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Abstract 

Rationale 

Comorbidity with gambling disorder (GD) and alcohol use disorder (AUD) is well documented. 

 

Objective 

The purpose of our study was to examine the influence of genetic alcohol drinking tendency on reward-guided decision 

making behavior of rats and the impact of dopamine releaser D-amphetamine on this behavior. 

 

Methods 

In this study, Alko alcohol (AA) and Wistar rats went through long periods of operant lever pressing training where the 

task was to choose the profitable of two options. The lever choices were guided by different-sized sucrose rewards (one 

or three pellets), and the probability of gaining the larger reward was slowly changed to a level where choosing the 

smaller reward would be the most profitable in the long run. After training, rats were injected (s.c.) with dopamine 

releaser D-amphetamine (0.3, 1.0 mg/kg) to study the impact of rapid dopamine release on this learned decision making 

behavior. 

 

Results 

Administration of D-amphetamine promoted unprofitable decision making of AA rats more robustly when compared to 

Wistar rats. At the same time, D-amphetamine reduced lever pressing responses. Interestingly, we found that this 

reduction in lever pressing was significantly greater in Wistar rats than in AA rats and it was not linked to motivation to 

consume sucrose. 

 

Conclusions 

Our results indicate that conditioning to the lever pressing in uncertain environments is more pronounced in AA than in 

Wistar rats and indicate that the reinforcing effects of a gambling-like environment act as a stronger conditioning factor 

for rats that exhibit a genetic tendency for high alcohol drinking. 
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Introduction 

Comorbidity with gambling disorder (GD, DSM-5) and alcohol use disorder (AUD) is well documented (Slutske et al. 

2000; Mann et al. 2017). Twin and adoption studies provide strong evidence of genetics in the etiology of alcoholism 

(heritability estimates of 40–60%; e.g., Prescott and Kendler 1999; Prescott et al. 1999; Kampov-Polevoy et al. 2003) 

and additionally show that GD and AUD have shared genetic vulnerability (Slutske et al. 2000; Slutske et al. 2013). 

Studies have shown a clear etiological relationship between GD and other addictions (Blanco et al. 2015; Flórez et al. 

2016) and they have been found to frequently co-occur (Cowlishaw et al. 2014). One of the common co-occurring 

addictions in GD patients is AUD, and its prevalence is five to six times higher in disordered gamblers versus the 

general population (Bischof et al. 2013; Flórez et al. 2016). There is also a positive association between gambling 

severity and alcohol consumption (French et al. 2008). 

 

Poorly functioning executive cognitive processes that control decision making via functioning of dopamine systems are 

profoundly linked to GD, as well as to many other psychiatric conditions (Winstanley and Floresco 2016). Changes in 

dopamine transmission alter reward prediction, causing difficulties in decision making between different value choices 

(Schultz et al. 1997; Floresco 2016). Dopamine transmission also alters the way an individual processes the “wanting” 

and “liking” of rewards (Peciña and Berridge 2013; Linnet 2014; Berridge and Kringelbach 2015). These two 

mechanisms have their specific impact on reward-guided decision making and thus have a significant role in mediating 

gambling behavior. Also, findings that administer amphetamine enhance gambling urges in pathological gamblers 

(Zack and Poulos 2004), and chronic gambling-like conditions of uncertain reinforcement act as a promoter of D-

amphetamine sensitization for rats (Singer et al. 2012; Zack et al. 2014) support the view that excessive dopamine 

function is a significant promoter of harmful gambling behavior. It has been also shown that alcohol-dependent 

individuals exert riskier decision making patterns than control groups in various decision making tasks (Brevers et al. 

2014; Zois et al. 2014). Reinforcing effects of alcohol are thought to be caused by its effects on cerebral neuronal 

reward circuitry, through which other drugs of abuse, as well as natural rewards (e.g., drinking, feeding, and sexual 

behavior) and gambling, induce reinforcement (Wise and Bozarth 1987; Koob and Bloom 1988). Therefore, high 

sensitivity of these mechanisms to different stimuli might be a factor that predisposes an individual to drug abuse 

(Honkanen et al. 1999) or gambling. 
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Alcohol-preferring Alko alcohol (AA) rats provide a useful tool for identifying an integrative neurobiological factor for 

GD and AUD. The AA rat line was produced by selective breeding based on high voluntary alcohol consumption, and 

therefore, these rats are naturally prone to high alcohol consumption (Eriksson 1968; Sinclair et al. 1989; Sommer et al. 

