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Abstract 

 

Levels of brain-derived neurotrophic factor (BDNF) are reduced in the brain and 

serum of depressed patients and at least the reduction in serum levels is reversible 

upon successful treatment.  These data, together with a wealth of reports using 

different animal models with depression-like behavior or manipulation of expression 

of BDNF or its receptor TrkB have implicated BDNF in the pathophysiology of 

depression as well as in the mechanism of action of antidepressant treatments.  

Recent findings have shown that posttranslational processing of BDNF gene product 

can yield different molecular entities that differently influence signaling through BNDF 

receptor TrkB and the pan-neurotrophin receptor p75NTR.  We will here review these 

data and discuss new insights into the possible pathophysiological roles of those new 

BDNF subtypes as well as recent findings on the role of BDNF mediated neuronal 

plasticity in mood disorders and their treatments.  
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Introduction 

Mood disorders are among the leading causes of suffering world-wide (Collins et al., 

2011; Murray et al., 2012) and they are particularly prevalent in Western societies 

(Wittchen et al., 2011).   Traditionally, mood disorders are treated by either drugs or 

psychotherapy or by their combination, but many patients for not benefit from any of 

these treatment options (Insel and Wang, 2009).  During the last decades, 

insufficient signaling by neurotrophic factors has been recognized as a potential 

underlying factor for depression and promotion of neurotrophin signaling have been 

linked with antidepressant responses (Duman et al., 1997; Martinowich et al., 2007; 

Castrén and Rantamäki, 2010a; Castrén and Rantamäki, 2010b; Autry and 

Monteggia, 2012). 

Neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4), act by binding to their 

cognate tyrosine kinase receptors (NGF to TrkA, BDNF and NT-4 to TrkB, NT-3 to 

TrkC) as well as to a common low-affinity neurotrophin receptor (p75NTR) (Bothwell, 

2014).   Since the vast majority of the literature linking neurotrophins to mood 

disorders deals with BDNF, other neurotrophins showing only very minor role 

(Castrén, 2014), we will here focus on the role of BDNF and its receptors.  It should 

be noted, however, that the role for BDNF is by no means restricted to depression; it 

has also been implicated in anxiety and schizophrenia, as well as in 

neurodegenerative disorders (Lu et al., 2013; Castrén, 2014).  

BDNF, like other neurotrophins, is synthetized as a precursor protein (pro-BDNF) 

that is proteolytically processed into a mature BDNF (mBDNF) by intracellular and/or 

extracellular proteases (Seidah et al., 1996), most prominently by the proprotein 

convertase PC7 (Wetsel et al., 2013), but also extracellularly by metalloproteinases 

and plasmin (Deinhardt and Chao, 2014b).  Lee et al. (2001) initially reported that 

precursor NGF (proNGF) promoted neuronal death while mature form of NGF 

enhanced neuronal survival (Lee et al., 2001). It was further shown that proBDNF 

promoted cell death, growth cone retraction, spine shrinkage and long-term 

depression (LTD), whereas mBDNF promoted spine formation, neuronal survival, 

and LTP (Teng et al., 2005; Woo et al., 2005; Zagrebelsky et al., 2005; Koshimizu et 

al., 2009; Deinhardt et al., 2011).  

Pro-forms of neurotrophins preferentially bind to the p75NTR whereas mature 

neurotrophins show higher affinity towards Trk receptors (Lee et al., 2001; Lu et al., 
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2005; Hempstead, 2014).  Remarkably, the activation of Trk and p75NTR show very 

different, in many cases opposite effects: Trk receptors enhance neuronal survival, 

synaptogenesis and plasticity, whereas activation of p75NTR promotes cell death and 

synaptic pruning (Lu et al., 2005; Deinhardt and Chao, 2014a; Kraemer et al., 2014). 

