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Abstract 

In addition to its essential roles as part of the cytoskeleton, actin has also been linked to many 

processes in the nucleus. Recent data has demonstrated the presence of both monomeric and 

polymeric actin in the nucleus, and implied distinct functional roles for these actin pools. 

Monomeric actin seems to be involved in regulation of gene expression through transcription 

factors, chromatin regulating complexes and RNA polymerases. In addition to cytoplasmic actin 

regulators, nuclear proteins, such as emerin, can regulate actin polymerization properties 

specifically in this compartment. Besides of structural roles, nuclear actin filaments may be 

required for organizing the nuclear contents and for the maintenance of genomic integrity.  

 

Introduction 

Actin is a globular protein that has the unique feature to polymerize into filaments. Controlled 

polymerization of actin filaments (F-actin) from actin monomers (G-actin), regulated by numerous 

actin-binding proteins (ABPs), creates the foundation for the cytoskeleton and is essential for 

many cellular processes such as cell adhesion, cell motility and intracellular trafficking. However, 

the functions of actin are not limited to the cytoplasm, since actin is present also in the cell 

nucleus. Although the amount of actin in the nucleus is lower than in the cytoplasm, the level of 

nuclear actin is constantly maintained by active nucleocytoplasmic transport. Actin is imported 

into the nucleus in complex with cofilin by Importin-9 [1], and is exported with profilin by Exportin-

6 [2]. This active transport mechanism suggests the need to carefully balance the cellular actin 

distribution (Figure 1).  Also many ABPs can be translocated to the nucleus where they could 

regulate nuclear actin polymerization [3]. For a long time it was unclear whether nuclear actin 

could actually polymerize, but recent studies have shed light into this issue [4]. Development of 

actin probes that recognize different forms of actin has revealed localization of monomeric actin 

to nuclear speckles and filamentous actin as submicron length structures excluded from 

chromatin-rich regions [5]. In addition, certain signals, such as serum-stimulation, cell adhesion 

and DNA damage can induce polymerization of nuclear actin to canonical, phalloidin-stainable 

filaments [6,7*,8**]. It has therefore become clear that like in in the cytoplasm, nuclear actin 

exists in both monomeric and polymeric forms. Here we review the recent progress in elucidating 

the functional significance of these different nuclear actin pools. 



Monomeric actin in MKL1 regulation 

Actin has been linked to many processes that control gene expression. Mechanistically, the best 

described example relates to the regulation of the essential transcription factor serum response 

factor (SRF) by actin. This takes place via megakaryoplastic leukemia protein 1 (MKL1, also called 

MAL or MRTF-A), which is a coactivator of SRF and regulated by actin monomers through several 

mechanisms. G-actin binding to MKL1 inhibits its nuclear import by masking the nuclear 

localization signal (NLS) in MKL1 [9] [10]. Nuclear export of MKL1 is actin-dependent, and actin-

binding also prevents MKL1 from activating SRF in the nucleus. Consequently reducing G-actin 

retains MKL1 in the nucleus and activates SRF [10]. In line with this, expression of NLS-tagged actin 

inhibits expression of many adhesive and cytoskeletal SRF target genes, leading to decreased cell 

motility [11]. Stimulating cells with serum leads  to formin mDia-dependent nuclear actin 

polymerization, followed by retention of MKL1 in the nucleus [6]. Another mechanism to regulate 

MKL1 via nuclear actin involves Mical-2, an atypical actin-regulatory protein with monooxygenase 

activity. Mical-2 localizes to the nucleus, binds to actin filaments and triggers their 

depolymerization through a redox modification of a conserved methionine residue in actin. Mical-

2 activity leads to decreased nuclear G-actin, resulting in nuclear retention and activation of MKL1, 

adding another layer to SRF control [12**]. However, the mechanism by which Mical-2 activity 

reduces nuclear G-actin must still be resolved. Additionally, MKL1 nuclear translocation is reduced 

in cells deficient for nuclear envelope proteins lamin A/C or emerin. This is due to increased 

mobility, and thus reduced polymerization, of both nuclear and cytoplasmic actin. Expression of 

emerin, but not of an emerin mutant incapable of binding actin, can rescue the phenotype [13]. 