2006). AA rats learn quickly to self-administer alcohol without any initiation or shaping, and this alcohol preference is 

hypothesized to occur due to abnormal function of opioidergic mechanisms (Hyytiä and Sinclair 1989; Koistinen et al. 

2001), which are in light of the present knowledge closely related to dopamine functioning (Berridge and Kringelbach 

2015). The use of AA rats allows us to examine how those same neuronal mechanisms that are controlling alcohol 

drinking contribute to the gambling-like behavior of these rats. 

 

Our experiment conducted now is based on and follows up our previous findings with AA rats’ reward-guided decision 

making (Oinio et al. 2017). This experiment allows us to compare three different aspects of reward-guided decision 

making of rats. The first is rational decision making where animals learn to make the most profitable choice based 

purely on reward quantity. The second issue examined in the experiment is decision making during long-term 

probabilistic discounting, which represents risk aversive behavior of the animals. The third issue examined is the effect 

of pharmacological manipulations of this learned risk aversion. The aim of the study was to examine strain-specific 

differences between AA and Wistar rats in these three decision making situations. The AA rats were chosen to represent 

a population that has a genetic tendency for high alcohol consumption, and Wistar rats were chosen to represent a 

“normal” heterogenic population. The pharmacological manipulations were carried out by administering a dopamine 

releaser, D-amphetamine, in two different manners. The hypothesis of the study was that stimulation with D-

amphetamine increases risky decision making behavior of AA rats more than Wistar rats and the short-term 

sensitization for effects of D-amphetamine would be more pronounced in the AA rats than in Wistar rats. 

 

Material and methods 

Animals 

One group (n = 15) of male alcohol-preferring AA rats (National Institute for Health and Welfare, Helsinki, Finland and 

University of Helsinki, Helsinki, Finland) and one group (n = 16) of male Wistar rats were used. At the beginning of the 

experiment, rats were 3 to 4 months old. On arrival, rats were given 1 week to acclimate to the environment. Food 

(regular chow SDS RM1 [E] SQC; Witham, Essex, England) and water were available ad libitum in the home cage. 
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Rats were housed three per cage in a temperature and humidity-controlled room, with lights controlled on a reversed 

light/dark cycle of 12/12 h. All experiments were conducted in the dark phase of the light cycle. All testing was in 

accordance with the Animal Experiment Board of Finland. 

 

Drugs 

The dopamine releaser D-amphetamine sulfate (Sigma-Aldrich) was used as the test drug. Doses of D-amphetamine 

were 0.3 and 1.0 mg/kg (doses were chosen based on our previous findings, Oinio et al. 2017). Drug doses were 

calculated as salt weights and dissolved in 0.9% saline. Saline (0.9%) was used also as a vehicle for injection. Drugs 

and vehicle were given in a Latin square design. Drug doses were administered as s.c. injections at a volume of 1 ml/kg 

20 min prior to testing. Each drug/vehicle test day was preceded by at least three drug-free days. A stable baseline of 

operant behavior was required for three consecutive days before the next injection was administered. Each rat had their 

baseline values calculated separately, and each rat also received drugs based on their individual stability in baseline 

values. The criterion for stable baseline was achieved when the standard error of the mean in LL (“large-lucky,” defined 

later) lever choices (± SEM) of three previous baseline session averages was under 5.00. 

 

After three injections were administered, additional test was conducted. In this test, a D-amphetamine dose of 0.3 mg/kg 

was given three consecutive days, 20 min prior to placing rats into the operant chambers. On the fourth day, the rats 

received one dose of D-amphetamine 1.0 mg/kg 20 min prior to testing. 

 

Apparatus 

Behavioral testing was conducted in operant chambers (30.5 × 24 × 21 cm; Med-Associates, St Albans, VT, USA) 

enclosed in sound-attenuating wooden boxes. The boxes were equipped with a fan that provided ventilation and masked 

extraneous noise. Each chamber was fitted with two retractable levers, one located on each side of a central food tray 

where sucrose reinforcement (45 mg; Opend, Denmark) was delivered by a pellet dispenser. Above each lever was a 

cue light. The chambers were illuminated by a single 100 mA house light located in the top center of the wall opposite 

the levers. 
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Lever press training 

Three days before the first lever press training session, rats were placed in the operant chambers for 15 min each day 

with the food tray in the chamber containing nine sucrose reward pellets. After this, the rats were returned to their home 

cage and approximately 30 sucrose pellets were given per cage. This procedure was done to habituate rats to the operant 

chamber environment and the taste of sucrose. 