The biological actions of proNGF and proBDNF require the activation of a receptor 

complex consisting of p75NTR and sortilin (sortilin-related VPS10 domain-containing 

receptor) to initiate cell death (Nykjaer et al., 2004; Teng et al., 2005; Deinhardt et 

al., 2011). Furthermore, Pang et al. (2004) showed that the extracellular conversion 

from proBDNF into BDNF occurred as a cellular mechanism determining BDNF-

dependent LTD (Pang et al., 2004). Woo et al (2005) further showed that proBDNF 

facilitates hippocampal LTD by the activation of p75NTR (Woo et al., 2005). These 

findings suggest that (1) precursor and mature BDNF subtypes exert opposing 

biological functions and (2) a post-translational control, processing of proBDNF could 

be a key mechanism for altering the biological action of BDNF.  

Given a dramatic alteration of the BDNF action by adding the pro-domain, the pro-

region may have more potential functions. It was previously shown that the BDNF 

pro-domain assists in the folding of BDNF (Kolbeck et al., 1994). Recently, it was 

demonstrated that a BDNF polymorphism Val66Met, which substitutes a valine to a 

methionine at codon 66 in the pro-region of human BDNF, affects human memory 

function as well as secretion mechanism of BDNF protein (Egan et al., 2003). Thus, 

these findings suggest that the BDNF pro-domain is more functional region.  

Indeed, several recent reports indicated that the BDNF pro-domain is endogenously 

present and acts as a ligand. Dieni et al. (2012) reported that BDNF and its pro-

peptide both stained large dense core vesicles in excitatory presynaptic terminals of 

the adult mouse hippocampus (Dieni et al., 2012). Second, Mizui et al. (2015) 

showed that the BDNF pro-peptide is a new synaptic modulator in the central 

nervous system: the BDNF pro-peptide allow facilitation of hippocampal LTD (Mizui 

et al., 2015).  To understand the molecular and cellular mechanism, Lee’s laboratory 

generated a transgenic mouse line with the Val66Met mutation and showed that this 

polymorphism alters anxiety-related behavior (Chen et al., 2006). They further 

reported that mice with the Val66Met mutation are defective in NMDAR-dependent 

plasticity in the hippocampus (Ninan et al., 2010). Recently, Mizui et al. (2015) 

demonstrated that treatment of hippocampal slices with the BDNF pro-peptide with 

the Met mutation completely inhibited LTD (Mizui et al., 2015). Anastasia et al. 

(2013) showed that application of the BDNF pro-peptide with the Met mutation 
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induces acute growth cone retraction and a decrease in Rac activity in hippocampal 

neurons (Anastasia et al., 2013).  

Given these distinct and multiple biological actions of proBDNF and its pro-peptide, a 

post-translational mechanism of BDNF, proteolytic cleavage of proBDNF and a 

BDNF polymorphism Val66Met could be new mechanisms for the development of 

brain diseases.  

 

BDNF in depressed patients 

BDNF levels have been found to be reduced in the postmortem samples of brains of 

depressed patients (Dunham et al., 2009; Thompson Ray et al., 2011; Guilloux et al., 

2012; Tripp et al., 2012).  Furthermore, BDNF levels are also reduced in the brains of 

suicide victims, many of which suffer from severe depression (Chen et al., 2001; 

Dwivedi et al., 2003; Dwivedi et al., 2009).  In addition to BDNF, levels of its receptor 

TrkB have also been reported to be downregulated in the brains of depressed 

patients (Tripp et al., 2012) and the levels of active, phosphorylated form of TrkB are 

reduced in suicide victims (Dwivedi et al., 2003), indicating reduced BDNF signaling 

through TrkB in depression.  Conversely, increased levels of mRNA for the p75NTR 

neurotrophin receptor have been reported in the brains of suicide victims (Dwivedi et 

al., 2009).  In the adult brain, p75NTR is mostly expressed the cholinergic neurons, but 

upon neuronal trauma, p75NTR expression is increased in cortical and hippocampal 

neurons and mediates degeneration and death of injured neurons (Harrington et al., 

2004; Volosin et al., 2008).  Increase in p75NTR levels in suicide victims suggests that 

a severe psychological stress, such as leading to suicide, may represent a brain 

trauma.  p75NTR signaling may promote synaptic depression and pruning and other 

“antitrophic” effects that might at least partially underlie the pathophysiology of 

depression (Lu et al., 2005; Martinowich et al., 2012; Zagrebelsky and Korte, 2014).  

