 

groups. Last, the serum samples had been stored for 6–11 years and had gone through at least 234 

one previous freeze-thaw cycle. This may have affected the reliability of some laboratory 235 

determinations.  236 

Conclusion 237 

In conclusion, AMH concentrations measured with the VIDAS® method correlated well with 238 

those measured using the AMH Gen II method and were able to distinguish women with 239 

PCOS from healthy controls with 67% sensitivity and 83% specificity. Moreover, serum 240 

AMH correlated positively with hyperandrogenism and negatively with unfavourable 241 

metabolic factors, underlining the close relation of AMH with pivotal pathogenic factors of 242 

PCOS. Further studies are needed to clarify the nature of the complex relationship between 243 
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AMH levels and the risk of metabolic disorders and to establish whether AMH levels may 244 

serve as a useful tool to distinguish PCOS patients with different metabolic risk factors. 245 
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 254 

Figure legends 255 

 256 

Figure 1: Box-plots show serum AMH concentrations in all PCOS women and controls (A), 257 

in PCOS patients with three Rotterdam criteria and two Rotterdam criteria (B) and in the 258 

hyperandrogenic and normoandrogenic phenotypes of PCOS (C). P-values according to the 259 

independent sample t-test. AMH serum levels are measured by the bioMerieux VIDAS® 260 

method. 261 

Figure 2:  Receiver operating characteristic-curves show the best cut-off values of serum 262 

AMH levels between PCOS and controls (A), phenotype A of PCOS and controls (B) and 263 

hyperandrogenic PCOS and controls (C). Cut-off points with the best-combined sensitivity 264 

and specificity are shown in the Figure. AMH serum levels are measured by the bioMerieux 265 

VIDAS® method. 266 

Abbreviations: PCOS, polycystic ovary syndrome; AMH, Anti-Müllerian hormone;  267 
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Table 1. Anthropometric, metabolic and hormonal parameters in all PCOS patients and in different PCOS subgroups. P-values according to the 

independent sample t-test.  
1 Comparisons between all PCOS women and controls. 
2 Comparisons between PCOS three-criteria and PCOS two-criteria. 
3 Comparisons between hyperandrogenic PCOS group and normoandrogenic PCOS group. 

Abbreviations: BMI, Body mass index; AFC, Antral follicle count; AUC, Area under curve; HOMA-IR, Homeostatic Model Assessment of 

Insulin Resistance; FSH, Follicle-stimulating hormone; LH, Luteinizing hormone; E2, Estradiol; T, Testosterone; SHBG, Sex hormone-binding 

globulin; FAI, Free androgen index; AMH, Anti-Müllerian hormone.  



 
 

 

 

 

 

 

 

 

 All PCOS 

women 

(n=319) 

Controls 

(n=96) 

p-value1 PCOS 3-

criteria 

(n=106) 

PCOS 2-

criteria 

(n=154) 

p-value2 Hyperandrogenic 

PCOS (n=136) 

Normoandroge

nic PCOS 

(n=124) 

p-value3 

Age (yr) 28.1 ± 4.3 26.0 ± 5.2 <0.001 28.3 ± 3.7 28.1 ± 4.3 ns (0.7) 28.2 ± 3.9 28.1 ± 4.3 ns (0.8) 

BMI (kg/m2) 27.3 ± 6.3 22.8 ± 3.6 <0.001 27.5 ± 6.2 26.9 ± 6.5 ns (0.4) 28.0 ± 6.5 26.2 ± 6.2 0.024 

Waist (cm) 85.0 ± 15.0   85.8 ± 15.3 84.1 ± 15.1 ns (0.4) 86.6 ± 15.8 82.7 ± 14.3 0.042 

Waist-hip-ratio 0.8 ± 0.1   0.8 ± 0.1 0.8 ± 0.1 ns (0.3) 0.8 ± 0.1 0.8 ± 0.1 ns (0.1) 

AFC 23.4 ± 6.7   26.5 ± 7.3 23.4 ± 5.1 <0.001 25.1 ± 7.4 24.2 ± 4.8 ns (0.3) 

Fasting glucose  

(mmol/L) 

5.1 ± 0.5   5.1 ± 0.4 5.1 ± 0.4 ns (0.5) 5.1 ± 0.4 5.0 ± 0.5 ns (0.5) 

Fasting insulin  

(mU/L)  

11.2 ± 11.5   10.4 ± 7.9 11.9 ± 13.5 ns (0.3) 11.5 ± 10.6 11.0 ± 12.6 ns (0.7) 

AUCgluc 767.4 ± 167.5   784.9 ± 180.4 757.8 ± 160.6 ns (0.2) 785.4 ± 173.2 750.6 ± 163.4 ns (0.1) 

AUCins  8412.7 ±  

6937.2 

  9243.9± 

7602.9 

8116.6 ± 

6755.4 

ns (0.2) 9179.3 ± 7409.0 7924.9 ±  

6766.6 

ns (0.2) 

HOMA-IR 2.6 ± 2.8   2.4 ± 1.9 2.8 ± 3.3 ns (0.3) 2.6 ± 2.5 2.6 ± 3.2 ns (0.9) 

FSH (mIU/mL) 6.2 ± 2.1 5.7 ± 2.1 ns (0.05) 6.1 ± 1.9 6.3 ± 2.0 ns (0.5) 6.1 ± 1.9 6.3 ± 1.9 ns (0.4) 

LH (mIU/mL) 6.9 ± 4.8 3.3 ± 1.6 <0.001 7.6 ± 3.9 6.7 ± 5.1 ns (0.1) 7.5 ± 4.7 6.6 ± 4.6 ns (0.1) 

E2 (pmol/L) 268.5 ± 207.9 155.9 ± 74.4 <0.001 296.3 ± 193.1 268.7 ± 234.1 ns (0.3) 309.3 ± 238.8 248.2 ± 189.7 0.024 

T  (nmol/L) 1.6 ± 0.7   2.0 ± 0.7 1.4 ± 0.5 <0.001 2.0 ± 0.7 1.3 ± 0.4 <0.001 

SHBG (nmol/L) 50.9 ± 27.7   51.8 ± 26.7 51.6 ± 29.9 ns (0.9) 51.5 ± 26.9 51.8 ± 30.4 ns (0.9) 

FAI 3.8 ± 2.5   4.8 ± 2.7 3.5 ± 2.3 <0.001 4.7 ± 2.6 3.4 ± 2.3 <0.001 

AMH VIDAS  

(pmol/L) 

66.1± 47.4 30.7 ± 17.4 <0.001 91.7 ± 61.9 58.6 ± 32.5 <0.001 82.3 ± 58.8 61.0 ± 33.3 <0.001 