 

After habituation days, the training period, which included three phases (A, B, and C), was initiated. In phase A, the rats 

were trained in forced choice for 60 min so that only one lever was constantly present (left or right). By pressing the 

lever, rats received one sucrose pellet with a 3-s time-out during which the cue light was on. Phase A consisted of a 

total of six training sessions, and the presented lever was changed each session. 

 

In phase B, the rats were trained for 30 min so that only one lever was present (left or right) at the start of the session. 

Rats received one sucrose pellet for each press. After each press, the lever that was pressed retracted and other lever 

was presented after 3-s time-out. During time-out, the cue light was lit above the lever that had been pressed and stayed 

on for 3 s. Phase B consisted of a total of six training sessions. 

 

In the last training phase, C, the rats were trained in a free choice task for 15 min so that both levers were presented at 

the same time, and by pressing either one of the levers, the rat received one sucrose pellet, the cue light above the lever 

pressed lit for 15 s, both levers were retracted, and they were presented again after 15 s. Phase C consisted of a total of 

six training sessions. 

 

All sessions were conducted in darkness. The house light was on after and before each session but was off during 

sessions. 
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Rational decision making task 

This task was modified from its original form based on the literature (Cardinal and Howes 2005; Adriani and Laviola 

2006; St Onge and Floresco 2009) and our previous experiment (Oinio et al. 2017). The rational choice task consisted 

of a total of 15 sessions, 1 session per day for 5 days a week. At the beginning of the session, rats were placed in the 

operant chambers, where the house light was on and both levers were retracted. When the session started, the house 

light went off and both levers were presented simultaneously. One lever was designated the SS-lever (“small/sure”), the 

other the LL-lever (“large/lucky”). Choice of the SS-lever always delivered one pellet with probability of 100%, and 

choice of the LL-lever delivered three pellets with probability of 100%. After pressing a lever, both levers retracted and 

the cue light above the lever that had been pressed was lit and one (SS lever) or three (LL lever) sucrose pellets were 

delivered to the food tray. Multiple pellets were delivered 0.5 s apart. After sucrose was delivered, the cue light 

remained on for another 15 s, after which both levers were presented again. 

 

In one session, rats had free choice to press the levers at 15-s intervals and duration of one session was set to 24 lever 

presses or 30 min. Session durations were registered from all sessions. Based on the literature and our previous findings 

(Floresco et al. 2008; Haluk and Floresco 2009; Stopper et al. 2013; Oinio et al. 2017), levers were not randomized but 

were counterbalanced so that for each rat, the LL-lever was designated to be the side that the rat did not spontaneously 

prefer during training phase C. Designated levers remained consistent throughout sessions for each rat. 

 

The criterion for rational choice behavior [rational choice criterion (RCC)] was set to LL-lever choice of ≥ 75% or three 

times the starting level (session 1). Either one of these criteria had to be achieved at least until the 15th session. Rats 

that achieved either one of these criteria were considered to behave rationally and proceeded to the probabilistic 

discounting task. 

 

The probabilistic discounting task 

This task was divided into three different probability levels where probability of gaining three sucrose pellets by 

pressing the LL-lever was decreased over time (50, 33, 25%) while the SS-lever always delivered one pellet with 100% 

probability. Rats received five consecutive sessions with LL-lever probability of 50%, after that five consecutive 

sessions with LL-lever probability of 33% and finally 10 consecutive sessions with LL-lever probability of 25%, 
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respectively. After the tenth session at the probability level of 25%, rats were given two saline injections (s.c.) to 

habituate the rats to the upcoming drug challenges. 

 

Initiation of drug challenges 

The criterion to initiate the drug challenges [risk aversion criterion (RAC)] was set so that the LL-lever choice of rats 

had to be ≤ 50% at least after the 10th session at the probability level of 25%. In addition, completion of all the 24 lever 

presses during 30 min was required. During the drug challenges, rats went through one session each day at the 

probability level of 25% and rats were given injections in the previously described manner. 