BDNF is found in human serum at high levels that would be sufficient to saturate the 

binding to TrkB receptors in cultured neurons (Radka et al., 1996). In contrast, BDNF 

levels in human plasma are orders of magnitude lower than in human serum, and 

relationship of plasma BDNF to depression is variable (Karege et al., 2005; Bocchio-

Chiavetto et al., 2010), suggesting that a vast majority of serum BDNF originates 

from blood platelets that release BDNF upon activation (Fujimura et al., 2002; 

Karege et al., 2005; Turck and Frizzo, 2015).  Indeed, a recent study identified BDNF 
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expression in human megakaryocytes, precursors for blood platelets, and showed 

that the regulation of BDNF synthesis in megakaryocytes was very similar to that 

characterized in neurons (Chacon-Fernandez et al., 2016).   

Several reports and meta-analyses clearly demonstrate that depressed patients have 

reduced serum BDNF levels (Shimizu et al., 2003; Karege et al., 2005; Sen et al., 

2008; Bocchio-Chiavetto et al., 2010; Molendijk et al., 2014) and those levels are 

restored after successful recovery (Shimizu et al., 2003; Sen et al., 2008).  A very 

recent study reported that hippocampal volume was transiently increased in severely 

depressed patients after successful electroconvulsive shock treatment, but that 

serum BDNF levels were not associated with this change and were not altered by the 

treatment (Bouckaert et al., 2016). However, reduced serum BDNF levels are not 

specific to depression since similar reduction has been observed in schizophrenia 

and autism, for example (Hashimoto et al., 2006; Katoh-Semba et al., 2007; 

Fernandes et al., 2014) and has also been identified as a risk factor for dementia 

(Weinstein et al., 2014). Conversely, exercise increases serum BDNF levels, which is 

associated with improved cognition in elderly and in schizophrenia (Leckie et al., 

2014; Kimhy et al., 2015).  Notably, however, it was recently reported that assays for 

BDNF serum levels are associated with high within-individual, inter-individual as well 

as between-assays variation (Polacchini et al., 2015), which together prevents the 

use of serum BDNF levels as a reliable biomarker for mood disorders.  

The significance of the lower BDNF levels in depression is currently unclear but the 

temporal correlation between serum BDNF levels and the antidepressant effect is not 

direct: ketamine and electroconvulsive shock treatment increase serum BDNF levels 

only gradually while their antidepressant effect appears quickly (Allen et al., 2015).  

Remarkably, while BDNF levels in serum are reduced, the whole blood BDNF levels 

are not different from euthymic controls, suggesting that it is not the concentration of 

BDNF within blood platelets but the ability of platelets to release their BDNF that is 

reduced in depressed patients (Karege et al., 2005), although reduced platelet BDNF 

levels have also been reported (Lee and Kim, 2009).  Taken together, these studies 

strongly suggest that changes in serum BDNF levels reflect altered BDNF release 

from blood platelets, however, given the similarities in the regulation of BDNF 

synthesis between megakaryocytes and neurons, there may be parallels between 

brain and serum BDNF content and release.  Unfortunately, in contrast to human 

platelets, mice express hardly detectable levels of BDNF in megakaryocyte and 

platelets, which precludes the use of transgenic mice in the examination of the 
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mechanisms and sources of blood BDNF (Chacon-Fernandez et al., 2016).  

However, rat platelets do contain BDNF (Radka et al., 1996).  

As mentioned above, BDNF gene displays a common polymorphism with either 

valine or methionine at the position 66 within the BDNF pro-region (Val66Met) (Egan 

et al., 2003).  Mice expressing the human met-BDNF allele show increased anxiety 

and sensitivity to stress (Chen et al., 2006; Yu et al., 2009; Bath et al., 2012a) and 

show a similar deficit in fear extinction as the human Met allele carriers do (Soliman 

et al., 2010).  Although early clinical studies suggested that the Val66Met 

polymorphism increases susceptibility to a variety of brain disorders (Bath and Lee, 

2006; Chen et al., 2006), including depression in a subset of patients (Anttila et al., 

2007) as well as in bipolar disorder (Sklar et al., 2002) and neuroticism (Sen et al., 

2003), subsequent studies and meta-analyses have failed to consistently 

demonstrate an association between BDNF Val66Met polymorphism and mood 

disorders (Gyekis et al., 2013), although there may be an association with 

depression in men (Verhagen et al., 2010). Furthermore, while patients with 

depression have significantly smaller hippocampal size when compared to controls, 

hippocampi of both Val and Met carriers were similarly reduced (Harrisberger et al., 

2015). However, there are reports indicating that Met-allele carriers may be more 

sensitive to adverse experiences during early life (Bukh et al., 2009; Hosang et al., 

2014).  