Emerin, together with lamin A/C, linker of nucleoskeleton and cytoskeleton (LINC) complex at the 

nuclear envelope as well as formins mDia1/2 are also required for cell spreading-induced nuclear 

actin polymerization, which activates the MKL1/SRF pathway [7*]. Interestingly, also nuclear pore 

protein Nup98 and Drosophila Lamin have been linked to nuclear actin polymerization [14], but 

the mechanisms are still unclear. Phosphorylation adds yet another layer to MKL1 control.  Actin-

binding inhibits MKL1 phosphorylation, which is required for transcriptional activation and also 

regulates MKL1 localization.  N-terminal phosphorylation promotes nuclear export, while 

phosphorylation in the RPEL domain, which is the actin-binding regulatory domain of MKL1, 

inhibits actin-binding and thus promotes nuclear import of MKL1 [15*]. In conclusion, actin 



dynamics controls MKL1-SRF transcriptional activity, with actin monomers eliciting the negative 

regulatory effect (Figure 2). 

 

 

Monomeric actin in chromatin remodeling and transcription regulation 

Monomeric actin is known to tightly associate with several chromatin remodeling complexes, 

including SWI/SNF, SWR1 and INO80. These remodelers share a Helicase-SANT-associated (HSA) 

domain, which acts as the binding site for actin, usually together with actin related proteins (Arps)  

[16]. Structural studies of the INO80 complex revealed features of Arp4 that differ from actin, 

making it incapable of polymerizing. In fact, Arp4 can depolymerize actin with the help of Arp8, 

likely explaining why actin stays monomeric in this complex [17]. Additionally, the barbed end of 

actin is not accessible in the INO80 complex, further preventing actin polymerization. Moreover, 

chromatin remodeling activity and chromatin binding of INO80 was reduced when the pointed end 

of actin was mutated, suggesting that the accessible pointed end of actin is involved in chromatin 

binding [18]. Recent structural studies of actin bound to Arp4 and the HSA domain showed that 

actin is twisted in this complex and the pointed end is reshaped in a way that further prevents 

both polymerization and ATP-binding [19*]. Additionally, the architecture of the whole INO80 

complex revealed that actin and Arps are located in the flexible foot module and chromatin is 

positioned in the cradle between the foot and the head module. Folding of the foot module could 

bring the DNA-binding subunits of the complex close to nucleosomes and promote remodeling 

[20] (Figure 2). In summary, it is evident that actin is kept monomeric at least in the INO80 

chromatin remodeling complex, and that actin is required for chromatin-binding through the 

pointed end. Whether the twisted actin conformation favors the binding and whether the same 

principles apply also to other actin-containing remodeling complexes remains to be studied. In 

addition, actin has also been linked to chromatin modifying complexes. Monomeric actin 

associates with, and inhibits the activity of histone deacetylases 1 and 2 [21]. 

 

Actin has also been implicated in RNA polymerase function, and suggested to be involved in 

transcription elongation by polymerase (Pol) I [22], initiation [23] and elongation [24] by Pol II, and 

to associate with Pol III [25]. In addition to the polymerases themselves,  monomeric actin was 

reported to associate with P-TEFb, a transcription elongation factor that releases Pol II from 



pausing [26] (Figure 2). This finding seems particularly interesting when taking into account that 

many recent studies suggest pause-release to be a key step in transcription regulation. Even 

though the mechanisms of actin in transcription remains unknown, several studies have shown 

that adequate nuclear actin levels are required for maximal transcription. Depleting the nuclear 

import receptor for actin, Importin-9, decreases nuclear actin levels and hinders transcription [1]. 