 

Satiety control 

After drug challenges, the effect of D-amphetamine to the sucrose pellet eating was studied in a 30-min free sucrose 

pellet eating test. In this test, rats were placed in the operant chamber for 30 min (house light off) with the additional 

food cup placed in front of the central food tray. The food cup was filled with 10.0 g of sucrose pellets. After 30 min, 

rats were removed and the remaining sucrose pellets were weighed in order to calculate sucrose pellet consumption. 

Sucrose consumption was calculated in grams per kilograms for each rat. Effects of D-amphetamine doses (0.3 and 1.0 

mg/kg) were examined, and saline was given as a vehicle. Drugs and vehicle were given s.c. in Latin square design 20 

min prior to satiety test with 3-day injection free time between each dose. 

 

Data analysis 

Data were analyzed with SPSS version 22.0. Data were collected on all rational choice behavior, probabilistic 

discounting, drug challenges, lever pressing activity, session duration, and satiety control. Data from rational choice 

behavior and probabilistic discounting were analyzed with two-way ANOVAs between AA and Wistar rat groups. Data 

from other experiments were analyzed by within subjects repeated measures ANOVAs followed by Bonferroni’s test as 

a post hoc test. LL-lever choices in the drug challenges task were compared to the vehicle (LL-lever choice 

(%) = percentage of LL-lever choices of total lever responses). In addition to the drug-vehicle comparison, the effects of 

D-amphetamine on LL-lever choices were always compared to the baseline average of the three preceding days. 
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Criterion for significance was set at p < 0.05. Separate comparisons (only two different values) between AA and Wistar 

rats were conducted by t tests or paired t tests depending on the sample type. 

 

Results 

Rational choice and probabilistic discounting 

AA and Wistar rats showed similar decision making behavior during the rational choice and probabilistic discounting 

tasks (Fig. 1). A two-way ANOVA revealed significant main effects of sessions [F(34, 770) = 25.74 p < 0.001] and LL-

lever choice (%) [F(1, 770) = 16.4, p < 0.001], but no session × LL-lever choice (%) interaction was detected [F(34, 

770) = 1.099, p = 0.3228]. Data presented in the Fig. 1 represent only the behavior of those rats that fulfilled both 

criteria (RCC and RAC) that were demanded for proceeding to the drug challenges. 

 

Effect of D-amphetamine to the LL-lever choices 

In AA rats, a statistically significant increase in LL-lever choices was observed after administration of a single dose of 

D-amphetamine at a dosage of 1.0 mg/kg compared to vehicle [F(2, 22) = 9.148, p < 0.01, post hoc p < 0.01 between 

vehicle and dose 1.0 mg/kg)] or a D-amphetamine dose of 0.3 mg/kg [F(2, 22) = 9.148, p < 0.01, post hoc no 

significance between vehicle and dose 0.3 mg/kg, Fig. 2]. After repeated administration of D-amphetamine, a 

statistically significant increase in LL-lever choices was observed at the D-amphetamine dose of 1.0 mg/kg compared to 

vehicle [F(4, 44) = 7.058, p < 0.01, post hoc p = 0.026 between vehicle and dose 1.0 mg/kg]. 

 

In Wistar rats, no statistically significant main effect on LL-lever choices as observed after administration of a single 

dose of D-amphetamine at dose of 0.3 or 1.0 mg/kg compared to vehicle [F(2, 22) = 2.107, p = 0.145 (one rat missing 

due zero responses after D-amphetamine dose of 1.0 mg/kg), Fig. 2]. After repeated administration of D-amphetamine, 

no statistically significant main effects on LL-lever choices were observed at the D-amphetamine doses of 0.3 mg/kg 

compared to vehicle or D-amphetamine dose of 1.0 mg/kg compared to vehicle [F(4, 44) = 1.065, p = 0.385 (one rat 

missing due zero responses after D-amphetamine dose of 1.0 mg/kg)]. 
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Effect of D-amphetamine on lever responding 

Based on our previous findings (Oinio et al. 2017), D-amphetamine reduced lever responding in AA rats significantly 

when it was compared to vehicle. Because of this, we explored the lever responses of rats during the drug challenges 

(Table 1). After administration of D-amphetamine at the dosage of 1.0 mg/kg, a decrease in lever responses was 

observed in AA and Wistar rats. 