 

BDNF in animal models of depression 

 

Stress is a recognized risk factor for depression and stress is therefore widely used 

as an experimental model for depression.  It was recognized already two decades 

ago that BDNF levels in the cortex and hippocampus are reduced in stress (Smith et 

al., 1995; Duman and Monteggia, 2006; Molteni et al., 2009).  BDNF levels are also 

reduced in mice after exposure to social stress (Tsankova et al., 2006; Martinowich 

et al., 2007).  However, reduction of BDNF levels or TrkB signaling alone does not 

directly correlate with depression-like behavior:  Heterozygous mice lacking one 

allele of BDNF and expressing about half of normal BDNF levels do not show 

depression-related behaviors (MacQueen et al., 2001; Saarelainen et al., 2003; 

Lindholm and Castrén, 2014).  However, female mice with forebrain specific loss of 

BDNF expression do display behaviors associated with depression, although males 

show normal depression-like behavior (Monteggia et al., 2007; Lindholm and 
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Castrén, 2014).  Furthermore, conditional deletion of TrkB from the newly-born 

neurons in the adult dentate gyrus increases anxiety-like behavior (Bergami et al., 

2008) and knockdown of BDNF in the dentate gyrus in rats produces depression-like 

effects (Taliaz et al., 2010). 

 

Recent series of elegant studies by Jeanneteau, Chao and colleagues have shed 

light on the mechanisms of interaction between stress hormones and BDNF 

(Jeanneteau and Chao, 2013).  They first showed that dexamethasone, an agonist of 

the glucocorticoid receptor (GR) can activate TrkB signaling in the rat dentate gyrus, 

in cultured neurons and neuronal cells (Jeanneteau et al., 2008), which indicates that 

glucocorticoids may under certain conditions act as TrkB activators.  TrkB activation 

by GR requires protein synthesis but apparently does not to require BDNF release.   

In addition, they showed that BDNF increases serine phosphorylation of the GR, 

which promotes the transcriptional activity of GR.  Furthermore, coadministration of 

dexamethasone and BDNF induces the expression of a unique set of genes involved 

in neuronal growth and differentiation and distinct from those activated by 

dexamethasone alone (Lambert et al., 2013), suggesting a functional interaction of 

TrkB and GR signaling pathways in the cytoplasm and at genomic level.  

Remarkably, when BDNF levels are low or TrkB activation is inhibited, GRs in brain 

are downregulated, promoting vulnerability to stress, whereas when TrkB is 

activated, GR agonists result in neurotrophic effects and stress resilience, through 

simultaneous activation of mitogen-activated kinase and suppression of GR-protein 

phosphatase-5 pathways (Arango-Lievano et al., 2015).  Such an interaction 

between TrkB and GR signaling may play a role in the dual effects of GR activation 

on dendritic spine dynamics, where short-term glucocorticoid treatment promotes 

spine turnover and thereby adaptability, whereas chronic treatment with 

glucocorticoids promotes excess spine loss (Liston and Gan, 2011).    

 

The relationship between stress and BDNF is complex, however.  While stress 

generally reduces BDNF levels in the cortex and hippocampus, stress increases 

BDNF levels in the nucleus accumbens (Berton et al., 2006; Krishnan et al., 2007).  