In mammary epithelial cells, growth factor withdrawal or laminin 111 addition induces depletion 

of nuclear actin, destabilizing Pol II and III binding to transcription sites. This leads to decreased 

transcription and eventually quiescence [27]. A more recent study from the Wickström lab linked 

nuclear actin levels to mechanical regulation of epidermal stem cell lineage commitment.  

Mechanical strain induces translocation of emerin from the inner to the outer nuclear membrane, 

resulting in recruitment of non-muscle myosin IIA and local actin polymerization. This reduces 

nuclear import-competent actin monomers, and thus reduces nuclear actin levels, leading to 

decreased transcription as well as large scale chromatin rearrangements [28**]. It therefore 

appears that emerin can regulate both nuclear actin polymerization (see above) and its levels, and 

that it can act on both sides of the nuclear envelope (Figure 1).  

Due to the lack of biochemical data, the functional form of actin during transcription is still 

debatable. Especially the involvement of nuclear myosin I [29], and several other regulators of 

actin polymerization, such as cofilin [30], the actin nucleating Arp2/3 complex [31], as well as its 

activator N-WASP [32] in transcription has evoked models of coordinated actin filament formation 

during the transcription cycle [33]. However, a recent study showed that persistent nuclear actin 

filaments inhibit transcription through depletion of the dynamic actin pool, and that sequestering 

actin monomers inhibits transcription in vitro [34*]. This suggests a role for actin monomers in 

transcription by Pol II, but the molecular mechanism still remains inconclusive. Nevertheless, it is 

interesting that in the context of MKL1-SRF target genes, actin monomers have a negative effect 

on transcription, whereas the overall impact of actin on other transcription-related processes 

appears positive. How these opposing activities are resolved on genes is an interesting open 

research question. 

  

Organizing the nucleus with nuclear actin filaments 

Recent studies have shown that nuclear actin can indeed polymerize [5,6,7*], but the mechanistic 

implications of these polymers, apart from their indirect role in activating MKL1-SRF 



transcriptional activity (see above), still require further studies. Nevertheless, a common theme so 

far seems to be the organization and maintenance of nuclear integrity. Xenopus oocytes lack 

Exportin-6, and therefore contain huge amounts of nuclear actin, which forms a stable F-actin 

network [35]. Due to their large size, the oocyte nucleus is under significant gravitational forces. 

The nuclear F-actin scaffold prevents the oocyte nucleus from collapsing and resists the 

gravitational sedimentation of ribonucleoprotein droplets such as nucleoli [36]. Actin is 

responsible for organizing and rearranging the contents of the cytoplasm. This function may 

extend to the nucleus as well, because actin has been linked to repositioning of nuclear organelles 

and chromosomes. For example, chromosome relocation as well as movement of gene loci to 

active transcription sites  is actin polymerization and myosin-dependent [37-39]. A direct link 

between active movement of a gene locus and its transcriptional activity was provided by the 

Belmont-lab. They showed directed motion of the HSP70 transgene towards nuclear speckles 

during heat shock. Inhibiting actin polymerization prevented the movement and gene activation 

[40**]. Another study found that actin polymerization induces movement of latent HIV-1 away 

from transcription repressing PML nuclear bodies for activation of viral transcription [41]. Nuclear 

F-actin thus clearly has a role in chromatin repositioning, and may be used to bring genomic 

regions to transcription permissive locations (Figure 3), but neither the regulators nor the 

mechanism by which actin attaches to genes are known. 

 

In addition to organizing nuclear contents, actin may also play a role in maintaining genomic 

integrity (Figure 3). Formin-2, an actin nucleator, accumulates to the nucleus and mediates, 

together with another type of actin nucleators, Spire-1/Spire-2, nuclear actin polymerization in 

response to DNA damage. Inhibition of this pathway leads to increased DNA double strand breaks, 

demonstrating that nuclear actin polymerization is required for proper DNA damage repair [8**]. 