 

Unpaired t tests between the AA and Wistar rat groups revealed that lever responses were decreased significantly more 

in Wistar rats than AA rats (Fig. 3). This was the case after single dose administration (unpaired t test p < 0.05) and as 

well after repeated dose administration (unpaired t test, p < 0.05). 

 

Effect of D-amphetamine on the session duration 

Session durations were collected from all sessions during the drug challenges (Table 2). At the baseline level (0 mg/kg), 

Wistar rats were significantly faster than AA to accomplish all the 24 lever presses. This difference was also observed 

after D-amphetamine doses of 0.3 mg/kg. The highest dose of D-amphetamine caused a major increase in session 

durations, but these results cannot be trustfully compared because at this dose, many of the rats did not complete all the 

lever presses, causing the session duration to be the maximum of 30 min (1800 s). 

 

Effect of D-amphetamine on sucrose pellet consumption 

In satiety control, dramatic effects of D-amphetamine on the sucrose eating of AA and Wistar rats were observed (Table 

3). Repeated measures ANOVAs revealed significant main effects in both groups {[AA: F(2, 22) = 63.920, p < 0.001, 

followed by Bonferroni post hoc test results for vehicle and AMPH 0.3 mg/kg p < 0.001, and vehicle and AMPH 1.0 

mg/kg p < 0.001)], [Wistar: F(2, 24) = 34.569, p < 0.001, followed by Bonferroni post hoc test results for vehicle and 

AMPH 0.3 mg/kg p < 0.01, and vehicle and AMPH 1.0 mg/kg p < 0.001)]}. 
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Discussion 

Here, we studied the effects of D-amphetamine on the reward-guided decision making of AA and Wistar rats. This 

study aims to find differences in gambling-like decision making between two rat strains where one possesses a genetic 

tendency for high alcohol consumption. Based on our results, the D-amphetamine promoted more unprofitable 

decisions and operant lever responding in AA than in Wistar rats, by mechanisms that are not linked solely to the 

gaining of the reward. These results suggest that the same genetic vulnerabilities that predispose them to a high level of 

alcohol consumption also creates vulnerability to dopaminergic mechanisms of gambling reinforcement. 

 

As shown numerous times (Cardinal and Howes 2005; St Onge and Floresco 2009; Stopper et al. 2013; Mai et al. 2015) 

and also discussed in our previous study (Oinio et al. 2017), rats are able to make rational decisions based purely on 

reward quantity when gaining of the higher reward is guaranteed, but when the element of uncertainty is introduced, 

rats begin to behave in a risk aversive way. This was also observed here when rats learned to choose the LL-lever over 

the SS-lever when probability of gaining three pellets was 100%. Right after the probability of gaining three pellets was 

changed to 50%, rats begun to slowly change lever choices towards the SS-lever, although this would be optimal only 

when the probability of gaining three pellets is low as 25%. Based on our results, no significant difference was observed 

in rational choice decision making or decision making during probabilistic discounting between rats that fulfilled 

criteria that were set to enter drug challenges. Our preliminary data suggest that there might be a slight difference in this 

baseline behavior when all rats are compared (including those that were excluded due to not fulfilling RCC or RAC), 

but this must be studied with a larger number of animals than used here. 

 

A dramatic difference, though, is seen after administration of dopamine releaser D-amphetamine. The administration of 

D-amphetamine increased choices of large but uncertain rewards in AA rats. As predicted, the increase in the LL-lever 

choices of AA rats after D-amphetamine dose of 1.0 mg/kg was significant. No significant increase was observed in 

Wistar rats. After a single D-amphetamine dose of 0.3 mg/kg, we did not observe any increases in LL-lever choices, 

which was interesting because in our previous study, a D-amphetamine dose of 0.3 mg/kg caused significant increases 

in LL-lever choices at probability levels 25 and 20% (Oinio et al. 2017). Based on the results presented here, we 

hypothesize that the effect of D-amphetamine dose of 0.3 mg/kg in the previous study may be due to sensitization for 

effects of multiple doses of D-amphetamine during the task. This hypothesis was not fully supported by our results from 

a short series of repeated doses of D-amphetamine at the 0.3 mg/kg dosage level since repeated doses caused only a 
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trend in increases of LL-lever choices compared to vehicle, but this failed to be significant based on the repeated 

measures ANOVA (paired t tests, however, showed significant differences between vehicle and second D-amphetamine 

dose p < 0.05 and vehicle and third D-amphetamine dose p < 0.05). Another interesting finding was that this increasing 

trend in LL-lever choices was observed only in AA rats. This indicates that the AA rats could be sensitized to effects of 