Stimulation of dopaminergic projection to the nucleus accumbens promotes 

depression-like behavior after social defeat stress and this effect can be blocked by 

inhibiting TrkB activation, but not by dopamine receptor antagonists, suggesting that 

BDNF released from dopaminergic neurons critically regulates susceptibility to social 

defeat stress (Wook Koo et al., 2015).  Furthermore, infusion of BDNF into nucleus 

accumbens increases immobility in forced swim test, while inhibition of TrkB 
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signaling in this brain region decreases immobility, indicating that BDNF in the 

nucleus accumbens promotes depression-like behavior (Eisch et al., 2003).  Thus, 

BDNF may have opposite effects on depression-like behavior depending on the 

network involved, emphasizing that BDNF is not a “happiness molecule”, but acts by 

promoting the effects of the networks active in depression-like or antidepressant-like 

behavior (Castrén, 2005; Castrén, 2013). 

 

BDNF in the antidepressant responses 

Whereas the causal role of neurotrophins in the symptoms of mood disorders is 

somewhat controversial, their role in the mechanism of antidepressant treatments is 

much clearer (Lindholm and Castrén, 2014).  Neuronal activity, such as seizures 

(Zafra et al., 1990; Isackson et al., 1991), increases BDNF expression and the first 

antidepressant treatment that was shown to increase BDNF expression is 

electroconvulsive shock treatment (Nibuya et al., 1995; Altar et al., 2003).  

Subsequently, several studies have demonstrated that chronic treatment with various 

antidepressant drugs increase BDNF mRNA and protein levels in the cerebral cortex 

and hippocampus (Nibuya et al., 1995; Duman et al., 1997; Altar, 1999; Russo-

Neustadt et al., 1999; Coppell et al., 2003; Jacobsen and Mork, 2004; Duman and 

Monteggia, 2006; Calabrese et al., 2007; Calabrese et al., 2011; Autry and 

Monteggia, 2012).  This increase involves activation of BDNF promoters at least 

partly through reduced histone acetylation in these promoter regions (Russo-

Neustadt et al., 2001; Dias et al., 2003; Tsankova et al., 2006; Karpova, 2014).  

Interestingly, in human, activity-dependent expression of BDNF is regulated by the 

activation of promoter I of BDNF gene (Pruunsild et al., 2011). A recent report 

analyzed the methylation profile of 2 CpG islands located at promoters I and IV of 

BDNF gene with genomic DNA from peripheral blood of patients with major 

depression and indicated that the methylation profiles of CpG I, but not IV, matched 

the classification of healthy controls and patients in clinical diagnosis (Fuchikami et 

al., 2011).  

Representatives of essentially all pharmacological classes of clinically used 

antidepressants increase TrkB autophosphorylation and signaling in hippocampus 

and forebrain and this effects is observed within hours after the administration of the 

drug (Saarelainen et al., 2003; Rantamäki et al., 2007).  Similar increase in BDNF 

mRNA and TrkB phosphorylation has been seen after acute treatment with a rapid-
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acting antidepressant ketamine (Li et al., 2010; Autry et al., 2011; Lepack et al., 

2014; Abdallah et al., 2015; Monteggia and Zarate, 2015).  These data demonstrate 

that antidepressant drugs, essentially without exception, increase BDNF signaling in 

the rodent forebrain (Castrén and Rantamäki, 2010a; Castrén and Rantamäki, 

2010b; Autry and Monteggia, 2012). 

Injection of BDNF into the midbrain region or into hippocampus reduces depression-

like behavior and mimics the effects of antidepressants (Siuciak et al., 1997; Altar, 

1999; Shirayama et al., 2002; Hoshaw et al., 2005) and similar effects are found 

when TrkB activity is promoted by overexpressing TrkB in cortical neurons (Koponen 

et al., 2005).  Furthermore, increased expression of BDNF counteracts the effects of 

stress (Shirayama et al., 2002; Duman and Monteggia, 2006).  These data suggest 

that BDNF signaling is sufficient for antidepressant-like behavioral effects in rodents. 

However, consistent with the central role of BDNF signaling in the nucleus 

accumbens in the development of social defeat stress phenotype (Berton et al., 

2006), injection of BDNF into the nucleus accumbens promotes depression-like 

behavior (Eisch et al., 2003), again demonstrating the network-dependent effect of 

BDNF in mood regulation.  