Actin may be involved in chromatin maintenance also by regulating the centromere protein A 

(CENP-A) incorporation into centromeres. Formin mDia2 operates downstream of the Rac GTPase 

activating protein (MgRacGAP) to regulate centromere association of holiday junction recognition 

protein (HJURP), which is required for CENP-A loading [42*]. Direct evidence for nuclear actin in 

this process must still be clarified. 



 

Conclusion 

Recent advances in imaging techniques and development of probes to detect and resolve different 

forms of nuclear actin have given us insights into forms and functions of nuclear actin. It is more 

evident than ever that actin in the nucleus is just as versatile as it is in the cytoplasm. It is also 

clear that cytoplasmic and nuclear actin pools are in close crosstalk through constant 

nucleocytoplasmic exchange of actin and ABPs. Another level of communication comes from 

mechanical interactions, where emerin and the nuclear lamina play important roles. While new 

functions for nuclear actin arise, we still lack the knowledge about the molecular mechanisms 

involved. For instance, actin has been connected to the RNA polymerase already 30 years ago, but 

we still do not understand how actin operates during transcription. The presence of polymerized 

nuclear actin, and its links to important nuclear organizing and maintenance processes, also raises 

new questions regarding the mechanisms by which actin operates in the nucleus. Do the polymers 

operate similarly as in the cytoplasm to provide force for movement, or do they only contribute to 

the viscoelastic nature of the nucleoplasm? One likely answer is that actin polymers come in 

different flavors, with distinct functional properties. Further development of imaging methods, 

utilizing for example super-resolution or electron microscopy, together with biochemical 

understanding of what these actin polymers interact with in the nucleus, will help us understand 

the versatile nuclear functions of one of the most versatile proteins of the cell: actin. 
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Figure legends 
 
Figure 1. Regulation of nuclear actin pool. (a) Actin is imported into the nucleus with cofilin by 

importin-9 and (b) exported from the nucleus with profilin by exportin-6. (c) Actin polymerization 

can be controlled in the nucleus by known actin binding proteins, such as formins and Arp2/3 

complex, as well as nucleus specific proteins such as emerin, Nup98 and Lamin. Question mark 

indicates that the proteins, excluding formins, have not been linked to nuclear polymerization of 

phalloidin-stainable actin filaments. (d) Emerin can reside at both inner and outer nuclear 

membrane and control local actin polymerization inside and outside the nucleus. NPC; nuclear 

pore complex. 

 

Figure 2. Monomeric actin controls gene expression. (a) Actin is an integral part of the INO80 

chromatin remodeling complex. It is located in a flexible foot module with Arp4 and Arp8. The 

barbed end of actin is attached to Arps preventing actin from polymerizing. The pointed end is 

accessible and possibly interacting with chromatin. (b) Actin monomers can bind to MKL1 keeping 

it inactive. Polymerization or export of monomeric actin releases MKL1 allowing it to be 

phosphorylated and to activate the serum response factor (SRF). (c) Nuclear actin is required for 

efficient transcription by RNA polymerases, where it possibly acts as a monomer. Actin has been 

suggested to interact with both the RNA polymerase II (Pol II) itself, as well as with P-TEFb which 

phosphorylates RNA polymerase II releasing it from pausing. P; phosphorylation 

 

Figure 3. Functions of polymerized actin in the nucleus. (a) Nuclear actin polymerization is able to 

reposition an activated gene locus to transcription permissive area. (b) DNA damage induces 

Formin-2 and Spire-1/2 -dependent nuclear actin polymerization, which is required for efficient 

DNA damage repair. (c) Actin polymerization by the formin mDia2 might be involved in CENP-A 

loading to centromeres. In all cases, the mechanism by which the actin polymer operates, as well 

as how it is bound to chromatin, is not known. 
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