D-amphetamine that promote unprofitable choices. This hypothesis is supported by the findings that during repeated 

treatment with the dopaminergic drug cocaine, the AA rats developed behavioral (locomotor) sensitization with smaller 

doses than Wistar rats (Honkanen et al. 1999). The sensitizing effect of cocaine was observed after relatively short 

series of repeated administrations (four consecutive days) of cocaine, despite the fact that no difference was observed 

after a single acute treatment with cocaine. This indicates that neuroplastic changes due to high dopaminergic activity 

occur more rapidly in AA than in Wistar rats. Previous research suggests that this plasticity is located in the striatal 

regions where enhancement in dopamine release in the nucleus accumbens is seen after four consecutive days of 

cocaine treatment with AA rats, but not with ANA rats (Mikkola et al. 2001), and indicates that mesolimbic areas in AA 

rats are extremely prone to sensitization to behavioral effects of dopaminergic drugs. A similar comparison between AA 

and Wistar rats, however, has not been conducted, but based on our results, it could be hypothesized that there would be 

a similar difference. Also, as mentioned briefly in our previous report (Oinio et al. 2017), ANA rats would have been 

intuitively the optimal choice for comparison in reward-guided decision making, but the lack of motivation towards 

sucrose pellet reward (even after food restriction) prevents us from using ANA rats in this kind of task. 

 

One remarkable finding was the high distribution in LL-lever choices of Wistar rats after the D-amphetamine dose of 

1.0 mg/kg. Because of this, we performed a comparison where all rats where viewed separately (see SUPPLEMENT I 

and II). This comparison revealed that there was high consistency in the LL-lever increasing effect of D-amphetamine 

among the AA rats, but large inconsistency among the Wistar rats resulting relatively high distribution. This finding 

could also have a significance in the planning of future studied aiming to find treatment for gambling disorder patients 

with burden of genetic vulnerability of alcohol use disorder. 

 

Both AA and Wistar rats very willingly consumed a large number of sucrose pellets even under ad libitum feeding of 

regular chow. Despite this, the D-amphetamine caused significant reduction in sucrose consumption in the satiety test, 

which was exactly what was predicted based on our previous study (Oinio et al. 2017) and by the literature, because D-

amphetamine is a drug known to induce anorexic effects (Wise 2006; Melrose et al. 2016; Boekhoudt et al. 2017). It can 
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be clearly seen in both strains that D-amphetamine reduced sucrose intake dose dependently, and the highest dose 

almost abolishes sucrose eating totally. Based on past research showing that in AA rats intake of sweet ingredients 

activates the same neuronal pathways as alcohol (Dudek et al. 2015), combined with studies showing that AA rats 

consume high amounts of sweet liquids (Kampov-Polevoy et al. 1999), we predicted that the satiety test would show 

increased baseline sucrose eating in AA rats compared to Wistar rats, and a more dramatic decrease after D-

amphetamine in the sucrose eating of Wistar than AA rats. However, this kind of difference between AA and Wistar 

rats was not detected. A major difference in consumption of sweet was shown between alcohol-preferring rat lines 

compared to alcohol-avoiding rat lines (Sinclair et al. 1992; Stewart et al. 1994). The sweet liquid consumption of AA 

and Wistar rats showed a similar pattern of baseline consumption as our present study with sucrose pellets (Sinclair et 

al. 1992). These two findings do not fully support the view that alcohol-preferring rats are more prone to sweet taste, 

but indicate that alcohol-avoiding rats have an aversion towards sweet taste. 