Finally, BDNF and TrkB signaling are also necessary for the behavioral effects of 

antidepressant drugs, at least in rodents (Lindholm and Castrén, 2014).  Deletion of 

BDNF gene or reduction of the levels of BDNF in forebrain regions blocks the 

behavioral effects of several different antidepressant drugs (Saarelainen et al., 2003; 

Monteggia et al., 2004; Lepack et al., 2014).  Inhibition of TrkB signaling by a 

dominant-negative TrkB receptor or conditional deletion of TrkB in the dentate gyrus 

similarly blocks the effects of antidepressants (Saarelainen et al., 2003; Li et al., 

2008).  The antidepressant effects of ketamine appear to be lost in mice completely 

lacking BDNF in the forebrain regions (Autry et al., 2011), however, similar loss of 

effect was not seen in heterozygous BDNF null mice (Lindholm et al., 2012), 

indicating that, in contrast to classical antidepressants, low levels of BDNF are 

sufficient for an antidepressant response to ketamine.   

Mice with the Met allele of the human Val66Met polymorphism of the BDNF gene are 

insensitive to antidepressants, which is consistent to reduced activity-dependent 

release of BDNF in these mice (Chen et al., 2006; Bath et al., 2012b; Liu et al., 

2012).  Controversial data has been published concerning the response rate in 

human Met-allele carriers to antidepressant treatments (Anttila et al., 2007; 

Domschke et al., 2010; Laje et al., 2012), but recent meta-analyses indicate that, if 
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anything, the Met carriers respond better to typical antidepressant treatments than 

Val homozygous do (Kato and Serretti, 2010; Zou et al., 2010; Yan et al., 2014).  

However, the response to the fast-acting antidepressant ketamine may be more 

widespread in Val-homozygous than in Met-carriers (Laje et al., 2012).  Taken 

together, these data provide compelling evidence for the necessary role for BDNF 

and TrkB signaling in antidepressant responses in rodents (Lindholm and Castrén, 

2014), however, the data reviewed above suggest that a similar clear relationship 

may not exist in humans.   

 

BDNF, antidepressants and neuronal plasticity 

How does BDNF signaling bring about antidepressant responses?  Although many 

details remain to be investigated, increasing body of literature supports the idea that 

neurotrophins promote neuronal plasticity that then translates into antidepressant 

responses in depressed patients (Nestler et al., 2002; Calabrese et al., 2009; 

Castrén and Hen, 2013).  Furthermore, recent evidence suggests that promotion of 

neuronal plasticity by antidepressants is alone not sufficient for an antidepressant 

response but that drug treatment may need to be supplemented with behavioral 

treatments that beneficially guide the plastic networks (Castrén, 2013).  

Activity-dependent regulation of BDNF expression was connected with neuronal 

plasticity early on (Thoenen, 1995).  When antidepressants were shown to promote 

BDNF expression and signaling, a connection between neuronal plasticity and the 

antidepressant response was proposed (Duman et al., 1997; Castrén, 2004; Castrén, 

2005).  Indeed, antidepressants promote neuronal plasticity at several levels 

(Castrén and Hen, 2013):  First, antidepressants increase neurogenesis in the 

dentate gyrus and this effect is required for the behavioral effects of at least some 

antidepressants (Santarelli et al., 2003; Sahay and Hen, 2007).  Increase in 

neurogenesis requires chronic antidepressant treatment (Malberg and Duman, 2003; 

Wu and Castrén, 2009) and is dependent on BDNF signaling (Sairanen et al., 2005).  

Second, antidepressants increase axon elongation and dendritic sprouting (Vaidya et 

al., 1999; Wang et al., 2008; Bessa et al., 2009; Chen et al., 2011) as well as 

expression of plasticity-related proteins (Sairanen et al., 2007). Although BDNF is 

known to influence both axonal and dendritic sprouting (Cohen-Cory et al., 2010), it 

is currently unknown whether these effects of antidepressants are mediated by 

BDNF or TrkB signaling. Finally, chronic antidepressant and acute ketamine 
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treatment promotes synaptogenesis (Hajszan et al., 2009; Li et al., 2010; Chen et al., 

2011) and synaptic strength (Stewart and Reid, 2000; Wang et al., 2008) and at least 

the effects of ketamine are BDNF-dependent (Liu et al., 2012).  These data show 

that there is a strong correlation and in some cases causal relationship between 

neuronal plasticity and the antidepressant effect and that at least partially, the effects 

of plasticity are mediated by BDNF signaling.  