 

In addition to reducing sucrose consumption, D-amphetamine also reduced the overall lever responses of Wistar rats 

significantly more than those of AA rats. When these data are added to the findings from satiety test, it reveals that the 

differences between the lever responses are very unlikely to be linked to the motivation of gaining sucrose rewards, but 

more to the lever pressing alone. This indicates that the operant behavior environment combined with the uncertainty 

acts as a stronger conditioning factor for AA rats than Wistar rats. Because in the task there is no conditioning cue that 

would be associated to the LL-lever (identical levers are presented simultaneously), only the known outcome of the 

lever pressing can guide the decision making of the rats. This creates an interesting question about the role of 

uncertainty and the dopaminergic effects of D-amphetamine in this task. From a gambling point of view, excessive 

dopaminergic activity is the key focus, because it has been shown that as in other addiction disorders, gambling induces 

dopamine release in the mesolimbic areas (Joutsa et al. 2012; Linnet 2013). Although the exact role of this dopamine 

releasing function in the development of gambling disorder is not precisely known, it could be postulated to be linked to 

the similar neuroplasticity mechanism of the striatal regions that are proposed to be one of the main mechanisms 

through which substance use addictions are developed (Volkow and Morales 2015). It has been very robustly shown 

that uncertain events that are linked to the opportunity to get reward increase dopamine release in the striatal regions 

(Fiorillo et al. 2003; Joutsa et al. 2012). It has also been shown that temporal changes occur in the dopamine levels 

depending on the outcome of the results in the gambling task (Joutsa et al. 2015). Rewards that are higher than expected 

increase dopamine release, and rewards that are lower than expected decrease dopamine release in the nucleus 

accumbens area (Schultz 2006; Linnet 2014). The difference between the expected rewards versus the reward outcome 
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creates a reward prediction error (RPE) which is coded by dopaminergic neurons in the Nacc (Schultz 2006). The 

magnitude of dopamine response in the Nacc is hypothesized to be dependent on the difference between the dopamine 

levels before and right after the reward is gained, and therefore, unexpected positive outcomes are more rewarding than 

expected positive outcomes. Studies have shown that in rats, solely a long time of exposure to uncertainty in the operant 

environment can act as a sensitizing factor for effects of D-amphetamine, providing good evidence that just the 

excitement can act as a conditioning factor via dopaminergic mechanisms (Zack et al. 2014). 

 

Based on our results, we argue that this dopamine response due to the RPE signal leads to creation of neuroplastic 

changes in the dopaminergic systems of AA that are greater than those in Wistar rats, and thus, every “win” serves as a 

greater conditioning factor for AA than Wistar rats. After D-amphetamine administration, the dopamine release in the 

Nacc could drive the lever choices of rats towards the LL-lever because D-amphetamine is known to induce 

reinstatement of behavior to which animals have been previously conditioned (de Wit and Stewart 1981; Ledford et al. 

2003; Odum and Shahan 2004). Data from human studies also support this view because it has been shown that the 

psychostimulant D-amphetamine increases the drive to gamble in problem gamblers, but not in healthy controls, which 

indicates that problem gamblers may be hypersensitive to increases in dopamine release (Zack and Poulos 2004; Cocker 

et al. 2012). 

 

One may question why, if LL-lever choice acts as a conditioning factor, are the rats not choosing the LL-lever more and 

more even without the D-amphetamine administration. Explanation for this could be found in the PRE signal theory, 

because based on this theory, positive outcomes induce dopamine release in the Nacc, but negative outcomes decrease 

it. We presume that this causes a situation where the “wins” cause dopaminergic impact that is large enough to produce 

neuroplastic changes, but immediate reductions in dopamine release after “loss” prevent rats from pursuing the LL-

lever. As long as the dopamine release is enhanced by the D-amphetamine, the dopamine levels in the Nacc stay 

constantly high despite the loss, making rats unable to adjust their decision making based on the lever press outcomes. 

This creates a situation where the lever pressing becomes more random and shifts the overall LL-lever choosing close to 

50%. This is important from the GD point of view, because the more decisions to initiate the gamble are made, the more 

the gambler is exposed to the features that are considered to be stimuli that condition gambling (including big 

unexpected wins, near-miss effects, etc. Singer et al. 2014). Based on this, it could be postulated that high dopamine 

response due to the PRE signal after wins disturbs the evaluation of the outcome of the next event, but at the same time 



15 
 

drives gamblers to initiate a new gambling session in those individuals who are conditioned to gambling stimuli. This 

hypothesis is supported by a human study showing that betting tendencies of subjects with background in pathological 

gambling is regulated by the pay-offs of consecutive gambling sessions, which is restored to the same level as in 

healthy controls by a low dose of D2 receptor antagonist haloperidol (Tremblay et al. 2011). This suggests that one 

reason for the individual differences in gambling behavior between “gambler subtypes” could be the difference in basal 

dopamine levels in the ventral striatal areas. Based on the RPE signal theory, it is justified to assume that similar 

outcomes of the gambling session can cause relatively different-sized dopamine responses between different 

individuals. Modulation of basal dopamine levels could also be a target for individually designed pharmacotherapies 

where the dose adjustment could be titrated based on individual dopamine levels. 

 

Our findings support the view of heightened reinforcing effects of gambling-like environment in rats with a genetic 

tendency towards high alcohol consumption and serve as an important platform for studies in the future. We must 

acknowledge that there might be some unmeasurable variables that may have impact on the differences between the 

behavior of individual animals. Thus, more specific studies should be conducted to reveal the precise neurobiological 

differences between these two rat lines that correspond for the behavioral differences found here. This could create 

possibilities to find specialized pharmacological treatments for GD subtypes that co-occur with AUD. 
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Fig 1. Sessions 1–15 represent rational choice behavior of Wistar (n = 13) and AA rats (n = 12) that fulfilled the criteria 

set for proceeding to drug challenges. Sessions 16 to 20 LL-lever probability 50%, sessions 21 to 25 LL-lever 

probability 33%, and from session 26 to session 35 LL-lever probability 25%. [LL-lever choice (%) = percentage of LL-

lever choices of total lever responses, ± SEM] 

 

 

 

Fig 2. Single dose of D-amphetamine increased LL-lever choices of AA rats at the dose of 1.0 mg/kg when compared to 

vehicle or D-amphetamine dose of 0.3 mg/kg. In repeated dose administration, D-amphetamine increased the LL-lever 

choices after the dose of 1.0 mg/kg (n = 12, +SEM). Similar increase in LL-lever choices after acute or repeated 

administration of D-amphetamine was not observed in Wistar rats (n = 13/12, +SEM) 
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Fig 3. Number of lever responses of AA and Wistar rats during the sessions after single dose (AA_S, Wistar_S) and 

repeated dose (AA_r, Wistar_r) of D-amphetamine at the dose of 1.0 mg/kg (n AA 12, Wistar 13/12, + SEM) 

 

Table 1. Effect of D-amphetamine on the lever responses 

D-Amphetamine dose (mg/kg) AA responses Wistar responses 

0 mg/kg 24.00 24.00 

0.3 mg/kg 24.00 24.00 

1.0 mg/kg 19.67 (± 1.71) 11.38 (± 3.13) 

0.3 mg/kg_1 24.00 24.00 

0.3 mg/kg_2 24.00 24.00 

0.3 mg/kg_3 24.00 24.00 

1.0 mg/kg_4 19.67 (± 1.26) 12.75 (± 2.73) 

n = 12/13(12) 
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Table 2. Effect of D-amphetamine on session duration 

D-Amphetamine dose AA duration (s) Wistar duration (s) t test 

0 mg/kg 860.42 (± 128.26) 398.08 (± 8.48) ** 

0.3 mg/kg 607.75 (± 67.75) 444.23 (± 28.59) * 

1.0 mg/kg 1176.00 (± 168.41) 1510.31 (± 159.28)   

0.3 mg/kg_1 843.58 (± 105.99) 526.58 (± 43.92) * 

0.3 mg/kg_2 797.83 (± 124.74) 577.33 (± 103.53)   

0.3 mg/kg_3 741.92 (± 79.47) 482.08 (± 61.61) * 

1.0 mg/kg_4 1523.00 (± 134.17) 1435.00 (± 173.46)   

n = AA 12, Wistar 13/12 

*p < 0.05; **p < 0.01 

 

Table 3. Effect of D-amphetamine to the sucrose consumption 

D-Amphetamine dose AA sucrose (g/kg) Wistar sucrose (g/kg) 

0 mg/kg 7.55 (± 0.81) 9.56 (± 0.91) 

0.3 mg/kg 2.35 (± 0.63)*** 5.38 (± 0.71)* 

1.0 mg/kg 0.43 (± 0.17)*** 1.34 (± 0.61)*** 

n = 12/12, ± SEM 

*p < 0.05 versus vehicle; ***p < 0.001 versus vehicle 

 

 

 

 