Recent studies have cast light on how neuronal plasticity is translated into an 

antidepressant effect.  Using developing visual cortex, it was shown that chronic 

treatment with an antidepressant fluoxetine reactivates a state of plasticity within the 

adult cortex that is indistinguishable from the elevated plasticity typically found in 

juvenile cortex (Maya Vetencourt et al., 2008).  When this promoted state of plasticity 

is combined with rehabilitation, plastic networks can reorganize so that impaired 

vision of one eye, due to developmental visual deprivation, can be fully restored.  

Fluoxetine increases BDNF expression in the visual cortex as it does in the 

hippocampus and the effects of antidepressant treatment are mediated by and are 

dependent on BDNF signaling (Maya Vetencourt et al., 2008).  Serotonin and 

regulation of neuronal inhibition are also required for the effects of fluoxetine-induced 

plasticity (Maya Vetencourt et al., 2011; Maya-Vetencourt et al., 2012), but how 

these different systems interact to promote plasticity remains unclear.   

Fluoxetine also reactivates juvenile-like plasticity in the fear extinction circuitry: long-

term extinction of a fear response was seen in the adult mice only when fluoxetine-

induced promoted plasticity was combined with the fear extinction training (Karpova 

et al., 2011).  The need of combination of fluoxetine treatment with fear extinction 

resembles the synergistic effects of antidepressants and psychotherapy in the 

treatment of phobia and posttraumatic stress disorder (Schneier et al., 2012), and 

might in fact represent the neurobiological mechanism that explains the enhanced 

effect of the combined treatment (Castrén, 2013).   

Finally, chronic fluoxetine treatment promotes developmental plastic state in the 

dentate gyrus of the hippocampus (Kobayashi et al., 2010; Hagihara et al., 2013). 

This phenomenon, coined dematuration, is characterized by increased expression of 

markers of immature dentate granule neurons with a coincident reduction of markers 

of maturity not only in the newly-born granule neurons, but also in older ones 

(Kobayashi et al., 2010; Hagihara et al., 2013). 
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Conclusions: 

The data reviewed above suggests a close relationship between BDNF signaling, 

neuronal plasticity and mood disorders.  These findings open several potentially 

translational avenues.  First, BDNF might become a biomarker for mood disorders.  

While serum BDNF levels appear to be too variable between individuals to become a 

reliable biomarker, the usefulness of other molecules derived from the BDNF gene 

(pro-BDNF and BDNF pro-peptide) alone or in combination should be investigated.  

For example, a recent report measured the amounts of BDNF and proBDNF in 

serum of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) 

and depression with a novel ELISA of proBDNF/BDNF (Matsuoka et al., 2015). 

Measuring the amount of BDNF, its pro-peptide and proBDNF, and the ratio of these 

BDNF subtypes in blood might advance our understanding of the roles of 

neurotrophins in mood disorders and potentially become a useful biomarker.   

Second, as reviewed above, the BDNF pro-peptide and proBDNF exhibit negative 

effects on neurons while the effect of BDNF are positive.  Given the negative effects 

of proBDNF and its pro-peptide, it could be speculated that the amount and/or 

biological effects of these two molecules may be increased in mood disorders, 

restricting plasticity and potentially producing antidepressant-resistance in patients.  

Third, since essentially all antidepressant treatments increase BDNF-TrkB signaling, 

this signaling pathway could become a useful tool for screening or novel 

antidepressant drugs.   

Finally, the findings reviewed above suggest that BDNF-mediated plasticity induced 

by antidepressant treatments is only effective when it is combined with therapy or 

rehabilitation that guides the rewiring of plastic networks.  Efforts should be made to 

optimize plasticity-promoting drug treatments and psychotherapeutic approaches, 

also taking into account effects that may restrict plasticity, into a new treatment 

framework that optimally promotes mood recovery and prevents relapses to 

depression. 
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Figure legends: 

Figure 1: Signaling pathways activated by proBDNF and mature BDNF (BDNF). 
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